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Abstract—Nitrous oxide (N2O) emissions from agricultural 

activities significantly contribute to climate change, necessitating 

accurate predictive models to inform mitigation strategies. This 

study proposes an ensemble framework combining Isolation 

Forest, DBSCAN, and One-Class SVM to enhance outlier 

detection in N2O emission datasets. The dataset, consisting of 2,246 

rows and 21 columns, was preprocessed to address missing values 

and normalize data. Outlier detection was performed using each 

method individually, followed by integration through hard and 

soft voting techniques. The results revealed that Isolation Forest 

identified 113 outliers, DBSCAN detected 1,801, and One-Class 

SVM found 118. Hard voting identified 165 outliers, while soft 

voting detected 734, ensuring a refined dataset for subsequent 

modeling. The ensemble approach improved the accuracy of the 

XGBoost model for N2O emission prediction. The best results were 

obtained using the Random Search Cross Validation 

hyperparameter tuning, with a test size is 20%, achieving a CV 

MSE of 0.0215, MSE of 0.0144, RMSE of 0.1200, MAE of 0.0723, 

and an R² of 0.6750. This study demonstrates the effectiveness of 

combining multiple outlier detection methods to enhance data 

quality and model performance, supporting more reliable 

predictions of N2O emissions. 
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I. INTRODUCTION 

Nitrous oxide (N2O) emissions from agricultural activities 
significantly threaten climate stability due to their high global 
warming potential [1], approximately 298 times greater than 
carbon dioxide [2]. Accurate prediction of N2O emissions is 
essential for effective environmental management and climate 
change mitigation. However, existing predictive models often 
struggle with outliers, which can skew results and reduce model 
accuracy [3].  Recent studies have highlighted the complexity of 
predicting N2O emissions due to various influencing factors, 
such as soil type, climatic conditions, and agricultural practices 
[4], [5]. Traditional predictive models, ranging from empirical 
observational models to more complex process-based models, 
face significant challenges in handling outliers, resulting from 
measurement errors, extreme weather events, or anomalies [6]. 
Effectively identifying and handlinghese outliers are crucial for 
improving model accuracy and reliability [7]. 

Outlier detection plays a critical role in enhancing the 
accuracy of predictive models. Various methods, such as 
Isolation Forest, DBSCAN, and One-Class SVM, have been 
effective in identifying outliers in environmental data [6], [3], 
[8]. These methods are essential for ensuring data quality and 
improving the reliability of predictive models used for N2O 

emission analysis [9]. However, using these methods 
individually has limitations regarding parameter sensitivity and 
scalability. The proposed IDO ensemble framework combines 
these methods to provide a more robust and accurate outlier 
detection mechanism. 

The comparative results differ across datasets due to varying 
data characteristics such as density, distribution, and noise 
levels. Isolation Forest an ensemble method isolates 
observations by randomly selecting a feature and then choosing 
a split value between the maximum and minimum values of the 
selected feature [10]. Isolation Forest efficiently handles high-
dimensional data but may struggle with clustered anomalies. 

This technique has proven to be robust for detecting various 
types of outliers in well-log datasets, achieving an accuracy of 
90.2% in distinguishing between inliers and outliers [11], [12]. 

Its efficiency in handling high-dimensional data makes it 
suitable for large and complex datasets. DBSCAN, a density-
based clustering algorithm, identifies core, borderand noise 
points based on a specified radius and minimum number of 
points [13]. DBSCAN excels at identifying clusters in noisy data 
but requires precise parameter tuning. This method effectively 
detects noise and manages noisy datamaking it valuable for 
environmental data analysis where noise is common [11]. 

One-Class SVM, a machine learning algorithm for anomaly 
detection, constructs a boundary around normal data points to 
identify outliers [11]. One-Class SVM effectively defines 
decision boundaries in complex feature spaces but is sensitive to 
kernel choices. This technique is outstanding in detecting 
anomalies with high correctness, distinctiveness, and 
robustness, proving to be particularly useful in identifying rare 
but significant anomalies in agricultural datasets [9]. 

Although Isolation Forest, DBSCAN, and One-Class SVM 
each have unique strengths, using them individually has 
parameter sensitivity and scalability limitations. Combining 
these methods into an ensemble can provide more robust and 
accurate outlier detection [6] [14]. This ensemble framework 
leverages the strengths of each algorithm while mitigating their 
inherent weaknesses. Isolation Forest excels at managing high-
dimensional data but can struggle with detecting clustered 
anomalies. DBSCAN is proficient at identifying clusters and 
noise but demands meticulous parameter tuning. One-Class 
SVM effectively defines decision boundaries but is sensitive to 
kernel choices. 

By integrating these methods, this ensemble framework 
provides a comprehensive outlier detection mechanism, 
improving data quality and model performance. 
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The ensemble approach reduces reliance on precise 
parameter settings for any single method, thereby enhancing 
overall robustness. The ensemble method efficiently handles 
high-dimensional data by utilizing the strengths of Isolation 
Forest and One-Class SVM, while DBSCAN manages dense 
clusters and noise. The hard and soft voting mechanisms ensure 
that outliers identified by multiple methods are more likely to be 
genuine anomalies [15] [18], thereby reducing the likelihood of 
false positives and false negatives. By effectively identifying 
and removing outliers, the ensemble framework ensures higher 
quality data, leading to improved predictive model performance. 

By integrating these methods, the IDO framework ensures 
comprehensive outlier detection, adapting to different data 
characteristics and improving overall model eprformance. For 
instance, Isolation Forest's random partitioning effectively 
isolates anomalies in datasets with high-dimensional features. In 
contrast, DBSCAN performs better in datasets with dense 
clusters and noise, identifying core points and noise points. One-
Class SVM excels in scenarios with complex decision 
boundaries, distinguishing normal data from anomalies. The 
ensemble approach leverages these strengths, ensuring robust 
outlier detection across various datasets, thereby enhancing the 
quality and reliability of predictive models. 

In addition to outlier detection, this study focuses on 
predictive modeling of N2O emissions using the XGBoost 
algorithm. Known for its high performance and efficiency in 
handling large datasets, XGBoost has shown superior predictive 
capabilities compared to traditional models [16], [14]. 
Hyperparameter tuning is crucial for maximizing model 
performance, and this study compares the untuned XGBoost 
model with models optimized through Grid Search and Random 
Search techniques [17], [18], [19]. 

The models are evaluated using cross-validation techniques 
to assess their robustness and generalizability. Cross-validation 
helps mitigate the risk of overfitting by validating the model on 
different subsets of the data, ensuring comprehensive and robust 
performance evaluation [20]. Validation measures play a critical 
role in ensuring the robustness of predictive models. 

Cross-validation techniques, including KFold and standard 
cross-validation, help mitigate overfitting by validating the 
model on different data subsets, ensuring comprehensive 
performance evaluation. Conducting thorough comparisons 
with existing related work is essential to highlight the 
advancements and improvements brought by the proposed 
model. Comparing performance metrics such as Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and R² scores across different models 
provides valuable insights into the effectiveness of the proposed 
approach. This study also explores the impact of different test 
sizes on model performance, ensuring that the findings are 
applicable across various scenarios in agricultural data analysis. 

Despite advancements in predictive modelling and outlier 
detection, integrating these methods effectively remains 
challenging. This research addresses this gap by developing and 
evaluating new outlier detection methods suitable for high-
dimensional agricultural data and implementing ensemble 
methods to enhance robustness [21]. The study aims to improve 

the predictive accuracy of N2O emissions models, providing 
valuable insights for environmental management and 
contributing to effective climate change mitigation strategies. 

II. METHOD 

To address the challenges in predicting N2O emissions and 
to enhance the accuracy of outlier detection, this study employs 
a comprehensive methodology combining advanced statistical 
techniques and ensemble learning. 

A. Dataset 

In this study, we utilized a comprehensive public dataset on 
nitrous oxide (N2O) emissions from agricultural activities 
provided by Saha et al. (2021) [21]. The dataset spans from 2002 
to 2014, encompassing 2,246 entries and 21 distinct variables. 
This dataset is instrumental in exploring the effects of 
agricultural practices and environmental conditions on N2O 
emissions. It facilitates robust outlier detection and supports 
reproducibility, enabling comparative analyses across different 
studies [22][23]. 

Key variables in the dataset include temporal information 
such as the date, month, and year of the measurements, 
experimental details like the type of experiment, the purpose of 
the data usage, and replication identifiers. Environmental 
conditions are captured through variables like vegetation type 
and N2O concentration, as well as the nitrogen application rate. 
Additionally, the dataset includes meteorological and soil data, 
including precipitation levels, air temperature, and days after 
treatment and seeding. Detailed soil properties such as water-
filled pore space at a 25 cm depth, ammonium content, nitrate 
content, and the proportions of clay, sand, and soil organic 
matter are also recorded. These variables are crucial for 
understanding how seasonal conditions and soil characteristics 
impact N2O emissions, providing essential insights for 
developing accurate predictive models and understanding the 
underlying influencing factors [24][25][26]. 

B. Data Preprocessing 

This study us comprehensive preprocessing techniques, 
including normalization, data cleaning, and handling missing 
values, to prepare the N2O emissions dataset for accurate 
analysis and effective outlier detection [24]. These steps are 
crucial for maintaining data quality, ensuring the dataset's 
suitability for model training, and achieving reliable results in 
classification and anomaly detection tasks [27]. The inherent 
null values and outliers in the dataset necessitated thorough 
preprocessing. 

Outlier analysis revealed several types, such as point outliers 
from potential measurement errors or unusual local conditions, 
and contextual outliers, which seem normal independently but 
are abnormal in specific contexts, like unusually low emissions 
during periods of high microbial activity in winter [28][29]. 
Moreover, collective outliers can arise when data groups 
deviaterom the norm due to changes in agricultural practices 
[30]. Global outliers, representing extreme values beyond the 
typical data range, indicate rare events not accounted for by 
existing conditions or strategies [31]. These variations highlight 
the need for robust detection techniques to manage agricultural 
data's complexities. 
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Understanding dataset characteristics is essential before 
applying methods such as data augmentation or outlier 
detection. This is exemplified in the classification of rice leaf 
diseases, where model effectiveness is closely linked to the 
dataset’s attributes [32]. Given the dataset's characteristics and 
the various types of outliers, we explored the application of 
ensemble methods for outlier detection. Ensemble methods, 
which combine predictions from multiple models, are 
recognized for producing more stable and accurate results. 
Techniques such as Isolation Forest, DBSCAN, and One-Class 
SVM have proven effective in identifying outliers [9] [11]. 
These methods complement each other by handling different 
aspects of outlier detection, such as identifying isolated points 
or anomalies within dense clusters. By integrating the results 
from multiple models, ensemble methods enhance the stability 
and accuracy of predictions, making them particularly suitable 
for the nuanced analysis required for N2O emissions in 
agriculture [33]. This approach ensures a more robust analysis 
and improves the dataset's quality, facilitating more accurate and 
reliable N2O emission predictions. 

C. Outlier Detection 

Outlier detection is essential for maintaining the accuracy of 
predictive models in N2O emissions studies [34]. Outliers, 
which can result from measurement errors, data entry mistakes, 
or rare occurrences, significantly affect data analysis if not 
properly managed. Traditional detection methods, such as 
statistical tests, visualization, and distance measures, vary in 
their ability to identify global or local anomalies [35]. This study 
applies advanced techniques—Isolation Forest (IF), DBSCAN, 
and One-Class SVM—independently to robustly identify 
outliers in the N2O emission dataset. The IDO framework 
integrates these methods, leveraging their strengths to 
comprehensively address global and local outliers. This multi-
method approach enhances the dataset's integrity and 
significantly improves the performance and reliability of 
predictive models, highlighting the importance of meticulous 
data handling in high-quality research. 

D. Proposed Ensemble Method 

This study introduces an advanced framework called IDO 
(Isolation Forest, DBSCAN, and One-Class SVM) to improve 
the detection of outliers in N2O emission datasets from 
agricultural activities. The IDO framework combines three 
established outlier detection techniques into an ensemble 
approach, enhancing the accuracy and effectiveness of anomaly 
identification. 

Isolation Forest (IF) effectively detect outliers, particularly 
in high-dimensional datasets. It works by isolating data points 
using random partitioning, identifying anomalies based on how 
quickly they can be isolated from the rest of the data [35]. Point 
x's isolation is measured by the path length h(x), which 
represents the number of splits required to isolate the point. For 
a dataset X, the Isolation Forest algorithm can be 
mathematically described by the following steps: 

The first step is Feature Selection, and Random Split process 
described in (1) outlines the method of randomly selecting a 
feature (fj)  from the set of all features ({f1, f2, … , fd})  and 

choose a random split value (s) within the range of this feature. 

After choosing the feature, a random split value (𝑠) is selected 
within the range of the chosen feature. This random selection is 
fundamental to the Isolation Forest algorithm's ability to 
partition data and isolate anomalies effectively. 

𝑓𝑗 ∈ {𝑓1, 𝑓2, … , 𝑓𝑑}  and  𝑠 ∈ [min(𝑓𝑗) , max(𝑓𝑗)]     (1) 

here 𝑓𝑗 is a random chosen feature, and 𝑠 is the split value 

within the range of 𝑓𝑗. 

The second step, Recursive Partitioning process noted on 
(2), describes a critical step in the Isolation Forest algorithm. 

Left Child: {x ∈ X ∣ xfj
≤ s} 

Right Child: {x ∈ X ∣ xfj
> s}                    (2) 

This involves recursively applying the partitioning to the 
dataset, which creates a tree structure. The data is split into two 
subsets based on the selected feature (𝑓𝑗)  and split value (𝑠). 

This recursive partitioning continues until each data point is 
isolated in a unique partition, or a predefined maximum tree 
depth is reached. This iterative splitting is crucial for the 
algorithm's ability to effectively isolate anomalies within the 
dataset. 

The next step is Tree Construction. This involves recursively 
continuing the partition until each data point is isolated in its 
unique partition or the tree reaches a predefined maximum 
depth. 

ℎ(𝑥) = number of splits to isolate 𝑥         (3) 

Eq. (3) defines the Path Length ℎ(𝑥) for each data point (𝑥). 
This path length represents the number of splits or edges 
traversed from the root of the tree to the point's leaf node. The 
shorter the path length, the quicker the data point is isolated, 
indicating it is likely an anomaly. Calculating ℎ(𝑥) is essential 
for determining how well each data point is isolated within the 
tree structure. 

Eq. (4) describes the Anomaly Scoring process used in the 
Isolation Forest algorithm. This step utilizes the average path 
length ℎ(𝑥) to compute the anomaly score for each data point 
(𝑥) . Points with shorter path lengths are more likely to be 
outliers because random partitions isolate them more quickly. 
The anomaly score for a data point (𝑥) is given by: 

Score(𝑥) = 2
−

ℎ(𝑥)

𝑐(𝑛)                 (4) 

where: ℎ(𝑥) is the average path length of the data point(𝑥), 
𝑐(𝑛) is a normalization factor approximated by Eq. (5) 

𝑐(𝑛) = 2𝐻(𝑛 − 1) −
2(𝑛−1)

𝑛
             (5) 

and 𝐻(𝑖) is the 𝑖-th harmonic number defined as (6) 

𝐻(𝑖) = ∑
1

𝑘

𝑖
𝑘=1  (6) 

The final step in the Isolation Forest algorithm is Outlier 
Identification, where data points are classified based on their 
anomaly scores. A threshold is set to distinguish between normal 
points and outliers: points with scores above the threshold are 
considered normal, while those below are deemed outliers.  
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Following this, DBSCAN (Density-Based Spatial Clustering 
of Applications with Noise), Unlike Isolation Forest, which 
relies on random partitioning, DBSCAN is a density-based 
algorithm that clusters data points and identifies outliers as those 
that do not fit into any cluster [13]. Its effectiveness in 
identifying clusters and noise in spatial data makes it an apt 
choice for this ensemble [36]. Since there is no single 
mathematical equation that defines it, but rather a set of rules 
describing the clustering process, the general steps of the 
DBSCAN algorithm are as follows [37] [36]. 

Eq. (7) define the selecttion a point P from the dataset D that 
has not been visited. 

 𝑃 ∈ 𝐷 ∖ 𝑉             (7) 

where V is the set of visited points. 

Eq. (8) define 𝜖 -neighborhood 𝑁𝜖(𝑃) of point P, which 
includes all points within distance 𝜖 from P 

𝑁𝜖(𝑃) = {𝑄 ∈ 𝐷 ∣ dist(𝑃, 𝑄) ≤ 𝜖}          (8) 

where dist (P,Q) is the distance between points P and Q. 

Eq. (9) define core point, if the 𝜖 -neighborhood 
𝑁𝜖(𝑃) contains at least MinPts points, then P is a core point. 

|𝑁𝜖(𝑃)| ≥ MinPts             (9) 

where |𝑁𝜖(𝑃)|  denotes the cardinality of the 𝜖 -
neighborhood of P. 

Eq. (10) define cluster formation, if P is a core point, then all 
points Q in its 𝜖-neighborhood 𝑁𝜖(𝑃)  are added to the same 
cluster C. 

𝑄 ∈ 𝑁𝜖(𝑃) ⇒ 𝑄 ∈ 𝐶                  (10) 

If P is associated with multiple clusters, those clusters are 
merged. 

Eq. (11) and Eq. (12) define border point and noise 
identification. Points Q that are within the 𝜖-neighborhood of a 
core point but do not satisfy the MinPts condition are classified 
as border points. Points that are not in the 𝜖-neighborhood of any 
core point are considered noise or outliers. 

𝑄 ∈ 𝑁𝜖(𝑃) and |𝑁𝜖(𝑄)| < MinPts  Q is border point (11) 

𝑄 ∉ 𝑁𝜖(𝑃) for any core point 𝑃  Q is noise  (12) 

Eq. (13) define process iteration that repeat the steps until all 
points in the dataset D have been visited. 

 ∀𝑃 ∈ 𝐷,   𝑃 ∈ 𝑉                    (13) 

Having outlined the DBSCAN algorithm, which excels in 
identifying clusters and outliers based on density, we now shift 
our focus to One-Class SVM. This method adopts a different 
approach, leveraging machine learning techniques to distinguish 
between normal and anomalous data points. One-Class SVM is 
particularly useful in scenarios where the dataset contains 
complex feature spaces, making it a robust choice for detecting 
outliers in agricultural N2O emission data. 

One-Class SVM (Support Vector Machine) is a machine 
learning technique that models decision boundaries to separate 

normal data from outliers. It is adept at handling agricultural 
data, defining the regions in the feature space that correspond to 
typical data points, thus identifying anomalies outside these 
regions [38][39]. The following steps outline the One-Class 
SVM algorithm. 

The algorithm starts by defining the One-Class SVM model 
using a training dataset ({𝑥1, 𝑥2, … , 𝑥𝑁}) where each data point 

𝑥𝑖  belongs to a d-dimensional feature space (∈ Rd). Then the 
kernel selection, as defined by Eq. (14), involves choosing an 
appropriate kernel function to transform the input data into a 
higher-dimensional feature space, if needed. This step is crucial 
for capturing the complex relationships in the data. A commonly 
used kernel is the Radial Basis Function (RBF) kernel, which is 
expressed as follows: 

K(xi, xj) = exp(−γ|xi − xj|
2)            (14) 

where ( γ >  0 ) is a parameter that defines the width of the 
kernel. 

Eq. (15), Eq. (16) defines the optimization problem that aims 
to determine the decision boundary separating the majority of 
the data points from the outliers. This optimization process 
identifies the boundary that encloses the normal data within a 
specified region of the feature space while isolating the 
anomalies outside this region. 

min
w,ξ,ρ

1

2
|w|2 +

1

νN
∑ ξi

N
i=1 − ρ subject to:         (15) 

(w ⋅ ϕ(xi)) ≥ ρ − ξi,  ξi ≥ 0,  i = 1, … , N     (16) 

where ( w )is the normal vector to the decision boundary, 
(ϕ(xi)) is the feature mapping, (ξi) are slack variables allowing 
for some margin violations, ( ρ)  is the offset, and (ν ∈
(0,1]) controls the fraction of outliers and support vectors. 

Eq. (17) define decision function for determining whether a 
new data point x is an outlier is given by: 

𝑓(𝑥) = (𝑤 ⋅ 𝜙(𝑥)) − 𝜌              (17) 

where, A data point x is classified as normal if (𝑓(𝑥) ≥ 0) 
and as an outlier if (𝑓(𝑥) < 0) 

After defining the optimization problem in Eq. (18), the next 
step is to identify the support vectors, which are the data points 
closest to the decision boundary. These vectors are crucial as 
they shape the boundary and define the margin. The decision 
function is then applied to classify new data points as normal or 
outliers based on their position relative to this boundary, 
effectively separating typical data from anomalies. 

Integrating these methods into the IDO ensemble framework 
leverages the strengths of Isolation Forest, DBSCAN, and One-
Class SVM while compensating for their limitations. This 
combination provides a robust and comprehensive approach to 
outlier detection, which is essential for analyzing N2O 
emissions in agriculture, where data precision is critical for 
developing effective mitigation strategies. 

The proposed method in Fig. 1 outlines an innovative 
ensemble approach to detect outliers in N2O emission data. This 
approach combines Isolation Forest, DBSCAN, and One-Class 
SVM (the IDO model) into an ensemble framework to enhance 
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accuracy and reliability in identifying outliers in agricultural 
N2O emission datasets. The primary objective is to improve the 
quality of N2O emission data [11], which will enhance the 
accuracy of emission prediction models and support efforts to 
mitigate climate change and promote sustainable agricultural 
practices. 

As shown in Fig. 1, the IDO model framework integrates 
Isolation Forest, DBSCAN, and One-Class SVM to 
comprehensively detect outliers using an ensemble method. The 
process begins with raw data and includes preprocessing steps 
for outlier detection and result integration. Isolation Forest uses 
decision trees to isolate outliers, DBSCAN identifies clusters 
and outliers based on data density, and One-Class SVM uses a 
hyperplane for differentiation. These methods' results are 
combined to produce normalized scores, followed by a voting 
mechanism to identify outliers and set decision boundaries, 
refining the training dataset. This integrated approach enhances 
data analysis reliability and accuracy, making it particularly 
useful for complex environmental and agricultural datasets. 

Once outliers are identified and handled, the dataset is split 
into test data for model evaluation and train data for model 
training. Feature engineering follows, selecting, transforming, 
and creating new features from the cleaned training data to 
optimize the dataset for training. The model is trained on this 
engineered data, including tuning to enhance performance. After 
training, cross-validation and performance evaluation validate 
the model's effectiveness. A validated model confirms its ability 
to generalize well to new data. The validated model then predicts 
N2O emissions using test data. This phase evaluates the model 
against real-world data. Hyperparameter tuning further refines 

the model parameters, improving accuracy and efficiency. This 
iterative process creates a feedback loop between feature 
engineering and parameter optimization. 

Hyperparameter optimization is crucial for maximizing 
model performance [40]. It involves adjusting parameters 
significantly affecting the model's accuracy and generalization 
ability [41]. Each algorithm in the ensemble has specific 
parameters to tune: Isolation Forest adjusts the number of trees 
and sample size [42], DBSCAN optimizes epsilon and minPts 
[43], and One-Class SVM tunes nu and gamma for decision 
margin and complexity [44]. Techniques like Bayesian 
optimization can efficiently determine the best configurations by 
modeling performance and selecting the next parameters to test 
[41]. 

Proper hyperparameter optimization enhances model 
accuracy by balancing bias and variance, preventing overfitting 
and underfitting [40]. Optimized models fully utilize the dataset, 
providing precise insights for predicting N₂O emissions in 
agriculture. Integrating these methods within an ensemble 
framework creates a robust system for outlier detection in high-
dimensional environmental data [41]. This approach improves 
data accuracy, enhancing analysis quality and prediction 
reliability. Implementing this method increases N₂O emission 
prediction accuracy, supporting climate change mitigation and 
sustainable agriculture. This framework combines outlier 
detection, model tuning, and evaluation into a robust process, 
ensuring accurate anomaly detection crucial for N₂O emission 
prediction. 

 

Fig. 1. Proposed model outlier detection with IDO (Isolation Forest – DBSCAN – One-Class SVM) ensemble algorithm. 
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III. RESULTS 

Predicting nitrous oxide (N₂O) emissions in agriculture is 
challenging due to complex factors. This section examines how 
advanced machine learning techniques, like outlier detection 
and ensemble methods, improve the accuracy of N₂O 
predictions using the XGBoost model. 

A. Outlier Detection using Ensemble IDO (IF-DBSCAN-

OneClassSVM) 

Outlier detection improves model performance by 
identifying and removing anomalies. Combining Isolation 
Forest (IF), DBSCAN, and One-Class SVM, the IDO ensemble 
approach enhanced N2O emission prediction accuracy. Fig. 2 
shows a box plot of N2O levels, focusing on the 2,072 inliers 
identified by the IDO method. This cleaned dataset provides a 
clearer view of the central distribution. The median N2O level is 
1.81, while the mean is 3.22, indicating a slight right skew due 
to higher inlier values. 

 

Fig. 2. The inliers identified after applying IDO. 

The interquartile range (IQR) for N₂O levels is 3.87, 
spanning from the 25th percentile (0.50) to the 75th percentile 
(4.37), showing variability within the central 50% of the data. 
The range of inliers stretches from -1.94 to 21.36. This indicates 
that most N₂O levels are concentrated at the lower end but vary 
significantly within the inliers. Detecting outliers is crucial as it 
helps exclude extreme values that could distort the dataset. 
Using the IDO ensemble method effectively removes these 
outliers, providing a cleaner, more accurate dataset for analyzing 
and predicting N₂O levels. 

Table I summarizes the outlier detection results using 
Isolation Forest, DBSCAN, and One-Class SVM, highlighting 
the value of employing multiple techniques. Each method 
identified distinct sets of outliers, reflecting their unique 
strengths. Isolation Forest, which isolates points requiring fewer 
partitions, identified 113 outliers and 2133 inliers. DBSCAN 
detected 1801 outliers out of 2246 data points, leaving 445 
inliers. One-Class SVM, found 118 outliers and 2128 inliers. 

TABLE I.  N2O OUTLIER DETECTION RESULT 

Method Outliers Inliers 

Isolation Forest 113 2133 

DBSCAN 1801 445 

One-Class SVM 118 2128 

Applying hard and soft voting methods refined these results, 
removing the most consistently identified outliers. This process 

enhanced the dataset's quality and representativeness, crucial for 
effective predictive modeling. 

B. Voting-based Outlier Detection 

Integration of outlier detection results from Isolation Forest, 
DBSCAN, and One-Class SVM was done using Hard and Soft 
Voting techniques as shown in Table II. The analysis of voting-
based outlier detection methods reveals distinct differences in 
their ability to identify outliers and inliers within the dataset. 

TABLE II.  VOTING-BASED OUTLIER DETECTION RESULT 

Voting Method Outliers Inliers 

Hard Voting 165 2081 

Soft Voting 734 1512 

Hard voting identified 165 outliers, leaving 2081 data points 
as inliers. In contrast, soft voting detected a significantly higher 
number of outliers, amounting to 734, with the remaining 1512 
data points classified as inliers. These results illustrate the 
varying sensitivity and specificity of the two voting methods, 
with soft voting being more inclusive in its outlier detection 
compared to the more stringent hard voting approach. 

Post-voting, the XGBoost model’s performance was 
evaluated without cross-validation to set a baseline. Evaluations 
across test sizes of 20%, 25%, 30%, and 35% aimed to assess 
the model’s robustness and accuracy. Key metrics such as Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and R² score were used to gauge initial 
effectiveness. 

C. XGBoost Model Evaluation with Cross-Validation 

In evaluating the XGBoost model's performance, two cross-
validation methods were compared: KFold XGBoost (xgb.cv) 
and Standard Cross Validation (cross_val_score). The results in 
Tables III and IV, demonstrate the effectiveness of both 
approaches in enhancing model robustness. 

TABLE III.  PREDICTION EVALUATION WITH KFOLD XGBOOST 

Test Size CV MSE MSE RMSE MAE R2 

20% 0.1892 0.0361 0.1900 0.1135 0.1847 

25% 0.1917 0.0346 0.1860 0.1139 0.1815 

30% 0.1981 0.0330 0.1816 0.1138 0.1848 

35% 0.1985 0.0297 0.1724 0.1102 0.1943 

KFold XGBoost produced Mean Squared Error (MSE) 
values ranging from 0.0297 to 0.0361, Root Mean Squared Error 
(RMSE) values from 0.1724 to 0.1900, Mean Absolute Error 
(MAE) values from 0.1102 to 0.1139, and R² scores between 
0.1815 and 0.1943. 

TABLE IV.  PREDICTION EVALUATION WITH STANDARD CROSS 

VALIDATION 

Test Size CV MSE MSE RMSE MAE R2 

20% 0.0259 0.0143 0.1195 0.0738 0.6776 

25% 0.0266 0.0165 0.1286 0.0829 0.6091 

30% 0.0269 0.0155 0.1245 0.0791 0.6174 

35% 0.0289 0.0152 0.1234 0.0789 0.5876 
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The results are summarized in Table IV, highlighting various 
performance metrics. For a test size of 20%, the model exhibited 
the best performance, achieving the lowest CV MSE of 0.0259 
and MSE of 0.0143. Additionally, this configuration resulted in 
the lowest RMSE of 0.1195 and MAE of 0.0738, along with the 
highest R² score of 0.6776, indicating that the model could 
explain a substantial portion of the variance in the data. 

These results collectively demonstrate that the model 
performs optimally at a test size of 20%, balancing error metrics 
and explanatory power. This optimal performance highlights the 
model's robustness in predicting N2O emissions under this 
specific configuration. 

D. Hyperparameter Tuning using GridSearchCV and 

RandomizedSearchCV 

XGBoost model using two hyperparameter tuning methods: 
GridSearchCV and RandomizedSearchCV. The results, detailed 
in Tables V and VI, demonstrate that GridSearchCV slightly 
outperforms RandomizedSearchCV in terms of key 
performance metrics but at a higher computational cost. 

TABLE V.  XGBOOST GRIDSEARCHCV HYPERPARAMETER TUNING 

EVALUATION 

Test Size CV MSE MSE RMSE MAE R² 

20% 0.0223 0.0150 0.1223 0.0750 0.6621 

25% 0.0230 0.0157 0.1252 0.0807 0.6293 

30% 0.0238 0.0151 0.1229 0.0791 0.6268 

35% 0.0265 0.0138 0.1175 0.0755 0.6256 

GridSearchCV showed Mean Squared Error (MSE) 
improvements ranging from 2.8% to 6.5%, Root Mean Squared 
Error (RMSE) improvements from 3.8% to 6.1%, and Mean 
Absolute Error (MAE) reductions from 4.9% to 10.8% over the 
untuned model. 

TABLE VI.  XGBOOST RANDOMIZEDSEARCHCV HYPERPARAMETER 

TUNING EVALUATION 

Test Size CV MSE MSE RMSE MAE R² 

20% 0.0215 0.0144 0.1200 0.0723 0.6750 

25% 0.0222 0.0152 0.1234 0.0789 0.6397 

30% 0.0228 0.0150 0.1224 0.0775 0.6299 

35% 0.0255 0.0138 0.1173 0.0756 0.6271 

RandomizedSearchCV also improved performance with 
MSE enhancements from 2.8% to 4.9%, RMSE improvements 
from 3.9% to 5.7%, and MAE reductions from 4.9% to 8.4%. 
Although GridSearchCV provided slightly better results, it 
required significantly more computational resources and time, 
whereas RandomizedSearchCV was 20-30% faster and more 
efficient. 

Fig. 3 and Fig. 4 visually compare these tuning methods 
across different test sizes (20%, 25%, 30%, and 35%), focusing 
on metrics such as Cross-Validation MSE, MSE, RMSE, and 
MAE. Fig. 3 illustrates the comparison of MSE across different 
tuning methods. GridSearchCV and RandomizedSearchCV 
exhibit lower and more stable MSE values than KFoldXGBoost, 
with StandardCrossVal consistently showing the lowest and 
most stable MSE values across all test sizes. 

In comparison, in Table IV Standard Cross Validation 
showed significantly better performance with lower MSE values 
(0.0143 to 0.0165), RMSE values (0.1195 to 0.1286), MAE 
values (0.0738 to 0.0829), and much higher R² scores (0.5876 to 
0.6776). as R² scores that explain a substantially higher 
percentage of variance in the data. This suggests that Standard 
cross-validation provides more reliable and accurate 
assessments for model evaluation. 

 

Fig. 3. Comparison of MSE evaluation performance. 

 

Fig. 4. Comparison of MSE evaluation with different test size. 

Fig. 4 expands on these findings by comparing Cross-
Validation MSE, RMSE, and MAE across the tuning methods. 
KFoldXGBoost has the highest Cross-Validation MSE values, 
indicating higher variance. In contrast, StandardCrossVal and 
Randomized-SearchCV consistently achieve lower MSE and 
RMSE values, with StandardCrossVal performing best overall. 
For example, at a test size of 20%, StandardCrossVal achieves 
an MSE of 0.0143 compared to KFoldXGBoost’s 0.0361, 
indicating a significant performance advantage. 

Similarly, StandardCrossVal shows the lowest RMSE and 
MAE values, signifying the smallest average prediction errors. 
At the same test size of 20%, StandardCrossVal achieves an 
RMSE of 0.1195 and an MAE of 0.0738, compared to 
KFoldXGBoost’s RMSE of 0.1900 and MAE of 0.1135, 
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showcasing a notable reduction in error rates. Overall, the 
comparative analysis highlights a trade-off between 
computational efficiency and model performance. 

While GridSearchCV offers marginally better performance, 
RandomizedSearchCV provides a more practical balance of 
speed and efficiency, making it suitable for scenarios demanding 
quicker turnaround times. StandardCrossVal emerges as the 
most consistent method across all performance metrics, 
suggesting its robustness and reliability for hyperparameter 
tuning in XGBoost models. 

This analysis emphasizes that the choice of hyperparameter 
tuning method should consider both the performance 
improvements and computational resources available. 
RandomizedSearchCV is an efficient choice for most practical 
applications, especially in the context of agricultural N2O 
emission predictions. 

IV. DISCUSSION 

In this study presents an advanced ensemble framework that 
enhances outlier detection in agricultural datasets by combining 
Isolation Forest, DBSCAN, and One-Class SVM. This 
integrated approach overcomes issues like parameter sensitivity 
and scalability associated with individual methods. The 
researchers processed a dataset containing 2,246 entries and 21 
variables, was carefully preprocessed to handle missing values 
and normalize data. 

The ensemble framework's hard and soft voting mechanisms 
refined outlier detection, identifying 165 outliers with hard 
voting and 734 with soft voting. Optimized using Random 
Search Cross Validation, the XGBoost model showed improved 
predictive performance, with a Mean Squared Error (MSE) of 
0.0144 and an R² of 0.6750, highlighting the approach's 
effectiveness in enhancing data quality and supporting accurate 
N2O emission predictions critical for climate change mitigation. 

Given these findings, it is crucial to delve deeper into the 
methodologies and their implications on model performance. 
The study further explores the hyperparameter tuning methods, 
specifically GridSearchCV and RandomizedSearchCV, and 
analyzes their impact on the XGBoost model's performance. 

A. Comparative Analysis 

Outlier detection in N2O emission datasets is challenging 
due to agricultural data's complexity and high dimensionality. 
The proposed IDO (Isolation Forest – DBSCAN – One-Class 
SVM) ensemble framework addresses this by combining three 
powerful algorithms: Isolation Forest, DBSCAN, and One-Class 
SVM. Isolation Forest effectively identifies anomalies in high-
dimensional data, DBSCAN excels at detecting clusters and 
differentiating noise based on density, and One-Class SVM 
distinguishes between normal data and anomalies. 

By leveraging these methods through a voting mechanism, 
the IDO framework ensures accurate outlier detection and 
enhances data quality, making it highly suitable for analyzing 
agricultural N2O emissions. 

In contrast, previous research has explored different 
approaches to enhancing outlier detection and clustering 
validity. For instance, [42] focused on improving cluster validity 
indices using an ensemble of K-means, K-means++, and Fuzzy 
C-means clustering algorithms. While this method effectively 
improved cluster separation, it struggled with robustness in 
high-dimensional and variable datasets. Similarly, [43] aimed to 
balance diversity and accuracy in unsupervised outlier 
ensembles primarily targeting clustering methods. However, 
this approach often overlooked anomalies that did not form 
distinct clusters. 

Other studies, such as [44], combined multiple detection 
algorithms to achieve high accuracy in high-dimensional data, 
but this came at the cost of increased computational complexity. 
For instance, [45] utilized Isolation Forest with satellite data to 
detect crop anomalies, achieving high true positive rates but with 
limited applicability to other types of data. The EBOD method 
in study [46] effectively handled noisy datasets but lacked the 
adaptability needed to address the specific challenges of 
agricultural N2O emissions. While effective in certain contexts, 
these methods often failed to provide a comprehensive solution 
for diverse and high-dimensional datasets typical in 
environmental studies.   Table VII shows the comparative 
analysis of outlier detection methods.

TABLE VII.  COMPARATIVE ANALYSIS OF OUTLIER DETECTION METHODS 

Study Dataset Method Evaluation Metrics Key Findings 

[42] 
General clustering 

datasets 

Ensemble of K-means, K-means++, 

and Fuzzy C-means 
Cluster Validity Indices 

Improved cluster validity indices post outlier 

removal. Enhances data quality in various datasets. 

[43] 
Various real-world 

datasets 

Diversity-Accuracy Balanced 

Ensemble 

True Positive Rate, 

Diversity-Accuracy 

Balance 

Achieved high true positive rates and balanced 

detection diversity and accuracy. 

[44] 
High-dimensional 

datasets 

Ensemble of LOF, KNN, HBOS, 

iForest, COPOD, PCA 
Accuracy, ROC 

High accuracy and ROC in detecting outliers in 

high-dimensional data. 

[45] 
Sentinel-1 & Sentinel-2 

crop data 

Isolation Forest with Sentinel-1 and 

Sentinel-2 data 
True Positive Rate 

Detected crop anomalies with 94.1% true positive 

rate for rapeseed and 95.5% for wheat. 

[46] Noisy datasets 
EBOD (Ensemble-Based Outlier 

Detection) 

Outlier Detection 

Accuracy, Noise 

Robustness 

Effective in noisy environments, providing robust 

outlier detection across various noisy datasets. 
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Integrating Isolation Forest, DBSCAN, and One-Class 
SVM, the IDO framework demonstrated superior performance 
in detecting outliers within N2O emission datasets. This method 
identified 113 outliers with Isolation Forest, 1801 with 
DBSCAN, and 118 with One-Class SVM. Through hard voting, 
165 outliers were confirmed, and soft voting identified 734 
outliers. This comprehensive detection approach significantly 
enhanced the dataset's quality and improved the predictive 
accuracy of the XGBoost model, achieving an R² of 0.6750, 
MSE of 0.0144, RMSE of 0.1200, and MAE of 0.0723. 
Compared to other methods, the IDO framework provided a 
more robust, adaptable, and accurate approach for high-
dimensional anomaly detection, demonstrating its effectiveness 
in enhancing N2O emission predictions. 

V. CONCLUSION 

This study highlights the effectiveness of advanced machine 
learning techniques, particularly cross-validation and 
hyperparameter tuning, in enhancing the predictive accuracy of 
the XGBoost model for N2O emissions. Standard Cross 
Validation outperforms other methods, achieving the lowest 
errors and highest stability, with significant reductions in 
RMSE, MAE, and MSE values as low as 0.0143. GridSearchCV 
delivers slightly better performance metrics but at a higher 
computational cost, while RandomizedSearchCV provides an 
efficient alternative with comparable performance 
improvements. These findings are crucial for improving N2O 
emission predictions, which are vital for environmental 
management and climate change mitigation. 

Future research should explore sophisticated models and 
methods, such as deep learning, diverse ensemble learning 
models, and advanced hyperparameter optimization techniques 
like Bayesian optimization, to further enhance predictive 
accuracy and efficiency. Additionally, developing hybrid 
models and leveraging transfer learning from related datasets 
could more effectively capture the complex relationships in 
N2O emissions data. In summary, the choice between 
GridSearchCV and RandomizedSearchCV depends on 
balancing computational efficiency and model performance, 
with RandomizedSearchCV offering a practical solution under 
computational constraints. 
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