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Abstract—Pairwise constraints improve clustering 

performance in constraint-based clustering issues, especially 

since they are applicable. However, randomly choosing these 

constraints may be adverse and minimize accuracy. To address 

the problem of random choosing pairwise constraints, an active 

learning method is used to identify the most informative 

constraints, which are then selected by the active learning 

technique. In this research, we replaced random selection with an 

active learning strategy. We provide a semi-supervised selective 

affinity propagation clustering approach with active constraints, 

which combines the affinity propagation (AP) clustering 

algorithm with prior information to improve semi-supervised 

clustering performance. Based on the neighborhood concept, we 

select the most informative constraints where neighborhoods 

include labelled examples of various clusters. The experimental 

results on eight real datasets demonstrate that the proposed 

method in this paper outperforms other baseline methods and 

that it can improve clustering performance significantly. 

Keywords—Semi-supervised; pairwise constraints; affinity 

propagation; active learning 

I. INTRODUCTION 

In data mining, clustering is an unsupervised learning 
technique that divides a data collection into k clusters based on 
how similar or dissimilar data examples are within a cluster 
and outside of it. Clustering with restrictions, or semi-
supervised clustering, has drawn a lot of attention from 
researchers in the past few years. By utilizing user-provided 
side information, semi-supervised clustering seeks to enhance 
clustering performance. Pairwise restrictions, or must-links 
(ML) and cannot-links (CL), are the most often utilized 
information in semi-supervised clustering. Instances xi and xj 
must be assigned to the same cluster according to the constraint 
ML(xi, xj), but a CL(xi, xj) specifies that they must be assigned 
to separate clusters [1, 2]. 

Constraints have been shown in several earlier research to 
improve clustering performance. However, incorrect constraint 
selection can also degrade the clustering performance [3-5]. 
Furthermore, getting pairwise constraints usually necessitates a 
user to examine the relevant data points by hand, which can be 
expensive and time-consuming. Most semi-supervised 
clustering techniques already in use choose all of their 
constraints at random. Therefore, these methods are unable to 
predict the impact of a particular constraint on the algorithm 
[6-8]. 

The affinity propagation (AP) method is a highly effective 
clustering method for data mining. Compared to standard 

clustering methods, the AP method is capable of clustering 
large-scale and multi-cluster datasets quickly. Furthermore, the 
AP method does not need to predetermine the initial centres of 
the cluster and cluster number, which allows it to avoid getting 
locked in the local optimal setting [15]. Thus, utilizing the AP 
technique is preferable since the clustering algorithm may 
provide higher-quality component clusters [9]. 

In this paper, we maximize the pairwise constraint selection 
for semi-supervised clustering by combining the affinity 
propagation (AP) clustering algorithm with prior information 
based on the neighborhood notion. A neighborhood is a 
collection of data items that must-link constraints have 
determined to belong to the same class. It is well known that 
distinct neighborhoods belong to different classes since they 
are connected by cannot-link constraints. Our goal is to choose 
the most educational point to incorporate into the 
neighborhoods. After a point is chosen, its neighborhood is 
ascertained by querying the chosen point against the list of 
neighborhoods. Utilizing the neighborhood ideas has the major 
benefit of allowing us to obtain constraints by utilizing the 
neighborhood knowledge. 

On UCI datasets, extensive research has been done with the 
MPCK-means semi-supervised clustering technique. 
According to experimental results, MPCK-means performs 
better when subjected to AML and ACL restrictions than when 
subjected to random selection constraints. 

The rest of the paper is structured as follows. A concise 
overview of relevant research on active learning techniques is 
given in Section II. We present our suggested active learning 
algorithm in Section III. Section IV presents the outcomes of 
the experiment. In Section V, we finally wrap up the paper and 
talk about future directions. 

II. RELATED WORK 

Semi-supervised clustering algorithms are proposed in 
recent years [10]. These algorithms are an extension of known 
unsupervised clustering algorithms [11, 12]. The methods 
utilized constraints in adapted clustering procedure for learning 
similarity metrics. In recent years, various constraint-based 
methods were proposed for clustering, specifically in clustering 
algorithms like spectral clustering and K-means [11]. 

Basu et al. proposed a pairwise constrained clustering 
framework and a new method for selecting information 
pairwise constraints for enhance clustering performance [13]. 
These two methods, as indicated by the authors, can handle 
large and high dimensional datasets. The result shows an 
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improvement in clustering accuracy with little supervision 
required. 

Shental et al. proposed a framework for the composition of 
side information in the form of equivalence constraints into the 
model estimation procedure [14]. The authors further introduce 
EM procedure and generalized EM procedure that handles both 
positive constraints (for the former), and negative constraints 
(for the latter). The algorithm shows significant improvements. 
In another study by Bilenko et al., a new clustering algorithm 
was proposed that integrates two methods, which are the 
constraint-based method and distance-function learning 
methods for semi-supervised clustering [15]. Based on an 
experimental study, the result revealed that the proposed 
algorithm provides better clusters. 

In a study by Wagstaff et al., a constrained k-means 
clustering algorithm was proposed with background knowledge 
[11]. The experiment was conducted with artificial constraints 
on various datasets, the result shows a significant 
improvement. Rangapuram and Hein proposed a clustering 
method that is based on tight relaxation of constraint 
normalized cut [12]. The proposed method guarantees the 
satisfy all constrained. The method further allows the 
optimization of the trade-off between the number of violated 
constraints and normalized cut. The result shows some 
improvements. 

In the last decades, active learning has been studied for 
supervised classification problem. Xiong et al., introduced a 
method that incorporates a neighborhood concept. Hence, each 
neighborhood is composed of labeled examples of distinct 
clusters based on pairwise constraints [16]. An evaluation of 
benchmark datasets shows that the proposed method 
outperforms the existing state-of-the-art. 

Fernandes et al. proposed four active learning strategies for 
an evolutionary constrained clustering algorithm coined 
FIECE-EM. The proposed strategies utilizes key information 
from multitudes of sources like partition, population, and so on 
[17]. An empirical evaluation result shows that the proposed 
strategies attain a better result in comparison to various state-
of-the-art. Based on the knowledge that choosing a constraint 
is critical because choosing it improperly may result in low 
clustering precision, a new active query mechanism was 
proposed by Kumar et al. The proposed mechanism selects 
queries by utilizing min-max criterion. Hence, the authors 
specifically focused on constraints selection to enhance 
clustering performance. The experimental result indicates that 
the proposed outperforms the existing state-of-the-art [18]. 

In another study by Nguyen and Smeulders, an algorithm 
was developed to construct classifier in a group of cluster 
representatives and further propagates the conducted 
classification to other samples through a local noise model 
[19]. The developed algorithm initially selects the most active 
samples for the avoidance of repeatable samples labels. In the 
active learning process, the algorithm adjusts the clustering by 
utilizing coarse-to-fine strategy. This is purposely to balance 
between large clusters merit and data representation accuracy. 
The result demonstrates the performance of the proposed 
algorithm. 

Another study by Vu et al. proposed an efficient algorithm 
for active seeds selection [20]. The proposed algorithm 
depends on min-max approach which permits the coverage of 
large dataset and the selection of useful user queries. The result 
shows that the proposed algorithm performs very well. A semi-
supervised clustering algorithm with a new method for 
selecting information instance-level constraints was proposed 
to enhance clustering accuracy [21]. The proposed algorithm is 
coined Constrained DBSCAN. The algorithm is aimed at 
selecting informative document pairs to retrieve user feedback. 
Hence, the authors used two kinds of instance-level constraints, 
which are cannot-link and must-link. For the former, it means 
that document pairs must always be placed in distinct groups, 
while for the latter, the document pairs must be in the same 
cluster. The result shows that a good clustering performance 
was achieved. 

Wang and Davidson proposed a spectral clustering 
algorithm with active learning and further investigates active 
learning [22]. The authors also allow for the utilization of 
cannot-link and must-link constraints in the proposed 
algorithm. However, in distinction, their constraints are 
identified incrementally through oracle querying. Hence, the 
outline advantages of their proposed algorithm are the process 
of constraints querying that reduces error, and the combination 
of both soft and hard constraints. The results based on an 
experiment on existing benchmark show that the proposed 
algorithm outperforms existing baseline approaches [23]. 

Although many studies have investigated active constraints, 
there is limited research on leveraging existing information to 
identify the most informative constraints in ensemble 
clustering or on integrating active constraints with selective 
ensemble clustering results [24-26]. To address this gap, this 
paper introduces a semi-supervised selective affinity 
propagation clustering approach that incorporates active 
constraints, aiming to enhance the performance of semi-
supervised clustering. 

III. ACTIVE AFFINITY PROPAGATION 

Affinity propagation (AP) [9] is a clustering technique that 
groups data points into clusters according to their similarities. 
Messages are sent between data points iteratively via affinity 
propagation. These messages show how each data point is 
ideally suited to serve as a cluster center for additional data 
points. High affinity data points eventually become cluster 
centers, to which other points are allocated. There are two 
kinds of messages exchanged between data items the 
responsibility r(i, k) and the availability massage a(i, k), that 
reflects the accumulated evidence for how well-suited item xk 
is to serve as the exemplar for item xi, and reflects the 
accumulated evidence for how appropriate it would be for item 
xi to choose item xk as its exemplar. 

𝑟(𝑖, 𝑘) = 𝑆(𝑥𝑖 , 𝑥𝑘) − max
𝑗≠𝑘

{𝑆(𝑥𝑖 , 𝑥𝑗) + 𝑎(𝑖, 𝑗)}          (1) 

𝑎(𝑖, 𝑘) =

{
∑ max[0, 𝑟(𝑖′, 𝑘)]𝑖′≠𝑘                                    𝑖 = 𝑘

min[0, 𝑟(𝑘, 𝑘) + ∑ max[0, 𝑟(𝑖′, 𝑘)]𝑖′∉{𝑖,𝑘} ] 𝑖 ≠ 𝑘
       (2) 
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where, S(xi, xj) denote the similarity between the data items 
xi and xj , with i ≠ j. 

Affinity propagation is an unsupervised clustering method. 
Semi-supervised clustering algorithms make use of the 
partially labeled data by using a limited number of constraints. 
The issue of selecting pairwise queries wisely to provide a 
precise clustering assignment is covered in this section. Using 
the neighborhood concept—where neighborhoods include 
labeled examples of various clusters depending on pairwise 
constraints—we choose the active constraints. By picking the 
most illuminating examples and investigating their connections 
to the communities, we broaden the neighborhoods. We 
summarize our strategy in Algorithm 1. 

In order to create C clusters from a set of data points 
X={x1,…, xn}, we can find a set of m neighborhoods N = {N1, · 

· · ,Nm}, where m ≤ C. Imagine the data represented as a graph, 
with edges denoting must-link restrictions and vertices 
representing data instances. The neighborhoods are just the 
connected parts of the graph with cannot-link constraints 
between them. They are represented by the notation Ni ⊂ X, i ∈ 
{1, · · · , m}. 

Two examples that clarify how the neighborhoods can be 
formed from a set of pairwise constraints are shown in Fig. 1. 
Data instances are represented by nodes, must-link constraints 
are shown by solid lines, and cannot-link constraints are shown 
by dashed lines. Take note that there must be a cannot-link 
constraint between every neighborhood and every other 
neighborhood. Therefore, Fig. 1(b) only has two known 
neighborhoods, which might be either {x1, x2}, {x3} or {x1, x2}, 
{x4}, but Fig. 1(a) has three neighborhoods: {x1, x2}, {x3}, and 
{x4}. 

  

(a) (b) 

Fig. 1. Two examples of neighborhoods based on pairwise constraints. 

To determine the most informative points, let's consider a 
labeled dataset L consisting of pairs {(x1, y1), (x2, y2), . . . , (xl, 
yl)}, where yl represents the cluster label of the data item xl, 
along with an unlabeled set U containing data items xl+1, xl+2, . . 
. , xl+u. Let E denote the set of exemplars in the dataset. Given a 
labeled sample 𝑥𝑖  (1 ≤ 𝑖 ≤ 𝑙)  and an unlabeled data item 
𝑥𝑗  (𝑙 + 1 ≤ 𝑗 ≤ 𝑢), we can identify two scenarios where the 

labeled sample might be associated with the unlabeled data 
item following execution of the AP algorithm: 

1) If the unlabeled data item xj adopts the labeled sample 

xi as its cluster exemplar, and the message a(xi, xi) + r(xi, xi) is 

positive (indicating xi ∈ E), and xi  is the max{a(xj, xk) + r(xj, 

xk)} for each k = {1, 2, . . .,n}. 

2) If the labeled sample xi selects the unlabeled data item 

xj as its cluster exemplar, and the message a(xi, xi) + r(xi, xi) is 

negative (indicating xi ∉ E), and xj is the max{a(xi, xk) + r(xi, 

xk)} for each k = {1, 2, . . .,n}. 

If either of these conditions is met, the unlabeled data item 
xj is deemed most similar to the labeled sample xi. 
Consequently, xj is chosen and assigned the label of xi, 
effectively selecting the most similar unlabeled data item xj as 
follows: 

𝑥∗  = {𝑥𝑗  
𝑖𝑓 𝑥𝑖 = max

1≤𝑘≤𝑛
{𝑎(𝑥𝑗,𝑥𝑘)+ 𝑟(𝑥𝑗,𝑥𝑘)} 𝑎𝑛𝑑 𝑥𝑖∈ 𝐸

𝑖𝑓 𝑥𝑗 = max
1≤𝑘≤𝑛

{𝑎(𝑥𝑖,𝑥𝑘)+ 𝑟(𝑥𝑖,𝑥𝑘)} 𝑎𝑛𝑑 𝑥𝑖 ∉ 𝐸
 (3) 

where, x* is the selection of the unlabeled point from the 
set U follows the operational principles of the AP algorithm 

Once the most informative point is chosen, it is queried 
against the existing neighborhoods to ascertain its membership. 
To optimize query efficiency, the initial query is directed 
towards the neighborhood with the highest likelihood of 
containing x*. This approach minimizes the overall number of 
queries required. The determination of a point x* likelihood of 
belonging to a specific neighborhood Ni is based solely on its 
interactions with labeled points. This likelihood is estimated by 
averaging the similarities between x and the instances within 
Ni, as expressed by the formula: 

𝑝(𝑥 ∈ 𝑁𝑖) =  

1

|𝑁𝑖|
  ∑ 𝑆(𝑥,𝑥𝑗)𝑥𝑗∈𝑁𝑖

∑
1

|𝑁𝑝|
  ∑ 𝑆(𝑥,𝑥𝑗)𝑥𝑗∈𝑁𝑝

𝑙
𝑝=1

     (4) 

Here S(x, xj) represents the degree of similarity between 
point x and point xj, |Ni| denotes the amount of points in the 
neighborhood Ni, and l signifies the overall amount of 
neighborhoods. 

Line 4 traverses the neighborhoods in decreasing order 
based on p(x* ∈ Ni), i ∈ {1, · · ·, l}, or the likelihood of x* 
belonging to each neighborhood. We can find the 
neighborhood of x* with the fewest number of searches by 
using this query order. With just one query, we can end if a 
must-link is returned. If not, the following question should be 
directed towards the neighborhood with the next highest 
likelihood of having x*. A new neighborhood will be generated 
using x* (lines 4–15) once this procedure is repeated until a 
must-link constraint is returned or we have a cannot-link 
constraint against all neighborhoods. 

X1 X2 

X3 X4 

X1 X2 

X3 X4 
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Algorithm 1. Affinity Propagation with Active 

Constraints 

1. Start with a single neighborhood N1 containing a randomly 
chosen instance x and set the number of queries q to 0. 

2. While q<Q  

3. Select the most informative point x* to query using Equation 
3; 

4. For Ni ∈ 𝑁 ordered by decreasing probability of x* belonging 
to Ni; 

5. Query x* against any data point xi belonging to Ni; 

6. q++; 

7. Update the set of constraints according to the results of the 
queries; 

8. If ML(x*, xi) exist 

9. 𝑁𝑖 = 𝑁𝑖 ∪ 𝑥∗ 

10. Break; 

11. else 

12. make a new neighborhood containing the point x*; 

13. End if 

14. End while  

IV. EXPERIMENTAL RESULTS 

This section presents the datasets, evaluation metrics, 
Constraint selection strategies, and outcomes of the study. The 
effectiveness of the proposed method is explained through 
comparisons with several state-of-the-art algorithms across 
different scenarios to highlight its superiority. 

A. Datasets 

In this section, the datasets utilized are presented. For our 
experiments, real datasets were utilized. Hence, these datasets 
are labelled with instances, attributes, and numbers of clusters 
as described in Table I. 

TABLE I.  THE DATA SETS USED IN THE EXPERIMENTS 

Dataset # Instances #Attributes #Clusters 

Glass 214 10 6 

Ecoli 336 8 8 

Ionosphere 351 34 2 

Liver 345 6 2 

Breast 683 9 2 

Yeast 1484 8 10 

Segment 2310 19 7 

Magic 19020 10 2 

B. Evaluation Metrics 

We used pairwise F-measure and Normalized Mutual 
Information (NMI) as clustering validation metrics to evaluate 

the effectiveness of the approaches. NMI evaluation metric 
takes into consideration the clustering assignment and class 
label as random variable. Hence, the metric measures the 
common information between dual random variables. 
Therefore, this information will be normalized to zero-to-one 
range by the metric. NMI is computed as follows: 

𝑁𝑀𝐼 =  
𝐼(𝑋; 𝑌)

(𝐻(𝑋) + 𝐻(𝑌))/2
 

In this context, H(Y) represents Shannon entropy of Y, 
H(Y|X) denotes conditional entropy of Y given X, and I(X; Y) 
signifies the mutual information shared between the variables 
X and Y. 

Pairwise F-measure was assessed in order to gauge 
clustering performance even more. Recall and precision were 
the sources of this statistic [16]. By comparing the predicted 
pairwise relationship between instance pairs to the ground truth 
class labels relationship comparison, the measure assesses 
one's predictive ability. Therefore, the harmonic mean of 
precision and recall is the common definition of F-measure. 
Thus, after obtaining a clustering result, we calculate the F-
measure in the manner mentioned below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑐

𝑛𝑠

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑐

𝑛𝑓

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 

C. Constraint Selection Strategies 

In all experiments, the following strategies are considered 
for selecting constraints: 

 Random: This strategy entails a completely arbitrary 
selection of constraints. It involves generating a set of 
Must-Link (ML) and Cannot-Link (CL) constraints by 
comparing the labels of randomly chosen objects. 

 Min-Max: This method follows a neighborhood-based 
approach and operates in two phases [18]. First, it 
creates a set of disjoint neighborhoods, Then, it 
incrementally expands these neighborhoods using a 
distance-based criterion. 

 ASC: this method utilizing the neighborhood graph and 
formulating queries based on the constraint utility 
function. ASC relies on a pair of parameters, namely 
the threshold (θ) and the number of nearest neighbors 
(k). In accordance with their method, these parameters 
are set to ⌊(𝑘/2) + 1⌋ and 6 respectively [8]. 

 NPU: This method is grounded in the uncertainty-
based principle, employing a neighborhood-based 
strategy [16]. 
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(a) Glass (b) Ecoli 

  

(c) Ionosphere (d) Liver 

  

(e) Breast (f) Yeast 

  

(g) Segment (h) Magic 

Fig. 2. Comparison of the suggested algorithm's clustering outcomes in NMI with various constraint selection techniques. 
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(a) Glass (b) Ecoli 

  

(c) Ionosphere (d) Liver 

  

(e) Breast (f) Yeast 

  

(g) Segment (h) Magic 

Fig. 3. Comparison of the suggested algorithm with other constraint selection techniques based on pairwise F-measure. 
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D. Performance Analysis Based on NMI 

For the performance evaluation in this section, four 
algorithms were utilized for cross-comparison with our 
proposed algorithm. These algorithms are Random, min-max, 
ASC, and NPU. All these algorithms are active learning 
algorithms. Hence, the four datasets which are Glass, Ecoli, 
Segment, and Magic are used for the experiment. From Fig. 2, 
with 150 constraints on Glass dataset, the proposed algorithm 
performed better with 0.8 NMI, followed by ASC, NPU, Min-
Max, and Random, respectively. The result is quit the same on 
Ecoli, Segment, and Magic datasets. One of the things worth 
noting is that the proposed algorithm is consistently effective. 
Meaning, it persistently outperformed all the algorithms 
compared with in all experiments. This conclusion is driven 
based on our general observation of Fig. 2. 

In general, with respect to NMI evaluation, the proposed 
algorithm is more effective by large. It is important to also note 
that Random is the least effective algorithm. This is 
particularly due to the random selection of constraints by the 
algorithm in contrast to the other algorithms. 

E. Performance Analysis Based on F-measure 

The result in this section is given based on our evaluation 
using F-measure. Hence, the result is given of the comparison 
with other methods with respect to the datasets in Fig. 3. 
Hence, from Fig. 3, with focus on Glass datasets, the reader 
can see that the proposed algorithm surpasses the compared 
algorithms on all constraints. With respect to Ecoli dataset, our 
proposed algorithm also outperformed the compared 
algorithms with great margin. We observed that the proposed 
algorithm is does not have a good performance in large dataset 
like Magic with small number of constraints. However, the 
proposed algorithm achieves better performance result when 
we have a large number of constraints. 

However, on Segment dataset, our proposed algorithm was 
outperformed by NPU algorithm 25, 125, and 150 constraints. 
Hence, looking at the result carefully, on 50, 75, and 100 
constraints, the proposed algorithm outperformed all the 
compared algorithms. Furthermore, on Magic dataset, NPU 
and ASC outperformed the proposed algorithm on 25 and 50 
constraints. However, from 75 constraints and above, the 
proposed algorithm outperformed all the compared algorithms 
as presented in Fig. 3. 

V. CONCLUSION AND FUTURE WORK 

In this study, we introduced an approach to improve the 
semi-supervised clustering algorithms that select the active 
pairwise constrained with affinity propagation clustering 
algorithm. Initially, the most informative points are generated 
using the AP algorithm, and subsequently, only the points are 
chosen to compose the neighborhoods and generate the final 
clustering outcomes. Additionally, in acquiring pairwise 
constraints, we replaced random selection with an active 
learning strategy, resulting in more representative constraints. 
Our algorithm was applied to eight datasets from UCI datasets, 
with the performance evaluated using NMI and F-measure 
metrics. The experimental findings demonstrate the superiority 
of our proposed method over other clustering algorithms. In 
future work, we would like to work on the problem of 

incremental growing constraint set for streaming data. To 
address this problem, we are interested to apply an incremental 
semi-supervised clustering method. 
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