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Abstract—The lack of a scientific and reasonable optimal 

evacuation path planning scheme is one of the main causes of 

casualties in fire accidents. In addition to the high temperature 

and harmful smoke in the fire environment, the crowding 

problem caused by the change of the position of the crowd in the 

evacuation process will also affect the evacuation effect. 

Therefore, by improving the multi-agent depth deterministic 

strategy gradient algorithm, an AMADDPG (Adjacency Multi-

agent Deep Deterministic Policy Gradient) model suitable for fire 

evacuation is proposed. First, the dangerous grid area is defined, 

and the influence of congestion degree and nearest exit is 

considered at the same time. The learning framework of 

"distributed execution and centralized local learning" is adopted 

to realize experience sharing among neighboring agents. Improve 

the learning efficiency and evacuation effect of the model. The 

experimental results show that the model can basically adapt to 

the complex and dynamic fire environment well, achieve the 

optimal path planning within 30, and ensure that the degree of 

congestion on the evacuation path is maintained within 0.5, 

which can achieve the safe evacuation goal. Meanwhile, 

compared with the MADDPG algorithm, the model has obvious 

advantages in terms of training efficiency and stability. It has 

good application value. 
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I. INTRODUCTION 

In recent years, fire accidents occur frequently and become 
one of the major disasters threatening public safety, which not 
only brings huge property losses, but also often causes serious 
casualties. According to statistics, 825,000 fires were reported 
in China in 2022, with 4,175 casualties and direct property 
losses of 7.16 billion. The main causes of casualties are the 
sudden occurrence of fire, the blindness of crowd evacuation 
and the lack of scientific measures to guide crowd evacuation 
[1]. It is an urgent problem to provide reasonable and feasible 
optimal evacuation path planning scheme for trapped 
personnel, improve the safety evacuation efficiency of the 
crowd, and maximize the reduction of casualties in the fire 
accident. 

At present, many scholars have carried out a lot of 
research on fire evacuation path planning. Zhong and Yu [1] 
proposed the idea of building a real-time fire evacuation 

system for smart cities based on the Internet of Things, using 
Floyd algorithm and building topology to plan the optimal 
evacuation path for personnel; Ye and Pan [2] proposed a path 
planning intelligent model based on BIM (Building 
Information Modeling) and cellular automata, and added 
dynamic obstacle model and random catastrophic fire model 
to the fire field, which can scientifically and efficiently avoid 
static and dynamic obstacles; Choi and Chi [3] used the smoke 
propagation prediction data provided by the fire dynamics 
simulator to improve the A* algorithm [4-5] on the basis of 
considering the safety status of subsequent nodes in the path, 
so as to find the optimal evacuation path and improve the 
algorithm; Liang and Wang [6] targeted the comprehensive 
building fire, considering the effects of fire products and 
crowd density on personnel escape speed, a personnel 
evacuation path planning model based on improved ant colony 
algorithm [5,7-8] was constructed; Dong et al. [9] applied the 
combination empowerment method to assign reasonable 
evacuation priorities to different crowd gathering points in 
view of indoor fires in commercial buildings, and optimized 
Dijkstra algorithm [10-12] to solve the congestion problem on 
the evacuation path. 

The traditional path planning algorithms above are mostly 
based on static scenes and require complete evacuation 
environment information, which is not consistent with the 
actual evacuation situation. DRL (Deep Reinforcement 
Learning) algorithm [13] is one of the hotspots in the field of 
artificial intelligence research and is suitable for solving 
complex decision problems in unknown environments [14]. It 
has been applied to many fields such as robot control [15], 
military deduction, path planning [16-17], etc. Ni et al. [18] 
proposed a collaborative double-depth Q network algorithm to 
obtain good path planning results through the interactive 
learning experience between agents and dynamic 
environments in multi-exit fire scenarios. Zhang et al. [19] 
combined Deep Reinforcement Learning with multiple agents 
to improve the global guidance strategy and neural network 
structure, so as to be suitable for personnel evacuation in 
complex dynamic and multi-exit environments. Although the 
above crowd evacuation planning method has effectively 
solved the evacuation path optimization problem of the 
dynamic change of the fire danger area over time in the multi-
exit fire scenario in practical application, there are still some 
problems, such as not considering the congestion caused by 
the change of the crowd position status in the evacuation 
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process, and the punishment for deviating from the nearest 
exit in the multi-exit fire scenario. Therefore, this paper 
proposes an AMADDPG (Adjacency Multi-agent Deep 
Deterministic Policy Gradient) model suitable for fire 
evacuation. Through mathematical modeling of fire path 
planning, The MADDPG (Multi-agent Deep Deterministic 
Policy Gradient) algorithm is improved to realize evacuation 
under complex dynamic fire environment. 

This study makes two primary contributions. First, the 
danger grid, congestion degree, and distance from the agent to 
the exit in fire evacuation path planning are mathematically 
defined, and the fire evacuation is modeled as a reinforcement 
learning problem in multi-agent environment.  Through the 
definition of multi-agent state space and action space as well 
as reward function, the optimal fire evacuation path planning 
is realized to maximize the reduction of personnel crowding, 
avoidance of dangerous areas, and multi-exit fire scenarios. 
Second, the learning framework of "distributed execution and 
centralized local learning" is adopted to reduce the complexity 
of network training and show obvious advantages in training 
speed and system stability. 

The rest of this article is organized as follows. Section I is 
given to model the fire environment and establish the 
mathematical model of fire path planning. Section II 
introduces the basic principle of MADDPG algorithm and the 
specific implementation of its improved algorithm 
AMADDPG. Section III introduces the construction of the fire 
environment of the fire evacuation experiment. In Section IV, 
the results of the fire evacuation experiment are analyzed. 
Discussion is given in Section V. Finally, in Section VI, the 
main research results of this study and the next research plan 
are summarized. 

II. MATERIAL AND RESEARCH METHOD 

A. Problem Description and Modeling 

In a multi-exit fire environment, personnel in each room of 
the building must avoid dangerous roads such as high 
temperature and heavy smoke, and quickly arrive at the 
nearest exit under the guidance of reasonable evacuation path 
planning to minimize casualties and property losses. To 
facilitate the research, the following assumptions are made: 

1) The building is simplified into a two-dimensional finite 

plane space where the location of obstacles and safety exits is 

known. 

2) Fire site information can be obtained in real time 

through sensor devices, such as temperature, smoke and toxic 

gas detection. 

3) All evacuees in each room are regarded as one agent, 

and each agent is numbered as {Agenti, i=1,2,3…,n}, and the 

initial location of each agent is known, ignoring the impact of 

individual differences of evacuees on the speed of personnel 

movement. 

a) Environmental modeling: In this paper, the grid 

method [20] is adopted to model the building plan, which is 

divided into several grids of equal size and non-overlapping. 

Each grid represents a feasible area or obstacle area with a 

length of 1m. In the feasible area, personnel can move freely, 

which is represented by white grid. While in the obstacle area, 

personnel cannot pass through, which is represented by black 

grid, usually a wall, column of a building. Grid coordinates 

increase from left to right, from bottom to top, and are 

represented by their center point coordinates. Fig. 1 shows the 

building plan created using the grid method. The grid 

coordinates in the lower left corner are (0, 0), and, the grid 

coordinates in the upper right corner are (m-1, n-1), and m, n 

are the number of grids in the horizontal and vertical 

directions, respectively. When a fire occurs, if the temperature, 

smoke visibility and toxic gas volume concentration in the 

feasible area grid exceed the preset critical value, it becomes 

an impassable dangerous grid. 

 

Fig. 1. Building modeling with grid method. 

b) Mathematical model of fire path planning: (1) 

Definition of dangerous grid: In a fire environment, fire 

products such as the volume fraction of toxic gas (CO), smoke 

visibility, and temperature will affect the life safety of 

evacuees. If the evacuation path planning guides personnel to 

enter dangerous areas, casualties may be caused. Therefore, 

according to the effect of CO volume fraction, smoke 

visibility and temperature on human body in fire [21-22], the 

dangerous grid is defined, 

}705.0)(30|),{(  sxy TCOφVISyxG
(1) 

where, xyG  is the actual state of the grid at coordinates 

(x, y), VIS, )(COφ and sT are smoke visibility, CO volume 

fraction and ambient temperature in the grid respectively. 

1) Congestion degree 

The congestion degree of evacuation directly affects the 
speed of movement and evacuation time of personnel, and will 
greatly reduce the efficiency of evacuation in serious cases. In 
order to represent the congestion degree of evacuees in a 
certain area during evacuation, the concept of congestion 
degree [23] is introduced to reflect the congestion of 
evacuation channels with time and space dimensions. 
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)(tN is defined as the number of evacuees in the 

evacuation channel at evacuation time t, )(tC is the passage 

capacity of the channel, 

2
)(

rπ

SA
tC

q
    (2) 

where qSA  is the area of the evacuation channel, and the 

evacuees are regarded as circular particles,  r  is 1/2 of the 
normal shoulder width of people, usually takes a value of 0.25 

m. )()( tCtNc   represents the congestion degree of the 

evacuation channel at time t. The greater the value, the more 
serious the congestion degree in the corresponding channel. 
When c≤0.5, the interference between evacuees is small and 
has no impact on the evacuation process and efficiency. But 
when c>0.5, the evacuation pedestrians began to be crowded, 
and the degree of congestion increased exponentially with the 
increase of saturation. 

Calculate the congestion degree 
i

tc   of the iAgent  

located at coordinate ),( ii yx   at time t in evacuation 

channel P. For the convenience of the research, assume that 
the evacuees in each agent are evacuated in a one-line 

formation, Pyx ii ),( . The area of evacuation channel   

is denoted as realSA  , and 
iN  is the number of evacuees of 

the iAgent  . Consider it in the following two cases: 

i) When there is no other agent in the evacuation channel, 
iNtN )( , realq SASA  . 

ii) Otherwise, 



k

j

ji NNtN
1

)( , realq SASA  , 

where 
jN   is the number of evacuees of the jAgent   

located at coordinates ),( jj yx  , Pyx jj ),( . 

2) The distance between the agent and the exit 

For the need of fire safety, the Code for Fire Protection in 
Building Design expressly stipulates the number of safety 
exits for public buildings: each fire protection zone or each 
floor of a fire protection zone in a public building shall have 
no less than 2 safety exits. In the multi-exit fire environment, 
when the number of evacuees and the initial location are 
determined, the choice of the nearest exit must be considered 
to achieve the optimal path planning. In this paper, Manhattan 
distance is used to define the distance between evacuees and 

each exit. Assuming that the iAgent  is located at the 

evacuation grid at coordinates ),( ii yx  , and define the 

distance between the j exit at coordinates  ),( jj yx  is 

defined, 
jijii

j yyxxd  . And for the exit set 

},...,3,2,1,{ mje j   , the exit number closest to the 

evacuee iAgent  is },...,3,2,1,min{arg mjdq i

j
j

  , 

the coordinate is  ),( qq yx . 

B. Principle of Algorithm 

1) MADDPG algorithm: Multi – agent Deep 

Deterministic Policy Gradient algorithm (MADDPG) 

applicable to traditional reinforcement learning method to 

handle the multi-agent cooperation task [24], by empirical 

playback mechanism and "centralized training, distributed 

execution" framework to learn. As shown in Fig. 2, each agent 

has an Actor network and a Critic network. During the 

training process, each agent interacts with the environment 

through its own Actor network according to the local 

information of its own state, to obtain action strategies, and 

evaluates the action of the Actor network according to the 

global information of the action state of all agents through the 

Critic network. This network structure effectively improves 

the policy stability and robustness of multi-agent systems. 

 

Fig. 2. Multi-agent depth deterministic strategy gradient algorithm 

MADDPG. 

a) State space: In the process of fire evacuation, the 

location of evacuees and the congestion degree of adjacent 

areas have an impact on the choice of evacuation path, 

therefore, the state 
j

ts   of  Agenti, i=1,2,3…,n  at time t   

as ),...,,,,,...,,,,,( 3218321 im

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t ddddccccyx  , 

where 
i

t

i

t yx ,    represent the horizontal and vertical 

coordinates of the iAgent   position;  
8321 ,...,,, i

t

i

t

i

t

i

t cccc  

represents the congestion degree of the 8 areas closest to the 

iAgent  . If one area is an obstacle, the congestion degree of 

the corresponding area is set to infinity. 
im

t

i

t

i

t

i

t dddd ,...,,, 321
  

represents the distance between the  iAgent  and m  exits. 

b) Action space: During fire evacuation, on the basis of 

environmental rasterization, the agent can select actions 

according to the observed environmental state information in 8 

directions around it. Therefore, this paper defines that the 

iAgent   can select actions in eight directions (up, down, left, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

390 | P a g e  

www.ijacsa.thesai.org 

right, upper left, upper right, lower left and lower right) in any 

state at time t , denoted as 
j

ta  . 

c) Reward function: The reward function is an 

important reference for the agent to judge its own strategy, 

and it affects the learning effect and convergence speed of the 

algorithm to some extent. According to the goal of path 

planning, which is to find the shortest distance between all 

agents and the nearest exit on the basis of minimizing 

overcrowding and avoiding dangerous areas. In this paper, for 

each action performed by the iAgent  , if the agent is in a 

non-free active grid, a negative reward  20i

aR  is given; 

otherwise, whether the agent reaches the exit is judged. If yes, 

a larger positive reward  100i

aR  is given; otherwise, a 

negative reward 1i

aR  is given. In order to ensure the 

maximum reduction of personnel congestion during the 

evacuation process, the congestion degree 
iC  of the 

evacuation area of the iAgent  is specified. When  

5.0iC , negative reward  expi i

cR c   is given; At 

the same time, in order to make the agent move towards the 

direction of the nearest exit and avoid entering the dangerous 

grid xyG  , suppose that the angle between the vector 

of iAgent from the position  ,i i

t tx y   at time t  to the 

position  1 1,i i

t tx y 
 at time 1t   and the vector from its 

position  ,i i

t tx y  at time t  to the nearest exit  ,q qx y  

is denoted as  , and the reward value 
i

eR  is divided into 

the following four cases, as shown in Table I. In conclusion, 

this paper defines the reward function as: 
i i i i

a c eR R R R   . 

TABLE I. REWARD FUNCTION OF FIRE EVACUATION PATH PLANNING 

 1 1( , )i i

t t xyx y G    1 1( , )i i

t t xyx y G    

90   0.5i

eR   10i

eR    

90   1i

eR    20i

eR    

2) Improved MADDPG algorithm: Lowe et al. [25] 

pointed out that the "distributed execution, centralized 

training" learning framework of MADDPG is suitable for 

multi-agent interaction scenarios. However, with the increase 

in the number of agents, the input dimension and training 

parameter scale of the centrally trained Critic network increase 

rapidly, which will greatly increase the training difficulty of 

the network. This makes it impossible to deal with large-scale 

multi-agent learning problems. In fact, in the process of fire 

evacuation, the action strategy of the agent is only affected by 

its surrounding environment and the agent close to it. 

Therefore, this paper proposes AMADDPG to improve it and 

adopts the learning framework of "distributed execution and 

centralized local learning", that is, only the status and action 

data of top-k other Agent Actors closest to the current Agent 

are considered as the input of the current Agent Critic network. 

The block diagram of AMADDPG algorithm is shown in the 

Fig. 3. 

 

Fig. 3. Block diagram of improved AMADDPG algorithm. 

The Actor of each iAgent  independently uses local 

information to complete the interaction with the surrounding 
environment. During model training, it maximizes the 
cumulative expected return 

      
 

, , ,
j jja st t

kNN i kNN ii i

i t t t tJ Q s s a a






 and minimizes 

the loss function of the locally centralized action value 
function in their respective Critic networks as follows: 

       
2

, , ,
kNN i kNN ii i

i i t t t tL E Q s s a a y
 

     (3) 

      

,,

,
,

1

1 1 1 1, , ,
j j j

tt

kNN i kNN ii i

i t t t t
a s

y Ri Q s s a a






   


 

 (4) 

where  
   kNN i kNN i

t ts a、  indicate the status and actions 

of the top-k agents closest to the iAgent . 

The pseudo-code of the AMADDPG algorithm is as 
follows: 

Initialize environment parameters, parameter variables; 

for episode=1 to M do 

Initialize random noise N;  

Initialize the initial state of fire evacuation S0; 

for t=1 to max- episode-length do  

for agent i = 1 to n do 
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According to the state  
i

ts , the random policy is 

used to perform  an action 
i

ta , get the immediate reward  

i

tR , and reach the new state  1

i

ts  ; 

Find the top-k other Agent sets  kNN i   that 

are closest to. 

Store  
( ) ( ) ( )

1 1, , , , , ,i kNN i i kNN i i i kNN i

t t t t t t ts s a a R a a    in the experience 

pool 

end for  

1t tS S  , { , 1,2,3.., }i

t tS s i n  ,

1 1{ , 1,2,3.., }i

t tS s i n     

for agent j = 1 to n do     

Random sampling  
( ) ( ) ( )

1 1, , , , , ,i kNN i i kNN i i i kNN i

t t t t t t ts s a a R a a    from empirical 

pool. 

Set the target Critic network function value 
'

' '
1

( ) ' ( ) '

1 1 1 1 ( )
( , , , ) | j j j

ti

i i kNN i i kNN i

i t t t t a s
y R Q s s a a





    

 

 

Minimize the loss function ( )iL    update 

Critic. 

Policy gradient   ( )iJ  update Actor for 

calculating expected return. 

end for. 

Update target network parameters:  
' '(1 )t t t       

end for 

end for 

III. FIRE ENVIRONMENT CONSTRUCTION FOR FIRE 

EVACUATION EXPERIMENT 

In order to verify the effectiveness of the AMADDPG 
algorithm on fire evacuation path planning, python 3.7 was 
used to simulate the algorithm. The hardware configuration of 
the experiment environment is as follows: the CPU is Intel 
Xeon (R) Bronze 3104, the operating system is Windows 
Sever2012 R2, and the deep learning framework is Pytorch 
1.4. 

In this experiment, the evacuation situation of a large 
building fire scene is simulated. As shown in Fig. 4(a). The 
building has an area of approximately 900 m2 and constructs 
grid maps with dimensions of 30 × 30, each grid side length of 
1m. There are four safety exits in the building, as shown by 
the green grid in the figure. The blue grid in the figure is the 
initial position of the agents, which are numbered in turn. The 
number of evacuees represented by each agent is randomly 

generated at the beginning of each training round, and the total 
number of evacuees is about 200. When all agents reach the 
safety exit in the shortest time, it is considered as a successful 
evacuation. 

The main materials of combustibles in buildings are 
wooden furniture and fabrics, and the fire area is an indoor 
environment in the building, as shown by the red grid in the 
Fig. 4(b). In order to make the simulation test more close to 
the real fire, the heat release rate changes according to the fast 
t square fire, and the maximum heat release rate is set to 4 
MW/m2. It is assumed that the fire continues to maintain the 
burning state after reaching the maximum heat release rate. 
The continuous change of fire environment information, such 
as smoke visibility, CO volume fraction and ambient 
temperature, is obtained through the numerical simulation 
results of FDS fire simulator. According to the definition of 
danger grid, the danger area in the process of fire spread is 
represented in yellow as shown in Fig. 4(b). 

 
(a) Distribution of evacuees from a large building 

 
(b) The spread of a large building fire at t=30s 

Fig. 4. Fire scene of a large building. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to evaluate the evacuation path planning ability of 
AMADDPG algorithm, the total number of training rounds 
was set to 1000 in the experiment, and the maximum 
evacuation simulation steps in each training round was set to 

500. The evacuation time e
e

D
T

v
  is defined, where eD  

is the evacuation distance and  is the evacuation speed. 

Since the evacuation speed will be affected by the congestion 
degree, the greater the congestion degree, the more serious the 
degree of congestion, and the slower the moving speed of the 
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evacuees. Therefore, according to literature, an exponential 

function is used to describe the evacuation speed, and maxV   

is the walking speed of normal people, which takes a value of 
1.5m/s. 

0.5

, 0.5

,

ma x

c

ma x

V c

V e other





 


  (5) 

A. Sensitivity Analysis 

In AMADDPG algorithm, the value of top_k will affect 
the evacuation ability and training time complexity of the 
model to some extent. Specifically, the smaller the value of 
top-k, the less surrounding information the agent obtains, 
which affects the value evaluation of the action of the Actor 
network. Otherwise, the model parameters will increase 
rapidly, which increases the difficulty of training and makes it 
difficult to converge. Therefore, it is necessary to discuss 
top_k. By using the average of the fire evacuation time and the 
total model training time of the three experiments, this study 
compared and analyzed the influence of top-k of 2, 4, 8, 12 
and 16 on the evacuation ability and model training. As shown 
in Fig. 5. 

As shown in Fig. 5, when top_k is 2, 4, 8, 12, 16, the fire 
evacuation time and model training time reach the lowest 
value when top-k is 4. After analysis and research, it is 
believed that when top_k is small, although the model 
parameters are small, the ability of the agent to perceive the 
environment becomes weak, the stability is poor, and it is not 
conducive to convergence during training. Therefore, it is 
more appropriate to set top_k to 4, and take this value as the 
fixed parameter value for subsequent experiments. 

 
(a) The effect of top_k on average fire evacuation time 

 
(b) The effect of top_k on average total training time 

Fig. 5. Influence of top_k on the model. 

B. Evacuation Effect Analysis 

According to the discussion of top_k in 4.2.1, on this basis, 
the personnel evacuation situation before and during fire is 
analyzed and compared, and the experimental results are 
shown in Fig. 5 and Table II. 

From the comparison of Fig. 6 (a) and Fig. 6 (b), it can be 
seen that all agents can complete the total evacuation of 
personnel within 35 steps regardless of whether the fire occurs 
or not. According to the definition of evacuation time, the 
evacuation time can be controlled within 30s. In addition, 
when a fire occurs, due to the spread of the fire and the 
generation of combustion products, the evacuation path of 
some people is changed, so that they can bypass the dangerous 
area to reach the appropriate safety exit, as shown in the figure 
of agents 1, 2, 9 and 10. It shows that AMADDPG algorithm 
can adapt to the influence of dynamic environment change on 
path planning, and can plan the optimal path for multi-agent 
system. 

 
(a) No fire evacuation path planning map 

 
(b) Fire evacuation path planning maps are available 

Fig. 6. Evacuation path planning diagram of a large building. 

In the process of evacuation, the congestion phenomenon 
caused by the dynamic change of crowd location will have a 
certain impact on the evacuation effect. Combined with Fig. 6, 
the congestion degree of agent paths in A, B, C and a, b 
respectively without fire and when fire occurs is shown in the 
Table II. 
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TABLE II. CROWDING DEGREE OF AGENT EVACUATION TRAJECTORY 

No-fire condition Fire condition 

Tracking point 
Congestion 

degree 
Tracking point 

Congestion 
degree 

A 0.613 a 0.617 

B 0.662 b 0.668 

C 0.539 c 0.643 

It can be seen from Fig. 6 and Table II that in the absence 
of fire, the algorithm adjusts the evacuation paths of agents 10, 
3 and 7 when the congestion exceeds the threshold value 0.5 at 
points A, B and C respectively. Similarly, in the case of fire, 
the evacuation paths of agents 3, 7 and 9 are dynamically 
planned according to the congestion degree at points a, b and c 
respectively, which indicates that AMADDPG algorithm can 
effectively solve the congestion problem caused by the 
dynamic change of crowd location in the evacuation process, 
so as to ensure that all agents can quickly complete the 
evacuation within the safe evacuation time. 

C. Comparative Analysis of AMADDPG Algorithm and 

MADDPG Algorithm 

In order to reduce the training difficulty of the network and 
improve the computational efficiency of the algorithm, 
AMADDPG algorithm is an improvement of the MADDPG 
algorithm's centralized global learning, which only considers 
the state and action of the agent near the current agent. 
Through three experiments, this study analyzed and compared 
the training and evacuation conditions of AMADDPG 
algorithm and MADDPG algorithm in fire scenarios, and 
evaluated the efficiency of AMADDPG algorithm. 

1) Comparison of evacuation time: Evacuation time refers 

to the time between the start of evacuation movement and the 

evacuation of all personnel to indoor or outdoor safe areas, 

and its definition is the same as 4.2.1. In order to ensure the 

safe evacuation of personnel in the building, the evacuation 

time of the fire site should be controlled within 90 seconds 

according to the requirements of the Code for Fire Protection 

in Building Design. The evacuation time in a fire scenario is 

shown in Table III. 

TABLE III. COMPARISON OF EVACUATION RESULTS BETWEEN 

AMADDPG ALGORITHM AND MADDPG ALGORITHM IN FIRE SCENARIO 

Algorithm evacuation 
result 

AMADDPG algorithm 
MADDPG 
algorithm 

The first experiment 23.49 26.14 

The second experiment 23.46 25.85 

The third experiment 23.50 28.37 

Mean evacuation time 23.48 26.79 

As can be seen from Table III, in a fire environment, the 
average evacuation time of the AMADDPG algorithm and the 
MADDPG algorithm three times is less than 30 s, and there is 
no significant change in the results of the three repeated 
experiments of the AMADDPG algorithm, while the 
evacuation time of the MADDPG algorithm is different. This 
shows that the two algorithms are acceptable in terms of path 
planning ability in fire scenes, and the evacuation effect is 
good, and the AMADDPG algorithm is better than the 
MADDPG algorithm in terms of algorithm stability. To 
analyze the reasons, the MADDPG algorithm needs to 
evaluate the status and actions of all agents in a complex and 
changeable fire environment. As a result, the input dimension 
of Critic network is too large, the complexity is too high, the 
convergence is difficult, and the stability of the algorithm is 
also affected. Therefore, compared with MADDPG algorithm, 
AMADDPG algorithm can obtain more stable optimal path 
planning results under complex dynamic environment and 
achieve the goal of safe evacuation. 

2) Convergent rounds: The training running time and 

convergence of AMADDPG algorithm and MADDPG 

algorithm are shown in Table IV and Fig. 7. 

TABLE IV. TRAINING OF AMADDPG ALGORITHM AND MADDPG ALGORITHM IN FIRE SCENARIO 

Algorithm 
1000 rounds total training time Average training 

time per round 
Average convergent 
iteration rounds The first experiment The second experiment The third experiment 

AMADDPG algorithm 62467 64003 63861 63.44 708 

MADDPG algorithm 68242 67508 67022 67.59 734 
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(a) AMADDPG algorithm trains convergence curves. 

 

 

 
(b) MADDPG algorithm trains convergence curve. 

Fig. 7. Convergence curves of AMADDPG and MADDPG algorithms in a 

fire scenario. 

As can be seen from Table IV, the average running time of 
each training round of the AMADDPG algorithm is 4.15s 
shorter than that of the MADDPG algorithm, the average 
number of convergent iteration rounds is also reduced by 26 
rounds, and the training efficiency is improved by 6.14% 
compared with the MADDPG algorithm. It shows that 
AMADDPG algorithm has higher training and learning effect, 
can effectively improve the convergence speed of the 
algorithm, and obtain the optimal evacuation path with less 
training time. 

As can be seen from Fig. 7, in the first 400 rounds of the 
two algorithms, the evacuation time of each training round is 
generally above 30s, which is basically exploration oriented. 
With the accumulation and utilization of learning experience, 
the evacuation time of each training round converges to 23s 
until the 700 rounds, and the curve fluctuation of the 
AMADDPG algorithm is significantly less than that of the 
MADDPG algorithm, and is relatively stable. Therefore, 
AMADDPG algorithm can make the whole fire evacuation 
model convergence better and more stable. 

V. DISCUSSION 

In order to verify the effectiveness of the algorithm, the 
evacuation process was simulated with or without fire, and the 
AMADDPG algorithm proposed in this study was compared 
with the MADDPG algorithm, as follows: 

1) Through the simulation experiment with or without fire, 

it is verified that AMADDPG algorithm can basically adapt to 

the influence of dynamic environment changes on path 

planning, and can plan the optimal path for multi-agent system 

within 30s regardless of whether a fire occurs. Moreover, it 

can effectively solve the crowding caused by the dynamic 

change of the crowd position during the evacuation process, 

and the congestion degree on the multi-agent evacuation path 

is basically maintained within 0.5, so that the trapped people 

can move orderly at normal walking speed in the evacuation 

channel, and ensure a better evacuation effect. 

2) By comparing the evacuation effect of AMADDPG 

algorithm and MADDPG algorithm in fire scenarios through 

three experiments, it can be concluded that AMADDPG 

algorithm can get the optimal path solution after 700 iterations. 

Compared with MADDPG algorithm, the average 

convergence iteration rounds of AMADDPG algorithm are 

reduced by 26 rounds, and the curve fluctuation is 

significantly less than MADDPG algorithm. Therefore, 

AMADDPG algorithm can achieve more stable and efficient 

optimal path planning in complex dynamic environment, and 

achieve safe evacuation goal. 

VI. CONCLUSION 

In this paper, an AMADDPG model suitable for fire 
evacuation is proposed by improving MADDPG algorithm. 
The experimental results show that the AMADDPG model can 
adapt to complex and dynamic fire environment, maximize the 
reduction of personnel congestion and avoid dangerous areas, 
and efficiently realize the optimal path planning for multi-exit 
fire scenarios. 

From the technical point of view, the model has certain 
application potential and can be used in fire evacuation path 
planning. However, since the current research is still based on 
simulation, the subsequent research needs to be applied to the 
actual fire environment, and the algorithm should be deployed 
on multiple large public building [26] fire evacuation systems 
to further optimize the model and improve the generalization 
ability and robustness of the model [27] under different 
complex evacuation scenarios. 
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