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Abstract—Sound classification is a multifaceted task that 

necessitates the gathering and processing of vast quantities of data, 

as well as the construction of machine learning models that can 

accurately distinguish between various sounds. In our project, we 

implemented a novel methodology for classifying both musical 

instruments and environmental sounds, utilizing convolutional 

and recurrent neural networks. We used the Mel Frequency 

Cepstral Coefficient (MFCC) method to extract features from 

audio, which emulates the human auditory system and produces 

highly distinct features. Knowing how important data processing 

is, we implemented distinctive approaches, including a range of 

data augmentation and cleaning techniques, to achieve an 

optimized solution. The outcomes were noteworthy, as both the 

convolutional and recurrent neural network models achieved a 

commendable level of accuracy. As machine learning and deep 

learning continue to revolutionize image classification, it is high 

time to explore the development of adaptable models for audio 

classification. Despite the challenges associated with a small 

dataset, we successfully crafted our models using convolutional 

and recurrent neural networks. Overall, our strategy for sound 

classification bears significant implications for diverse domains, 

encompassing speech recognition, music production, and 

healthcare. We hold the belief that with further research and 

progress, our work can pave the way for breakthroughs in audio 

data classification and analysis. 

Keywords—Deep learning (artificial intelligence); data 

augmentation; audio segmentation; signal processing; frame 

blocking; fast fourier transform; discrete cosine transform; feature 
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I. INTRODUCTION 

Deep learning techniques have enabled the classification of 
audio, which has numerous practical applications. This 
technology can be used to recommend music, categorize 
various musical instruments, recognize music genres, organize 
music collections, develop streaming services, differentiate 
between male and female speech, distinguish between different 
languages or accents, build speech recognition systems, and 
analyze audio recordings from surveillance equipment to detect 
sounds indicating a threat or emergency. Consequently, deep 
learning-based audio classification has become an essential tool 
that can be employed in diverse contexts to analyze and classify 
audio data. 

Lately, there has been a notable surge in the utilization of 
Digital Signal Processing (DSP) for musical instrument 
processing and speech analysis. In addition, there is an 
increasing demand for online access to music data on the 
internet, and this has led to a rise in computational tools for 
development such as summarization, analysis, classification, 
and indexing. Music Information Retrieval (MIR) provides 
solutions for music-related tasks, including the subtask of 
sound classification of musical instruments, which involves 
identifying different musical instruments [1]. MIR is also used 
for a variety of applications, including beat tracking, beat 
recognition and separation, automatic music transcription, and 
polyphonic audio processing [2]. 

Instrumental music frequently contains insightful 
information regarding current events. Although automatic 
sound processing is thought to be the state of the art, robots are 
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still far behind humans in their ability to perceive and 
distinguish between wide varieties of sound events. More 
research is needed today to create a dependable system that can 
accurately identify a wide spectrum of audio, including 
different musical instruments [3]. 

Generally speaking, there are three sub-categories of audio 
classification tasks: music classification, acoustic scene 
classification, and speech recognition (acoustic model). Each of 
these activities includes various signal qualities, which causes 
changes in the audio data input aspects. Recent significant deep 
learning breakthroughs have made it possible to build a single 
audio or musical instrument model that is adaptable enough to 
handle diverse cross-domain tasks. The potential of a CRNN 
(Convolutional Recurrent Neural Network) model was 
harnessed by Adavanne et al. [4] for the detection of sound 
events, the classification of auditory birds [5], and the 
recognition of musical emotion [6]. The selection of parameters 
for representing time-frequency as input has a substantial 
impact on the efficacy of audio classification models for 
various tasks, according to recent breakthroughs in the field. 
Unfortunately, a large number of existing models use non-
optimal filter bank size and type, time-frequency magnitude 
compression, and resolution. Particularly concerning the choice 
of 2D or 1D convolutional layers and the shape of the filter, 
these decisions have a significant impact on the model's 
architecture [7]. Waveform-based models, which directly 
handle unaltered input signals, offer an inventive way to get 

around these problems. Regarding the aforementioned 
problems, this strategy has promise. Notably, Schrauwen and 
Dieleman [8] recently showed the effectiveness of CNN models 
using raw waveforms as input for automatically tagging music, 
opening up new potential for enhancing audio categorization 
performance. This approach helps overcome the limitations of 
traditional audio classification methods by allowing the model 
to learn directly from the raw audio signals. Consequently, 
waveform-based models have the potential to significantly 
improve the accuracy and efficiency of audio classification in a 
wide range of applications. 

Most of the previous research in music information retrieval 
(MIR) has focused on monophonic music [9], while this 
approach predominantly utilizes monophonic data for 
instrument classification. For speech identification, Sainath et 
al. [10] employed a convolutional long short-term memory 
deep neural network (CLDNN), whereas Dai et al. [11] used a 
deep convolutional neural network (DCNN) with residual 
connections to identify environmental sounds. The majority of 
the investigations employed frame-level filters with carefully 
designed first convolutional layers made up of extensive 
samples. 

The method for extracting musical instrument features and 
categorizing instrumental audio in our study is based on these 
attributes. Fig. 1 shows the block diagram describing the 
procedure in detail for this operation. 

 

Fig. 1. Basics of audio tagging and feature extraction. 

We arranged this paper as follows, in Section I, the 
introduction is given, in Section II, the related work is 
explained, in Section III, the feature extraction techniques are 
described, in Section IV, the dataset is explored, in Section V, 
the pre-processing steps are discussed, in Section VI, the 
model is built and explained, in Section VII, a comprehensive 
analyses of the results are conducted, and in Section VIII, 
conclusion is drawn. 

II. RELATED WORK 

The classification of musical instruments is a topic that is 
actively being researched, and many approaches have been 
suggested by scholars and it is clear from the literature study 
that more research is still needed in this area to get the best 
results with greater precision, especially when working with 
tiny datasets. 

Meinard Müller, Daniel P. W. Ellis, Anssi Klapuri, and Gal 
Richard examined numerous signal processing techniques to 
categorize musical instruments in a notable work [12]. With a 
focus on musical signal processing, this article provides a 
thorough overview of numerous research fields. Among the 
methods investigated, the use of MFCCs (Mel Frequency 
Cepstral Coefficients) in the classification of musical 
instruments attracts a lot of interest and debate. 

In a noteworthy study, Jadhav, P. S. [13] proposed a unique 
method for identifying musical instruments by fusing MFCCs 
with Timbral Associated Descriptors of Audio. They used a 
binary tree, SVM (Support Vector Machine), and k-nearest 
neighbor as part of their feature extraction technique. The 
research demonstrated an insightful investigation into 
improving musical instrument recognition by further 
examining and evaluating the identification accuracy attained 
through various combinations of classification algorithms and 
feature extraction methods. 

D. G. Bhalke, C. B. Rama Rao, and D. S. Bormane [1] 
pioneered the use of FFT (Fractional Fourier Transform) in 
conjunction with MFCCs for categorizing musical instruments 
in a different work that has been discussed in the introduction 
section. They also used temporal traits like assault time, zero-
crossing rates, decay time, and energy to their advantage to 
support their classification strategy. The method for 
calculating the zero-crossing rate, Eq. (1), was introduced in 
the study, offering important insights into the development of 
musical instrument categorization algorithms. 

𝑍𝐶𝑅 =  
1

𝑇
 ∑  | sgn[x(y)] –  sgn[x(y − 1)] |   𝑇−1

0  (1) 
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Here, T denotes the sample in each frame, while x(y) and 
x(y-1) denote the signals of the yth and (y-1) samples, 
respectively. 

The Eq. (2) was utilized to compute the energy of the 
sound sample. 

𝐸𝑛𝑒𝑟𝑔𝑦 =   ∑  (| m(n) |) 𝑇−1
𝑛=0

2  (2) 

The signal of the nth sample is represented by m(n), while 
T signifies the number of samples present in one frame. 

Essid, S., Richard, G., & David, B. suggested that the 
sound samples feature be used for MFCCs [14]. They provided 
more information on how using the derivative of MFCCs over 
time can be used to exploit the Delta MFCC capabilities. The 
SVM technique was used to classify data. Spectral 
characteristics such as spectral centroid and spectral breadth 
were used. One mapping vs one SVM was used to train the 
data. M. Erdal Ozbek, Nalan Ozkurt, and F. Acar Savaci [15] 
classified musical instruments using wavelet decomposition 
up to the first three stages and wavelet ridges (Fig. 2). By using 
this method, three precise coefficients and one estimated 
coefficient are extracted, allowing for accurate classification. 

 

Fig. 2. Three Stages of wavelet decomposition. 

Herein, the signal frame denoted as S, is calculated as the 
sum of the approximate coefficient (A) and the detailed 
coefficients (D) at levels 1 to 3, where D1, D2, and D3 
correspond to the detailed coefficients at each respective level. 

Farbod and Karthikeyan suggested using wavelet-
dependent time scale information to categorize musical 
instruments [16]. In order to obtain the required qualities, they 
continuously took the wavelet transform signal frame and 
extracted features relating to bandwidth and temporal 
fluctuation. 

A support vector machine (SVM) employing Mel-
Frequency Cepstral Coefficients (MFCC) as feature vectors 
was suggested in a prior study for the classification of musical 
genres. While melody is crucial for understanding music data, 
it is not a suitable feature for classification. Music genres are 
strongly correlated with the timbre of music, which 
corresponds to the frequency characteristics of sound signals. 
Therefore, previous studies commonly use MFCC as feature 
vectors for music genre classification [17]. Another study 
combines audio and lyrics features to detect music emotions, 
using a synchronized dataset of chorus audio and lyrics. The 
audio features extracted include dynamics, rhythm, timbre, 
pitch, and tonality, while lyric features include 
psycholinguistic, stylistic, and statistical features. Weighting 
the audio and lyric features using a Naive Bayes probability 
value shows that the audio feature is dominant with an 80% 
weighting ratio [18]. 

The application of these diverse feature extraction 
techniques is evident in numerous research papers. An article 
discusses how cardiovascular diseases are a major cause of 
deaths worldwide and identifies the importance of detecting 
heart disease at an early stage. The article presents an approach 
for classifying heart audio samples using deep learning 
techniques and compares the results of various machine 
learning algorithms. The approach involves implementing 
existing segmentation techniques and feature engineering in 
the audio domain. The precision values indicate that the 
Hybrid CNN model performed best with a precision of 1 for 
artifact, 0.906 for normal, and 0.859 for murmur categories 
[19]. 

Another study shows that Vehicle classification is a crucial 
task in managing traffic and road infrastructure, with new 
challenges continuously emerging. Through classifier fusion 
techniques, the complementary nature of information has 
previously been used to enhance classifier performance. This 
hasn't been looked at in the context of a multi-modal 
categorization system that uses only neural networks. To 
increase performance, this study suggests a complementarity-
based multi-modal vehicle categorization system. The system 
uses sets of Mel Frequency Cepstral Coefficients (MFCC) as 
the feature vectors for the audio modality to perform vehicle 
classification with two distinct modalities using Convolutional 
Neural Network (CNN) classifiers. At the decision level, the 
predictions from the base classifiers are combined to provide 
a final prediction, increasing accuracy. The study finds that in 
a fully neural network-based multi-modal system, decision-
level fusion is an efficient method for enhancing vehicle 
classification accuracy [20]. 

III. MFCC FEATURE EXTRACTION 

Generally, Automated Speech Recognition (ASR) systems 
require feature extraction from speech signals that are non-
stationary in nature [21]. Feature extraction becomes difficult 
due to speech variability constraints such as differences 
between speakers, intonation, and changes in speech 
production. A good feature extraction technique should 
identify specific linguistic properties and discard irrelevant 
information such as background noise and emotion. 
Commonly used feature extraction techniques include Mel 
Frequency Cepstral Coefficients (MFCC), Linear Predictive 
Coefficients (LPC), Perceptual Linear Predictive (PLP) 
Coefficients, Discrete Wavelet Transform (DWT), and 
Principal Component Analysis (PCA). 

Our study aims to demonstrate the process of sound feature 
extraction using the MFC technique, which is currently 
popular. The vocal tract's shape, including the shape of the 
tongue and teeth, filters spoken sounds and defines the sound 
made. Accurately determining the shape provides an accurate 
phoneme representation, which is reflected in the short-time 
power spectrum's envelope. MFCCs precisely represent this 
envelope. To classify instrumental music, identifying various 
audio signal components and eliminating background noise or 
dead space is the initial step. 

The use of Mel Frequency Cepstral Coefficients (MFCCs) 
for audio feature extraction in various recognition applications 
has become commonplace in the present day. Because of their 
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effective classification accuracy in a clean environment, 
MFCCs have been around since Davis and Mermelstein first 
introduced them in the 1980s [22]. Fig. 3 shows the steps 

involved in the MFCC feature extraction approach, which has 
recently gained in popularity [23]. 

 

Fig. 3. MFCCs block diagram. 

So, to extract features from a signal, it is common to 
partition it into short frames, estimate the power spectrum for 
each frame using periodogram analysis, apply a mel filterbank 
to the power spectra and calculate the energy within each filter, 
compute the logarithm of the filterbank energies, apply the 
discrete cosine transform (DCT) to the logarithmic energies, 
and then keep only the DCT coefficients while discarding the 
rest. 

Further processing steps may include appending the frame 
energy and delta and delta-delta features to the feature vectors, 
as well as filtering the final features. Fig. 3 illustrates these 
proposed steps. 

When implementing feature extraction, MFCCs are often 
preferred over other techniques due to their relative simplicity 
and robustness across various conditions [24]. MFCCs are 
designed to mimic the human auditory system. Steps of 
MFCCs (Fig. 3) are described below: 

1) Pre-emphasis: To optimize an audio signal for 

subsequent processing, it is standard practice to apply a pre-

emphasis filter. The purpose of this filter is to boost the energy 

levels of the higher frequencies, thereby emphasizing them in 

the overall signal. 

Through the use of a first-order infinite impulse response 
(FIR) filter, pre-emphasis filtering can be carried out by 
conducting spectral flattening [25], [26]. The FIR filter used 
in this stage of the process is specifically represented by Eq.  
(3). 

𝐻(𝑧) = 1 − 𝑎𝑧−1,     0.9 ≤ 𝑎 ≤ 1.0   (3) 

By applying this filter, the audio signal's energy 
distribution is altered, with the higher frequency components 
becoming more prominent. This can help improve the signal-
to-noise ratio and enhance overall signal quality, making it 
easier to extract useful information from the audio data. 

2) Frame blocking: When analyzing time-varying signals 

like audio, it is vital to balance the need for signal accuracy 

with the practicalities of signal processing. This is particularly 

true when it comes to frame blocking, the process of dividing 

a signal into smaller segments, or frames, to facilitate analysis. 

If the signal is too long, its properties may be altered, while 

too-short frames can compromise the resolution of narrow-

band components. To achieve an optimal balance between 

these considerations, audio signals are typically divided into 

frames of 20-30 milliseconds, with adjacent frames separated 

by M samples (where M<N). M is frequently set to 100, and 

N to 256. 

For the analysis of time-varying signals whose 
characteristics are fixed over short time intervals, framing is 
needed. By segmenting the signal into smaller frames, spectral 
analysis can be conducted on individual segments, enabling a 
more precise analysis of the signal's characteristics. 

3) Windowing: After dividing the audio signal into 

frames, the next step is to apply a window function to each 

frame. The Hamming window, which is provided by the 

equation, is a frequent option for this: 

      𝑤(𝑛) = 0.54 − 0.46 cos ( 
2𝜋𝑛

𝑁−1
 )      (4) 

In this case, 'n' varies from 0 to N-1, with 'N' being the 
window length, pertaining to audio signals sampled at 16 kHz, 
a standard frame length of 25 ms is used, which translates to a 
frame length of 400 samples. The frame step is typically set to 
10 ms (or 160 samples), which allows for overlapping between 
adjacent frames. The first frame starts at sample 0, followed 
by the next frame starting at sample 160, and so on until the 
end of the signal. In cases where the audio file cannot be 
evenly divided into frames, zero padding is used to make up 
the difference. 

Fredric J. Harris [27] compares the various sorts of 
windows that are accessible in detail. Fig. 4 displays the 
Hamming window function's resulting plot (with 200 
samples). 
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Fig. 4. Hamming window. 

4) FFT (Fast Fourier Transform): The Fourier transform 

changes a signal's time domain to its frequency domain, can 

be used to show a spectrum on a computer screen. A spectrum 

essentially depicts the frequency domain manifestation of the 

time-domain signal of an audio input [28]. 

Using mathematics, the discrete Fourier transform (DFT) 
converts a constrained sequence of uniformly spaced function 
samples into a sequence of equally spaced samples of the 
discrete-time Fourier transform (DTFT), which is a complex-
valued function of frequency. The DFT can be written as [29], 
which transforms a sequence of N complex numbers into 
another sequence of complex numbers. 

x̂(k) = ∑ x(n)𝑒−2𝜋𝑖𝑘𝑛/𝑁 
𝑁−1

𝑛=0

 

for k =0,1,…., N – 1    (5) 

Since DFT operates on a limited amount of data, it can be 
executed on computer devices using numerical algorithms or 
specialized hardware [30]. The effective Fast Fourier 
Transform (FFT) techniques are frequently used in these tasks. 
The terms "FFT" and "DFT" are frequently used 
interchangeably. The abbreviation "FFT" may have also been 
used to refer to the ambiguous word "Finite Fourier 
Transform" before its present use [31] [32]. 

Since the mathematical procedure known as the Fast 
Fourier Transform (FFT) allows for the transfer of signals 
from the time domain to the frequency domain, by applying 
the FFT to each frame, we can obtain the magnitude frequency 
of the signal. Thus, the output of the FFT process results in 
either a Periodogram or a Spectrum, as stated in reference [33]. 
So, this process is critical in signal processing and provides 
valuable insights into the characteristics of the signal. 

Fig. 5 describes the application of FFT on saxophone 
signals, enabling the conversion of frequency information into 
a magnitude-based domain. 

5) Triangular bandpass filter: A bandpass filter is an 

electronic filter that permits only a specific range of 

frequencies to pass through while suppressing or obstructing 

frequencies outside that range. It is engineered to transmit 

signals within a designated bandwidth while impeding signals 

that are beyond it. Bandpass filters are frequently employed in 

a wide range of applications such as audio processing, medical 

equipment, and wireless communication systems [34] [35]. 

These filters can be constructed using different methods, 

including passive RC filters, active filters, and digital filters. 

The center frequency, bandwidth, and quality factor are crucial 

design parameters that govern the filter's selectivity, gain, and 

noise performance. 

To obtain a smooth magnitude spectrum for our research, 
which significantly shrunk the feature size, we used 20 triangle 
bandpass filters. We need to note that Hertz is represented by 
f in this context. The linear scale frequency is converted to Mel 
scale frequency using Eq. (6), which is defined as, 

Mel(f) = 2595 log10 (1 + 
𝑓

700
)  (6) 

Spectral envelop extraction is achieved by utilizing 
triangular bandpass filters, as described in reference [36]. Mel 
frequency filters are constructed using triangular bandpass 
filters that are dispersed unevenly along the Mel frequency 
axis. In other words, the low-frequency axis has a higher 
density of filters, whereas the high-frequency area has a lower 
density of filters. References [37] and [38] are used to support 
this, which is shown in Fig. 6 (for 26 filters). 

     

Fig. 5. FFT transformation. 

FFT 
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Fig. 6. Filter bank. 

In order to create a filter bank, Eq. (6) is employed, which 
is visible in Fig. 6. The equation is defined as follows: 

𝐻𝑚(𝑘) =

{
 
 

 
 

0                    𝑘 < 𝑓(𝑚 − 1)
𝑘−𝑓(𝑚−1)

𝑓(𝑚)−𝑓(𝑚−1)
        𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)   

𝑓(𝑚+1)−𝑘

𝑓(𝑚+1)−𝑓(𝑚)
       𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1) 

0                                   𝑘 > 𝑓(𝑚 + 1)

                  (7) 

In this case, the letters "M" stand for the total number of 
filters used (26 in Fig. 6), while the letters "f()" stand for a list 
of M+2 Mel-spaced frequencies. The plots of the 26 filters 
cross over, each filter bank having a different pattern. The first 
filter starts at the first point, peaks at the second point, and then 
resets to zero at the third. The continuation of this pattern for 
succeeding filter banks results in an orderly evolution that 
improves the accuracy and thoroughness of our study. 

Overall, a significant step in lowering feature size and 
obtaining spectral envelop extraction is the use of Mel 
frequency filters and triangular bandpass filters. These filters 
work by applying a non-uniform distribution along the Mel 
frequency axis, so more filters are found in the low-frequency 
zone and fewer in the high-frequency region. A filter bank that 
can be utilized for several purposes can be made using this 
process. 

6) The filter's energy logarithm: The logarithm of filter 

energy is a commonly employed technique in audio 

classification, which entails computing the energy of an audio 

signal in particular frequency bands, followed by taking the 

logarithm of those energies. 

This approach generally reduces the dimensionality of the 
feature space by transforming the raw energy values into 
logarithmic values, which are less sensitive to small 
fluctuations in signal amplitude. This is crucial since audio 
signals can exhibit a wide range of amplitudes, and the 
logarithmic transformation helps to normalize energy values 
across different signals. Moreover, the logarithm of filter 
energy can capture both high- and low-energy components of 
a signal, rendering it valuable for classification tasks such as 
music genre classification or speech recognition. The 
technique enables the extraction of pertinent features from an 
audio signal, such as energy distribution across different 
frequency bands, which can differentiate between various 
audio signals. 

Our study uses Eq. (8) to calculate log-energy by adding 
the filtered components from each filter. This process offers 
insightful information about the data. 

𝑆(𝑚) =  log10[∑   |𝑋(𝑘)|2𝑁−1
𝐾=0 . 𝐻𝑚(𝑘)]    0 ≤ 𝑚 ≤ 𝑀 (8) 

We determine the log-energy, denoted as S(m), by taking 
the base-10 logarithm of the spectral magnitude weighted sum 
within the filter bank's channel. Specifically, the sum of the 
squared magnitudes of the discrete Fourier transform (DFT) 
coefficients in each frequency bin is multiplied by the 
corresponding filter weights (Hm(k)). This calculation is 
performed for each filter bank channel, resulting in a log-
energy value for each bin per frame of filter. 

Overall, the logarithm of filter energy is a potent tool in 
audio classification, often combined with other techniques 
such as Mel Frequency Cepstral Coefficients (MFCCs) to 
achieve high classification accuracy. Recent studies have 
shown that combining the logarithm of filter energy with deep 
learning approaches can significantly enhance the 
performance of audio classification systems [39] [40] [41]. 

7) DCT (Discrete Cosine Transform): A widely used 

mathematical technique for evaluating and processing various 

sorts of signals, including audio signals, is the discrete cosine 

transform (DCT). In the realm of audio classification, the DCT 

is frequently utilized to alter an audio signal from the time 

domain to the frequency domain, thereby making it possible 

to efficiently analyze and extract essential features. 

The DCT mainly breaks down a signal into a collection of 
cosine functions of differing frequencies, with each function 
having its own amplitude. The output frequency coefficients 
represent the contribution of each frequency component to the 
original signal. These coefficients can then be deployed as 
features for audio classification. 

Several variations of DCT are available, with DCT Type II 
being the most commonly used version, often referred to as the 
"standard" DCT. This version is employed in the widely 
popular audio compression format, MP3. So we can say that 
DCT is an immensely powerful tool for audio analysis and 
classification. By capturing vital frequency information that is 
not immediately evident in the time domain, the DCT greatly 
enhances the accuracy and efficiency of audio classification 
[42] [43]. 

We applied the Discrete Cosine Transform (DCT) to 
transform the Mel frequency domain, which characterizes the 
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logarithmic power spectrum of an audio signal, back into the 
time domain [44]. This crucial step yields Mel Cepstral 
Coefficients as the output. The Mel Frequency Cepstral 
Coefficient (MFCC) was the final preprocessing step, as 
described in a paper [45]. The MFCC version produces a more 
condensed image compared to the Mel filterbank. It achieves 
decorrelation of many energies from the prior energy band 
using the DCT, a compression method utilized for audio and 
image files. By converting higher frequencies to lower 
frequencies, the DCT principle compresses audio and image 
data, allowing different sounds to have distinct visual 
representations. This completes the data preprocessing stage. 

IV. DATASET OVERVIEW 

Our final objective was to increase our model's accuracy, 
even when it was trained on a modestly sized dataset. This was 
accomplished using a portion of the Freesound Dataset Kaggle 
2018 (“FSD Kaggle 2018”) dataset, a considerably larger 
dataset than the one we utilized. The total dataset is many 
gigabytes in size and consists of forty-two audio classes. More 
information about the dataset can be found at [46] [47]. 

We also experimented with a seemingly more extensive 
dataset compared to FSD, namely ESC-50, having a sample 
rate of 44100 KHz and a substantial size of approximately 2 
gigabytes. This dataset encompasses 50 distinct classes and 
comprises a total of 2000 audio files. To further amplify its 
scale, we applied augmentation techniques.  

Upon our rigorous customization of the dataset, we have 
taken the initiative to share it on Kaggle, ensuring it serves as 
a substantial resource for future researchers. The concise FSD-
Kaggle dataset as well as the CSV file can be found at 
https://www.kaggle.com/datasets/jewelmd/subset-of-fsd-
kaggle-2018, while the augmented variant is available at this 
link: https://www.kaggle.com/datasets/jewelmd/augmented-
esc-50-441-khz. 

Through a combination of careful dataset selection and 
model construction, we were able to achieve our target of 
higher accuracy, even with a limited dataset. Our results 
demonstrate the effectiveness of our approach, as well as the 
importance of careful dataset selection and model construction 
in achieving accurate and reliable results. 

A. Contents of Our Dataset 

From the Kaggle competition, we have specifically chosen 
ten diverse classes pertaining to musical instruments where we 
have 300 audio files (30 audio files per class). We will also be 
working with a CSV file that will help us associate the audio 
files' obscure names with the respective musical instrument 
classes. The ten instrument classes we are working with are 
‘Acoustic_guitar’, ‘Bass_drum’, ‘Cello’, ‘Clarinet’, 
‘Double_bass’, ‘Flute’, ‘Hi-hat’, ‘Saxophone’, ‘Snare_drum’, 
and ‘Violin_or_fiddle’. We will employ advanced analytical 
techniques to classify these instruments based on the data we 
have gathered. 

The ESC-50 dataset initially comprised 50 distinct classes, 
40 files per class, total (40 x 50) 2000 audio files. Through 
augmentation, the dataset underwent a sixfold expansion, 
yielding a total of 12000 audio files. Detailed explanations of 
this augmentation process are provided in the dedicated 
Section IV on data augmentation. 

B. Employing Data Augmentation Techniques 

In our endeavors with the ESC-50 dataset, we diligently 
applied data augmentation methods. Given our focus on audio 
data, we navigated through a plethora of techniques tailored 
specifically for enhancing this type of information. Audio data 
augmentation has emerged as a pivotal practice within the 
domain of machine learning, particularly in tasks pertaining to 
audio processing. This practice involves artificially 
amplifying the diversity of a dataset by subjecting original 
audio samples to an array of transformations. The overarching 
objective is to equip machine learning models with the 
capacity to adeptly handle a wider range of real-world 
scenarios. Notably, recent years have seen the advent of 
seminal research papers [48][49][50] that have propelled 
advancements in this domain. Below, we outline the detailed 
steps taken to implement data augmentation on the ESC-50 
dataset in Fig. 7. 

1) Initialization and directory definitions: In the 

initialization phase, necessary packages were imported. 

Following this, paths for both the original and augmented 

dataset directories were established. Then this module verifies 

if the augmented dataset directory already exists; if not, it 

creates it. This step ensures the availability of essential 

directories for seamless data processing. 

 

Fig. 7. Data augmentation steps. 

https://www.kaggle.com/datasets/jewelmd/subset-of-fsd-kaggle-2018
https://www.kaggle.com/datasets/jewelmd/subset-of-fsd-kaggle-2018
https://www.kaggle.com/datasets/jewelmd/augmented-esc-50-441-khz
https://www.kaggle.com/datasets/jewelmd/augmented-esc-50-441-khz
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2) List audio files: This step involves obtaining a list of 

audio files from the designated original dataset directory. 

Parameter definitions 

In this step, key parameters for data augmentation are 
established. These include pitch shift steps, time stretch factors, 
and noise levels, which are essential for modifying the audio 
data. 

Below are the parameters we applied to the audio files, 
visible in Table I. 

TABLE I. AUGMENTATION TYPES AND FACTORS 

Augmentation type 1st factor 2nd factor 

Pitch shift step -2 2 

Time stretch factor 0.8 1.2 

Noise level 0.001 0.01 

3) Iteration over audio files: This step involves a loop that 

iterates through each audio file in the list. For each file, it 

performs two tasks: extracts the class label from the file name 

and loads the audio file. 

4) Data augmentation: In the data augmentation phase, an 

empty list named augmented_audios is initialized to store 

modified versions of the audio. Pitch shifting is applied for each 

specified pitch shift step, and the augmented audio is appended 

to the list. Similarly, time stretching is implemented for 

designated factors, and the altered audio is added to 

augmented_audios. Additionally, background noise is 

introduced by generating random noise and combining it with 

the audio. This augmented audio is then included in the 

augmented_audios list, completing the data augmentation 

process. 

5) Saving augmented files: In this step, each augmented 

audio file from the list augmented_audios undergoes a two-part 

process: first, a unique file name is generated, and then the 

augmented audio is saved to the designated augmented dataset 

directory. This ensures that the augmented versions are 

properly stored for future use. 

We derived six additional files from a single audio 
recording. Initially, the ESC-50 dataset comprised 2000 audio 
files. After implementing data augmentation, this number 
multiplied to 12000 (2000 x 6). This expansion is due to the 
application of three distinct types of data augmentation, each 
with two contributing factors, resulting in a sixfold increase in 
dataset size. 

a) CSV file generation: With the dataset update resulting 

in a total of 12000 audio files, it became imperative to also 

update our CSV file for training purposes. To accomplish this, 

we developed a script that generated a new CSV file containing 

all the newly created file names and their respective categories. 

To implement the proposed approach for audio data 
classification, it is necessary to set up a folder (named 
'wavfiles') to store all the raw audio files and a corresponding 
CSV file is required too. This CSV file should consist of at least 
two columns: one labeled 'filename' containing the names of the 

audio files, and the other labeled 'category' representing their 
respective classes. 

For instance, if we have an audio file named 
'Audio_file_001', it would be associated with the class 'Flute'. 
While the CSV file may contain additional columns like 'take' 
or 'length', our primary focus will be on these two columns. 

V. DATASET PRE-PROCESSING AND CLEANING 

Our whole model, including the pre-processing phases, was 
conducted within a Python environment (version 3.7) before 
beginning the analysis. We carefully incorporated crucial 
libraries like "Python speech features," "Tqdm," "Librosa," and 
other necessary packages to enable a seamless analysis, 
establishing a solid platform for a thorough study of the data. 

We carried out a thorough analysis of the distribution of all 
classes in our audio dataset (Fig. 8), which revealed a 
significant amount of dead space in the audio files. Eliminating 
these duplicate sections will greatly improve the quality and 
effectiveness of our study, producing more reliable and 
significant outcomes. 

To prepare an audio dataset for classification, it is needed to 
remove any dead spots, i.e., the silent parts in the files. This 
process, known as cleaning, ensures that the data is of high 
quality and is free of any unnecessary noise. As depicted in Fig. 
9, after cleaning the dataset and storing it in a separate directory, 
the distribution of classes has undergone a transformation, 
indicating the effectiveness of this approach in enhancing the 
quality of the data. We performed this cleaning process on all 
of our datasets, including FSD, ESC-50, and Augmented ESC-
50. However, in the Figure, only FSD-Kaggle is depicted. 

A. Plotting and Cleaning 

The first step in the procedure was to create a directory 
called "Clean" that would be used to store the cleaned audio 
recordings. We also initialized four dictionaries that were 
crucial to the task at hand: signals, FFT, Filter bank, and 
MFCCs. We chose to use 26 filters, 512 FFT, and a signal rate 
of 16000 for each dictionary. Additionally, with a 25 ms 
window size, we used the short-term Fourier transformation as 
well as an 1103 sample per second sampling frequency. The 
ideal number for our needs was 13, hence the MFCCs were 
programmed to have 13 Cepstral Coefficients. For both 
versions of the ESC-50 dataset, we employed a signal rate of 
44100, as the data versions we utilized were formatted at this 
rate. 

 

Fig. 8. Before cleaning. 
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Fig. 9. After cleaning. 

1) Removing dead spots: To optimize the quality of the 

audio signal, we executed a series of steps to prepare our data 

for effective training. The specific procedures are outlined in 

Table II. 

The process aims to enhance audio data quality for analysis. 
It begins by smoothing amplitude representation with an 
envelope calculation. Sample rates are adjusted for 
compatibility (44100 Hz for ESC-50, 16000 Hz for FSD). A 
mask generated from the envelope function refines the signal, 
followed by filtering for data accuracy. Processed audio files 
are stored in a dedicated "clean" directory for organized 
analysis. 

TABLE II. STEPS TAKEN FOR REMOVING DEAD SPOTS FROM AUDIO FILES 

Steps Description 

1. Calculate Envelope Utilized a window size of 0.1s and a frequency of 1 period/minute to obtain a smooth amplitude representation. 

2. Up/Down-Sampling Adjusted the sample rate to 16000 Hz (for FSD), 44100 Hz (for ESC-50) for compatibility and signal refinement. 

3. Generate Mask Utilized the envelope function to create a mask and applied it at a 0.005 rate after adjusting the sample rate. 

4. Apply Filter Successfully removed redundant or erroneous data using a filter. 

5. Create "clean" Directory Established a directory named "clean" to store processed audio files. 

For greater clarity, a specific example of the 'Flute' is 
presented, illustrating its appearance before being cleaned, 
which exhibited several dead spots. Following the removal of 
these dead spots from the audio file, a visual representation of 
the cleaned Flute can be observed in Fig. 10 and Fig. 11 as it is 
evident that there are a lot of dead spots. 

 

Fig. 10. Before removing dead space. 

 

 

Fig. 11. After removing dead space. 

B. Exploratory Data Analysis (EDA) 

As part of the preprocessing phase, we created an 'eda.py' 
file with the following functionalities: 

This script is designed to conduct a comprehensive analysis 
of the audio dataset. It encompasses tasks such as feature 
extraction, generating visualizations, and potentially deriving 
insights into the characteristics of the audio files. The 
visualizations produced by this script serve as valuable aids for 
informing further analysis or gaining a deeper understanding of 
the dataset before proceeding with more advanced tasks like 
machine learning or signal processing. 

To begin, we imported required libraries including os, tqdm, 
pandas, numpy, and matplotlib. Following that, we established 
several plotting functions to facilitate visual representation and 
analysis. 

Plotting Functions: 

1) Plot_signals(signals): This function takes a dictionary 

of time series signals and plots them in a 2x5 grid, showing the 

waveforms of different audio samples, visible in Figure 12. 

2) Plot_fft(fft): This function takes a dictionary of Fourier 

Transforms and plots them in a 2x5 grid, displaying the 

frequency domain representation of different audio samples, 

visible in Fig. 13. 
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Fig. 12. Time series plot for clean data. 

 

Fig. 13. FFT plot of clean data. 

3) Plot_fbank(fbank): This function takes a dictionary of 

Filter Bank Coefficients and displays them in a 2x5 grid as 

images, showing the distribution of frequency components, 

visible in Fig. 14.

 

Fig. 14. Filter Bank plot of clean data. 

4) Plot_mfccs(mfccs): This function takes a dictionary of 

Mel Frequency Cepstrum Coefficients and displays them in a 

2x5 grid as images, representing the features of audio signals, 

visible in Fig. 15. 

 

Fig. 15. MFCCs plot of clean data. 

We applied these procedures to all three datasets: FSD-
Kaggle, ESC-50, and Augmented ESC-50. However, in this 
demonstration, we are specifically showcasing the plotting for 
the FSD-Kaggle dataset. 

Then we read the CSV file and created a DataFrame (df) to 
store the data. We also set the index of the DataFrame, which is 
likely a unique identifier for each audio file. 
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In the next stage to process the audio files, this script reads 
the WAV file located in the wavfiles/ directory and computes 
the sample rate and the signal. It then calculates the length of 
the audio file in seconds and stores it in the DataFrame under 
the column 'length'.  

So, this script (eda.py) is designed to read and process a 
dataset of audio files, extracting features like signal length, and 
generating visualizations to help analyze the audio data. It 
leverages libraries like Pandas, NumPy, Matplotlib, and others 
for efficient data handling and visualization 

VI. MODEL BUILDING 

A. Model Preparation 

To enhance our model, we focused on managing class 
distribution and balance during training. With a specially 
designed function, we generated the input (X) and target (Y) 
matrices, randomly sampling one-second audio chunks, 

utilizing only a tenth of a second per sample. This data 
transformation enabled accurate prediction of the target 
variable Y, significantly improving our analysis. 

We also paid close attention to the model's properties, 
including its sampling rate, window length, step size, and N 
FFT value. By taking a meticulous approach to model 
preparation, we were able to optimize our neural network's 
performance and accuracy. The procedures for building this 
model were completed by following Seth Adams' guidelines on 
audio classification [51]. So, we developed a separate script 
named 'cfg.py' to handle configuration settings. These settings 
are particularly pertinent to the processing of audio data. Within 
this script, we constructed a class named 'Config' with the 
specific purpose of managing these parameters. The 'Config' 
class not only provides predefined values for certain parameters 
but also allows for tailored adjustments when an instance of the 
class is created. The outlined configurations are detailed below 
in Table III: 

TABLE III. NAME AND VALUE OF THE PARAMETER 

Parameter Property Default Value (customizable) 

mode A string, indicating the mode 'conv' 

nfilt An integer, representing the number of filters 26 

nfeat An integer, specifying the number of features 13 

nfft An integer, representing the size of the Fast Fourier Transform (FFT) 512 

rate An integer, denoting the sample rate 16000 

Due to their customizable nature, we fine-tuned these values 
to align with our specific needs. For instance, we configured the 
mode to 'time' when training our model on RNN and adjusted 
the rate to 44100 Hz for the ESC-50 dataset. We also defined 
the step size here which is one-tenth of the sample rate. We used 
it for processing audio data. 

B. Convolutional Neural Network (CNN) Model 

Audio classification can employ both 1D and 2D 
Convolutional Neural Networks, based on the input's data 
representation type. When the audio's time and frequency 
domains need to be analyzed, a 2D CNN is more appropriate. 
A 2D CNN was used for both ethnicity recognition and gender 
classification tasks in [52] but the feature maps extracted from 
the input images were combined and encoded into a 1D vector 
to facilitate classification. For tasks that involve the temporal 
structure of the audio, a 1D CNN is more suitable. Ultimately, 
the selection of the CNN architecture should be based on the 
audio data's specific characteristics and the classification task 
requirements. 

During this phase of our project, we have successfully 
constructed several Convolutional Neural Network (CNN) 
models. The first step in building this model involved decoding 
the hot encoded Y matrix and converting it back to its original 

class form. We utilized the powerful Numpy Argmax function 
to accomplish this, which allowed us to map the encoded data 
back to its original column with ease. 

The next step involved specifying the input shape for the 
convolutional layer, a critical aspect in ensuring the model's 
efficacy in detecting underlying data features. Key parameters, 
such as batch size, epochs, shuffling (enabled), class weighting 
(utilized Scikit-learn), and the reserved test data proportion, 
were defined. Following this, a sequence of convolutional and 
pooling layers was implemented to compress and stack the data 
over time, effectively reducing the dimensionality of high-
dimensional input spaces. This process enabled the construction 
of a CNN architecture adept at capturing significant data 
features. The specific architecture of CNN models is given 
below in Table IV. 

The ESC-50 CNN model consists of 10 layers, including 
Conv2D layers with varying filter numbers (16, 32, 64, 128) 
and 3x3 kernels with ReLU activation. It also features 
MaxPooling, Dropout (0.5), Flatten, and Dense layers with 128 
and 64 units, each followed by ReLU activation. The output 
layer has 50 units with Softmax activation. The model utilizes 
the Adam optimizer and employs Categorical Crossentropy as 
the loss function. 
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TABLE IV. SEQUENTIAL CNN ARCHITECTURE 

ESC-50 – CNN model Augmented ESC-50 – CNN model 

Number of Layers: 10 Number of Layers: 15 

Layer Types and Details:  

   - Conv2D (16 filters), (3x3), ReLU  

   - Conv2D (32 filters), (3x3), ReLU  

   - Conv2D (64 filters), (3x3), ReLU  
   - Conv2D (128 filters), (3x3), ReLU  

   - MaxPool2D 

   - Dropout (0.5)  
   - Flatten  

   - Dense (128 units), ReLU  

   - Dense (64 units), ReLU  
   - Output Dense (50 units), Softmax 

Layer Types and Details:  

   - Conv2D (128 filters), (3x3), ReLU  

   - Batch Normalization  

   - MaxPool2D  
   - Conv2D (256 filters), (3x3), ReLU  

   - Batch Normalization  

   - MaxPool2D  
   - Conv2D (512 filters), (3x3), ReLU  

   - Batch Normalization  

   - MaxPool2D  
   - Flatten  

   - Dense (1024 units), ReLU  

   - Dropout (0.5)  
   - Dense (512 units), ReLU  

   - Dropout (0.5)  

   - Output Dense (50 units), Softmax   

Optimizer: Adam Optimizer: Adam (Learning Rate: 1e-3) 

Loss Function: Categorical Crossentropy Loss Function: Categorical Crossentropy 

 Additional Techniques: 

- Learning Rate Scheduling 

- Early Stopping 

The Augmented ESC-50 CNN model has 15 layers, 
featuring Conv2D layers with varying filters, Batch 
Normalization, MaxPooling, Flatten, Dense layers, and 
Dropout for regularization. The output layer has 50 units with 
Softmax activation. The model uses the Adam optimizer (LR: 
1e-3) and Categorical Crossentropy as the loss function. 
Additional techniques include Learning Rate Scheduling and 
Early Stopping. 

Here are two CNN models designed for the ESC-50 and 
augmented ESC-50 datasets. The model used for the FSD-
Kaggle dataset (with 10 classes) mirrors that of ESC-50, with 
the only difference being the last dense layer which has 10 
units. We implemented various supplementary techniques as 
outlined below. 

1) Learning rate scheduling: Learning Rate Scheduling 

dynamically adjusts the learning rate during training. We 

implemented a custom schedule using a function, 

lr_schedule(epoch), which scales the rate based on epoch 

thresholds (e.g., 10, 20, 30, 40). 

2) Early stopping: Early Stopping prevents overfitting by 

monitoring validation loss and stopping training after a set 

number of epochs with no improvement (patience=10). Using 

restore_best_weights = True ensures the model retains the best 

state. 

3) Batch normalization: Batch Normalization stabilizes 

training, speeds up convergence, and reduces overfitting by 

normalizing activations within each layer. This leads to better 

generalization and enables the use of higher learning rates, 

ultimately enhancing the model's performance. 

C. RNN (Recurrent Neural Network) Model 

In our ongoing efforts to optimize machine learning 
algorithms, we developed RNN models to complement our 
existing CNN architecture. Unlike CNNs, RNNs employ 
LSTM (Long Short-Term Memory) units, which excel in 
processing sequential data due to their long-term memory 
capabilities. Our RNN model demonstrated exceptional 
proficiency in learning from such data. Our rigorous training 
and testing procedures guaranteed that the model would exhibit 
accuracy and adaptability to new datasets. More detailed 
descriptions of our RNN model can be found in the Table V: 

The FSD-Kaggle RNN model (10 classes) comprises nine 
layers, including two LSTM layers with 128 units each. It 
incorporates a Dropout layer (rate: 0.5) for regularization, 
followed by TimeDistributed Dense layers with varying units 
(64, 32, 16, and 8) and ReLU activation. The model concludes 
with a Flatten layer and a Dense layer (10 units, softmax 
activation), tailored for multi-class classification. It is 
optimized using Adam with Categorical Crossentropy loss, 
suiting the classification task's requirements. 

The RNN model for ESC-50 and Augmented ESC-50 
datasets consists of 13 layers. It includes LSTM units, Batch 
Normalization, and Dropout layers. TimeDistributed Dense 
layers with ReLU activation are utilized, followed by Flatten 
and a final Dense layer for multi-class classification. The model 
uses Adam optimizer (LR: 0.001) and employs Categorical 
Crossentropy as the loss function. Additional techniques like 
Learning Rate Scheduling and Early Stopping are implemented 
for improved training performance and prevention of 
overfitting. 
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TABLE V. SEQUENTIAL RNN ARCHITECTURE 

FSD-Kaggle(10 classes) – RNN model ESC-50 & Augmented ESC-50 – RNN model 

Number of Layers: 9 Number of Layers: 13 

Layer Types and Details:  

- LSTM (128 units), return_sequences=True,     input_shape=input_shape 

 - LSTM (128 units), return_sequences=True 

 - Dropout (0.5) 

 - TimeDistributed(Dense(64, activation='relu')) 

 - TimeDistributed(Dense(32, activation='relu')) 

 - TimeDistributed(Dense(16, activation='relu')) 

 - TimeDistributed(Dense(8, activation='relu')) 

 - Flatten 

 - Dense (10 units, softmax) 

Layer Types and Details:  

- LSTM (256 units), return_sequences=True, input_shape=input_shape 

 - Batch Normalization 

 - Dropout (0.3)  or [0.2 for augmented] 

 - LSTM (256 units), return_sequences=True 

 - Batch Normalization 

 - Dropout (0.3) 

 - TimeDistributed(Dense(128, activation='relu')) 

 - Batch Normalization 

 - TimeDistributed(Dense(64, activation='relu')) 

 - Batch Normalization 

 - TimeDistributed(Dense(32, activation='relu')) 

 - Flatten 

 - Dense (50 units, softmax) 

Optimizer: Adam   Optimizer: Adam (Learning Rate: 0.001) 

Loss Function: Categorical Crossentropy Loss Function: Categorical Crossentropy 

 Additional Techniques: 

- Learning Rate Scheduling 

- Early Stopping 

ESC-50 and augmented ESC-50 models were similar, with 
dropout rates of 0.3 and 0.2 respectively. Additional techniques 
were applied with adjusted rates compared to the CNN model. 
Here, Learning Rate Scheduling is implemented with an initial 
constant rate for the first 10 epochs, followed by an exponential 
decrease. Early Stopping is employed to halt training if no 
improvement is detected over six consecutive epochs. 

D. Comparison of ModeTraining Parameters 

For all models, the class weight is consistently set to 
'Balanced'. Monitors are configured as 'val_acc' and 
'val_accuracy' in 'max' mode, while both 'save_best_only' and 
'save_weights_only' are uniformly set to 'True'. The main 
distinguishing factors emerge in the number of epochs, the 
allocation for validation split, and the incorporation of class 
weights alongside a learning rate scheduler, visible in Table VI. 

TABLE VI. COMPARISON OF TRAINING CONFIGURATIONS 

Parameter FSD-Kaggle ESC-50 Augmented ESC-50 

CNN RNN CNN RNN CNN RNN 

Period 1 1 1 1 1 1 

Batch Size 32 32 32 32 32 32 

Shuffle True True True True True True 

Validation Split 0.1 0.1 0.2 0.2 0.2 0.2 

Epochs 15 15 100 30 50 30 

Learning Rate Scheduler No No No Yes Yes Yes 

Early Stopping No No No Yes Yes Yes 

Total Files 300 2000 12000 

VII. ANALYSES OF RESULTS 

Within this section, we will assess the performance of 
multiple deep learning models, including Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN). The 
CNN models harnessed convolutional and pooling layers to 
effectively capture underlying data features, resulting in 

impressive accuracy rates within relatively short training 
periods. On the other hand, RNN models, employing LSTM 
units for sequential data processing, required more time to train 
due to their computational complexity. After training across 
various epochs for each respective model, we achieved good 
accuracy levels. A comparative table (Table VII) detailing the 
performance of these diverse models is provided below. 

TABLE VII. COMPARATIVE TABLE DETAILING THE PERFORMANCE OF THESE DIVERSE MODELS 

Model Architecture Accuracy (%) Loss (%) 

Train Test Train Test 

FSD-Kaggle 

(small dataset) 

CNN 96.26 96.52 10.03 9.99 

RNN 87.84 87.88 33.60 34.55 

ESC-50 CNN 86.33 88.47 45.02 40.86 

RNN 92.86 92.89 22.70 27.38 

Augmented ESC-50 CNN 71.25 76.20 104.41 84.84 

RNN 77.29 79.18 80.90 73.23 
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In our study, we observe that for smaller datasets, CNNs 
outperform RNNs. As dataset size increases, RNNs prove 
superior in learning underlying features. CNNs efficiently 
capture important data features but may struggle with 
sequential data. Conversely, RNNs, with LSTM units, excel in 
processing sequences, but at a higher computational cost and 
time investment compared to CNNs. 

We also observed a performance decrease after applying 
data augmentation, possibly due to factors like over-
augmentation and model sensitivity. Fine-tuning augmentation 
parameters and exploring alternative techniques may mitigate 
this. Future research could delve into optimizing augmentation 
strategies and model configurations for improved performance. 
In addition, the augmented RNN's accuracy of 79.18% implies 
a potential for increased robustness in real-world scenarios, 
given its training on a dataset comprising 12,000 audio files. 

A. Result Visualization and Analysis 

This step involves visualizing the model's performance 
metrics, such as accuracy and loss, over the training process. 
By plotting these metrics, it provides a clear overview of how 
well the model is learning from the data. These visualizations 
help in understanding the effectiveness and progress of the 
training process. 

1) FSD-kaggle dataset: A peek at the accuracy and loss 

curves reveals good convergence for both CNN and RNN 

models after running for 15 epochs. So, we got higher accuracy 

and lower loss (given in Table VII). We achieved around 

96.52% and 87.88% accuracy during testing on the FSD-

Kaggle dataset for CNN and RNN models respectively. On the 

other hand, we had a very lower loss too for both architectures. 

However, on the FSD-Kaggle dataset, the performance of CNN 

model was better than RNN model during training and testing 

on dataset. The visualizations are shown in Figures 16 through 

19. 

2) ESC-50 dataset: After running 100 epochs for the ESC-

50 dataset on the CNN model and 50 epochs on the RNN model, 

we got 88.47% and 92.89% accuracy on a testing dataset of the 

CNN and RNN model respectively (given in Table VII). So, 

here the RNN model outperforms the CNN model. We can see 

from the graphs that there is a bit of instability at the initial 

phase of training for the ESC-50 RNN model but after running 

for 25 epochs it seems to be stable. The visualizations are 

shown in Fig. 20 through Fig. 23. 

 

Fig. 16. Accuracy vs. epoch for FSD-Kaggle CNN model. 

 

Fig. 17. Loss vs. epoch for FSD-Kaggle CNN model. 

 

Fig. 18. Accuracy vs. epoch for FSD-Kaggle RNN model. 

 

Fig. 19. Loss vs. epoch for FSD-Kaggle RNN model. 

 

Fig. 20. Accuracy vs. epoch for ESC-50 CNN model. 

 

Fig. 21. Loss vs. epoch for ESC-50 CNN model. 
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Fig. 22. Accuracy vs. epoch for ESC-50 RNN model. 

 

Fig. 23. Loss vs. epoch for ESC-50 RNN model. 

3) Augmented ESC-50 dataset: From the accuracy and loss 

curves of CNN and RNN models on the Augmented ESC-50 

dataset, it is clear that the RNN model achieved more accuracy 

and lower loss during training. We ran around 50 epochs for 

both of the models and got around 76% and 79% accuracy on 

testing for CNN and RNN models respectively (given in Table 

VII). During training, the RNN model took a bit longer time 

since there were LSTM layers. Probably the reason lies in the 

fact that LSTM cells can store more information over extended 

time periods. From the substantial amount of loss, it can be said 

that the model had difficulties adapting to the augmented 

features generated by the augmented dataset. This also suggests 

that RNN outperforms CNN on new data. The visualizations 

are shown in Fig. 24 through Fig. 27. 

 

Fig. 24. Accuracy vs epoch for augmented ESC-50 CNN model. 

 

Fig. 25. Loss vs epoch for augmented ESC-50 CNN model. 

 

Fig. 26. Accuracy vs. epoch for augmented ESC-50 RNN model. 

 

Fig. 27. Loss vs. epoch for augmented ESC-50 RNN model. 

So, using different datasets, and testing various models 
based on CNN and RNN architectures, we have come to a 
conclusion where we can say that both CNN and RNN models 
can classify audio but the measurement of accuracy and the 
convergence of the graph curves depend on numerous factors 
including the complexity of the dataset and the ability of the 
model to extract several underlying features. We have also seen 
that for larger datasets RNN model outperformed the CNN 
model. 

VIII. CONCLUSIONS 

This study delves into audio classification using CNN and 
RNN-LSTM models, exploring their performance across 
different dataset sizes. We found that CNNs excel with smaller 
datasets, efficiently capturing key features, while RNN-LSTM 
models better perform with larger datasets, revealing intricate 
underlying patterns. The impact of data augmentation was also 
examined, revealing a nuanced balance between augmentation 
and performance. While augmented models showed improved 
robustness, some experienced a minor accuracy reduction, 
highlighting the need for parameter fine-tuning. Our research 
contributes valuable insights for optimizing audio 
classification, paving the way for applications in diverse real-
world scenarios. Future studies can build upon these findings to 
further refine these models' capabilities. 
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