
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

37 | P a g e

www.ijacsa.thesai.org

Enhancing Audio Classification Through MFCC

Feature Extraction and Data Augmentation with CNN

and RNN Models

Karim Mohammed Rezaul1, Md. Jewel2, Md Shabiul Islam3, Kazy Noor e Alam Siddiquee4, Nick Barua5, Muhammad

Azizur Rahman6, Mohammad Shan-A-Khuda7, Rejwan Bin Sulaiman8, Md Sadeque Imam Shaikh9, Md Abrar

Hamim10, F.M Tanmoy11, Afraz Ul Haque12, Musarrat Saberin Nipun13, Navid Dorudian14, Amer Kareem15, Ahmmed

Khondokar Farid16, Asma Mubarak17, Tajnuva Jannat18, Umme Fatema Tuj Asha19

Wrexham University, UK1

Centre for Applied Research in Software & IT (CARSIT), UK2, 10, 11, 12, 18, 19

Multimedia University, Malaysia3

State University of Bangladesh4

Kobe Institute of Computing, Japan5

Cardiff Metropolitan University, UK6

Leeds Beckett University, Uk7

Northumbria University London8

Coventry University London9

Brunel University London13

Brunel University London (BPC) 14, 17

University of Bedfordshire, Uk15

Canterbury Christ Church University, Uk16

Abstract—Sound classification is a multifaceted task that

necessitates the gathering and processing of vast quantities of data,

as well as the construction of machine learning models that can

accurately distinguish between various sounds. In our project, we

implemented a novel methodology for classifying both musical

instruments and environmental sounds, utilizing convolutional

and recurrent neural networks. We used the Mel Frequency

Cepstral Coefficient (MFCC) method to extract features from

audio, which emulates the human auditory system and produces

highly distinct features. Knowing how important data processing

is, we implemented distinctive approaches, including a range of

data augmentation and cleaning techniques, to achieve an

optimized solution. The outcomes were noteworthy, as both the

convolutional and recurrent neural network models achieved a

commendable level of accuracy. As machine learning and deep

learning continue to revolutionize image classification, it is high

time to explore the development of adaptable models for audio

classification. Despite the challenges associated with a small

dataset, we successfully crafted our models using convolutional

and recurrent neural networks. Overall, our strategy for sound

classification bears significant implications for diverse domains,

encompassing speech recognition, music production, and

healthcare. We hold the belief that with further research and

progress, our work can pave the way for breakthroughs in audio

data classification and analysis.

Keywords—Deep learning (artificial intelligence); data

augmentation; audio segmentation; signal processing; frame

blocking; fast fourier transform; discrete cosine transform; feature

extraction; MFCC; CNN; RNN

I. INTRODUCTION

Deep learning techniques have enabled the classification of
audio, which has numerous practical applications. This
technology can be used to recommend music, categorize
various musical instruments, recognize music genres, organize
music collections, develop streaming services, differentiate
between male and female speech, distinguish between different
languages or accents, build speech recognition systems, and
analyze audio recordings from surveillance equipment to detect
sounds indicating a threat or emergency. Consequently, deep
learning-based audio classification has become an essential tool
that can be employed in diverse contexts to analyze and classify
audio data.

Lately, there has been a notable surge in the utilization of
Digital Signal Processing (DSP) for musical instrument
processing and speech analysis. In addition, there is an
increasing demand for online access to music data on the
internet, and this has led to a rise in computational tools for
development such as summarization, analysis, classification,
and indexing. Music Information Retrieval (MIR) provides
solutions for music-related tasks, including the subtask of
sound classification of musical instruments, which involves
identifying different musical instruments [1]. MIR is also used
for a variety of applications, including beat tracking, beat
recognition and separation, automatic music transcription, and
polyphonic audio processing [2].

Instrumental music frequently contains insightful
information regarding current events. Although automatic
sound processing is thought to be the state of the art, robots are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

38 | P a g e

www.ijacsa.thesai.org

still far behind humans in their ability to perceive and
distinguish between wide varieties of sound events. More
research is needed today to create a dependable system that can
accurately identify a wide spectrum of audio, including
different musical instruments [3].

Generally speaking, there are three sub-categories of audio
classification tasks: music classification, acoustic scene
classification, and speech recognition (acoustic model). Each of
these activities includes various signal qualities, which causes
changes in the audio data input aspects. Recent significant deep
learning breakthroughs have made it possible to build a single
audio or musical instrument model that is adaptable enough to
handle diverse cross-domain tasks. The potential of a CRNN
(Convolutional Recurrent Neural Network) model was
harnessed by Adavanne et al. [4] for the detection of sound
events, the classification of auditory birds [5], and the
recognition of musical emotion [6]. The selection of parameters
for representing time-frequency as input has a substantial
impact on the efficacy of audio classification models for
various tasks, according to recent breakthroughs in the field.
Unfortunately, a large number of existing models use non-
optimal filter bank size and type, time-frequency magnitude
compression, and resolution. Particularly concerning the choice
of 2D or 1D convolutional layers and the shape of the filter,
these decisions have a significant impact on the model's
architecture [7]. Waveform-based models, which directly
handle unaltered input signals, offer an inventive way to get

around these problems. Regarding the aforementioned
problems, this strategy has promise. Notably, Schrauwen and
Dieleman [8] recently showed the effectiveness of CNN models
using raw waveforms as input for automatically tagging music,
opening up new potential for enhancing audio categorization
performance. This approach helps overcome the limitations of
traditional audio classification methods by allowing the model
to learn directly from the raw audio signals. Consequently,
waveform-based models have the potential to significantly
improve the accuracy and efficiency of audio classification in a
wide range of applications.

Most of the previous research in music information retrieval
(MIR) has focused on monophonic music [9], while this
approach predominantly utilizes monophonic data for
instrument classification. For speech identification, Sainath et
al. [10] employed a convolutional long short-term memory
deep neural network (CLDNN), whereas Dai et al. [11] used a
deep convolutional neural network (DCNN) with residual
connections to identify environmental sounds. The majority of
the investigations employed frame-level filters with carefully
designed first convolutional layers made up of extensive
samples.

The method for extracting musical instrument features and
categorizing instrumental audio in our study is based on these
attributes. Fig. 1 shows the block diagram describing the
procedure in detail for this operation.

Fig. 1. Basics of audio tagging and feature extraction.

We arranged this paper as follows, in Section I, the
introduction is given, in Section II, the related work is
explained, in Section III, the feature extraction techniques are
described, in Section IV, the dataset is explored, in Section V,
the pre-processing steps are discussed, in Section VI, the
model is built and explained, in Section VII, a comprehensive
analyses of the results are conducted, and in Section VIII,
conclusion is drawn.

II. RELATED WORK

The classification of musical instruments is a topic that is
actively being researched, and many approaches have been
suggested by scholars and it is clear from the literature study
that more research is still needed in this area to get the best
results with greater precision, especially when working with
tiny datasets.

Meinard Müller, Daniel P. W. Ellis, Anssi Klapuri, and Gal
Richard examined numerous signal processing techniques to
categorize musical instruments in a notable work [12]. With a
focus on musical signal processing, this article provides a
thorough overview of numerous research fields. Among the
methods investigated, the use of MFCCs (Mel Frequency
Cepstral Coefficients) in the classification of musical
instruments attracts a lot of interest and debate.

In a noteworthy study, Jadhav, P. S. [13] proposed a unique
method for identifying musical instruments by fusing MFCCs
with Timbral Associated Descriptors of Audio. They used a
binary tree, SVM (Support Vector Machine), and k-nearest
neighbor as part of their feature extraction technique. The
research demonstrated an insightful investigation into
improving musical instrument recognition by further
examining and evaluating the identification accuracy attained
through various combinations of classification algorithms and
feature extraction methods.

D. G. Bhalke, C. B. Rama Rao, and D. S. Bormane [1]
pioneered the use of FFT (Fractional Fourier Transform) in
conjunction with MFCCs for categorizing musical instruments
in a different work that has been discussed in the introduction
section. They also used temporal traits like assault time, zero-
crossing rates, decay time, and energy to their advantage to
support their classification strategy. The method for
calculating the zero-crossing rate, Eq. (1), was introduced in
the study, offering important insights into the development of
musical instrument categorization algorithms.

𝑍𝐶𝑅 =
1

𝑇
 ∑ | sgn[x(y)] – sgn[x(y − 1)] | 𝑇−1

0 (1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

39 | P a g e

www.ijacsa.thesai.org

Here, T denotes the sample in each frame, while x(y) and
x(y-1) denote the signals of the yth and (y-1) samples,
respectively.

The Eq. (2) was utilized to compute the energy of the
sound sample.

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ (| m(n) |) 𝑇−1
𝑛=0

2 (2)

The signal of the nth sample is represented by m(n), while
T signifies the number of samples present in one frame.

Essid, S., Richard, G., & David, B. suggested that the
sound samples feature be used for MFCCs [14]. They provided
more information on how using the derivative of MFCCs over
time can be used to exploit the Delta MFCC capabilities. The
SVM technique was used to classify data. Spectral
characteristics such as spectral centroid and spectral breadth
were used. One mapping vs one SVM was used to train the
data. M. Erdal Ozbek, Nalan Ozkurt, and F. Acar Savaci [15]
classified musical instruments using wavelet decomposition
up to the first three stages and wavelet ridges (Fig. 2). By using
this method, three precise coefficients and one estimated
coefficient are extracted, allowing for accurate classification.

Fig. 2. Three Stages of wavelet decomposition.

Herein, the signal frame denoted as S, is calculated as the
sum of the approximate coefficient (A) and the detailed
coefficients (D) at levels 1 to 3, where D1, D2, and D3
correspond to the detailed coefficients at each respective level.

Farbod and Karthikeyan suggested using wavelet-
dependent time scale information to categorize musical
instruments [16]. In order to obtain the required qualities, they
continuously took the wavelet transform signal frame and
extracted features relating to bandwidth and temporal
fluctuation.

A support vector machine (SVM) employing Mel-
Frequency Cepstral Coefficients (MFCC) as feature vectors
was suggested in a prior study for the classification of musical
genres. While melody is crucial for understanding music data,
it is not a suitable feature for classification. Music genres are
strongly correlated with the timbre of music, which
corresponds to the frequency characteristics of sound signals.
Therefore, previous studies commonly use MFCC as feature
vectors for music genre classification [17]. Another study
combines audio and lyrics features to detect music emotions,
using a synchronized dataset of chorus audio and lyrics. The
audio features extracted include dynamics, rhythm, timbre,
pitch, and tonality, while lyric features include
psycholinguistic, stylistic, and statistical features. Weighting
the audio and lyric features using a Naive Bayes probability
value shows that the audio feature is dominant with an 80%
weighting ratio [18].

The application of these diverse feature extraction
techniques is evident in numerous research papers. An article
discusses how cardiovascular diseases are a major cause of
deaths worldwide and identifies the importance of detecting
heart disease at an early stage. The article presents an approach
for classifying heart audio samples using deep learning
techniques and compares the results of various machine
learning algorithms. The approach involves implementing
existing segmentation techniques and feature engineering in
the audio domain. The precision values indicate that the
Hybrid CNN model performed best with a precision of 1 for
artifact, 0.906 for normal, and 0.859 for murmur categories
[19].

Another study shows that Vehicle classification is a crucial
task in managing traffic and road infrastructure, with new
challenges continuously emerging. Through classifier fusion
techniques, the complementary nature of information has
previously been used to enhance classifier performance. This
hasn't been looked at in the context of a multi-modal
categorization system that uses only neural networks. To
increase performance, this study suggests a complementarity-
based multi-modal vehicle categorization system. The system
uses sets of Mel Frequency Cepstral Coefficients (MFCC) as
the feature vectors for the audio modality to perform vehicle
classification with two distinct modalities using Convolutional
Neural Network (CNN) classifiers. At the decision level, the
predictions from the base classifiers are combined to provide
a final prediction, increasing accuracy. The study finds that in
a fully neural network-based multi-modal system, decision-
level fusion is an efficient method for enhancing vehicle
classification accuracy [20].

III. MFCC FEATURE EXTRACTION

Generally, Automated Speech Recognition (ASR) systems
require feature extraction from speech signals that are non-
stationary in nature [21]. Feature extraction becomes difficult
due to speech variability constraints such as differences
between speakers, intonation, and changes in speech
production. A good feature extraction technique should
identify specific linguistic properties and discard irrelevant
information such as background noise and emotion.
Commonly used feature extraction techniques include Mel
Frequency Cepstral Coefficients (MFCC), Linear Predictive
Coefficients (LPC), Perceptual Linear Predictive (PLP)
Coefficients, Discrete Wavelet Transform (DWT), and
Principal Component Analysis (PCA).

Our study aims to demonstrate the process of sound feature
extraction using the MFC technique, which is currently
popular. The vocal tract's shape, including the shape of the
tongue and teeth, filters spoken sounds and defines the sound
made. Accurately determining the shape provides an accurate
phoneme representation, which is reflected in the short-time
power spectrum's envelope. MFCCs precisely represent this
envelope. To classify instrumental music, identifying various
audio signal components and eliminating background noise or
dead space is the initial step.

The use of Mel Frequency Cepstral Coefficients (MFCCs)
for audio feature extraction in various recognition applications
has become commonplace in the present day. Because of their

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

40 | P a g e

www.ijacsa.thesai.org

effective classification accuracy in a clean environment,
MFCCs have been around since Davis and Mermelstein first
introduced them in the 1980s [22]. Fig. 3 shows the steps

involved in the MFCC feature extraction approach, which has
recently gained in popularity [23].

Fig. 3. MFCCs block diagram.

So, to extract features from a signal, it is common to
partition it into short frames, estimate the power spectrum for
each frame using periodogram analysis, apply a mel filterbank
to the power spectra and calculate the energy within each filter,
compute the logarithm of the filterbank energies, apply the
discrete cosine transform (DCT) to the logarithmic energies,
and then keep only the DCT coefficients while discarding the
rest.

Further processing steps may include appending the frame
energy and delta and delta-delta features to the feature vectors,
as well as filtering the final features. Fig. 3 illustrates these
proposed steps.

When implementing feature extraction, MFCCs are often
preferred over other techniques due to their relative simplicity
and robustness across various conditions [24]. MFCCs are
designed to mimic the human auditory system. Steps of
MFCCs (Fig. 3) are described below:

1) Pre-emphasis: To optimize an audio signal for

subsequent processing, it is standard practice to apply a pre-

emphasis filter. The purpose of this filter is to boost the energy

levels of the higher frequencies, thereby emphasizing them in

the overall signal.

Through the use of a first-order infinite impulse response
(FIR) filter, pre-emphasis filtering can be carried out by
conducting spectral flattening [25], [26]. The FIR filter used
in this stage of the process is specifically represented by Eq.
(3).

𝐻(𝑧) = 1 − 𝑎𝑧−1, 0.9 ≤ 𝑎 ≤ 1.0 (3)

By applying this filter, the audio signal's energy
distribution is altered, with the higher frequency components
becoming more prominent. This can help improve the signal-
to-noise ratio and enhance overall signal quality, making it
easier to extract useful information from the audio data.

2) Frame blocking: When analyzing time-varying signals

like audio, it is vital to balance the need for signal accuracy

with the practicalities of signal processing. This is particularly

true when it comes to frame blocking, the process of dividing

a signal into smaller segments, or frames, to facilitate analysis.

If the signal is too long, its properties may be altered, while

too-short frames can compromise the resolution of narrow-

band components. To achieve an optimal balance between

these considerations, audio signals are typically divided into

frames of 20-30 milliseconds, with adjacent frames separated

by M samples (where M<N). M is frequently set to 100, and

N to 256.

For the analysis of time-varying signals whose
characteristics are fixed over short time intervals, framing is
needed. By segmenting the signal into smaller frames, spectral
analysis can be conducted on individual segments, enabling a
more precise analysis of the signal's characteristics.

3) Windowing: After dividing the audio signal into

frames, the next step is to apply a window function to each

frame. The Hamming window, which is provided by the

equation, is a frequent option for this:

 𝑤(𝑛) = 0.54 − 0.46 cos (
2𝜋𝑛

𝑁−1
) (4)

In this case, 'n' varies from 0 to N-1, with 'N' being the
window length, pertaining to audio signals sampled at 16 kHz,
a standard frame length of 25 ms is used, which translates to a
frame length of 400 samples. The frame step is typically set to
10 ms (or 160 samples), which allows for overlapping between
adjacent frames. The first frame starts at sample 0, followed
by the next frame starting at sample 160, and so on until the
end of the signal. In cases where the audio file cannot be
evenly divided into frames, zero padding is used to make up
the difference.

Fredric J. Harris [27] compares the various sorts of
windows that are accessible in detail. Fig. 4 displays the
Hamming window function's resulting plot (with 200
samples).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

41 | P a g e

www.ijacsa.thesai.org

Fig. 4. Hamming window.

4) FFT (Fast Fourier Transform): The Fourier transform

changes a signal's time domain to its frequency domain, can

be used to show a spectrum on a computer screen. A spectrum

essentially depicts the frequency domain manifestation of the

time-domain signal of an audio input [28].

Using mathematics, the discrete Fourier transform (DFT)
converts a constrained sequence of uniformly spaced function
samples into a sequence of equally spaced samples of the
discrete-time Fourier transform (DTFT), which is a complex-
valued function of frequency. The DFT can be written as [29],
which transforms a sequence of N complex numbers into
another sequence of complex numbers.

x̂(k) = ∑ x(n)𝑒−2𝜋𝑖𝑘𝑛/𝑁
𝑁−1

𝑛=0

for k =0,1,…., N – 1 (5)

Since DFT operates on a limited amount of data, it can be
executed on computer devices using numerical algorithms or
specialized hardware [30]. The effective Fast Fourier
Transform (FFT) techniques are frequently used in these tasks.
The terms "FFT" and "DFT" are frequently used
interchangeably. The abbreviation "FFT" may have also been
used to refer to the ambiguous word "Finite Fourier
Transform" before its present use [31] [32].

Since the mathematical procedure known as the Fast
Fourier Transform (FFT) allows for the transfer of signals
from the time domain to the frequency domain, by applying
the FFT to each frame, we can obtain the magnitude frequency
of the signal. Thus, the output of the FFT process results in
either a Periodogram or a Spectrum, as stated in reference [33].
So, this process is critical in signal processing and provides
valuable insights into the characteristics of the signal.

Fig. 5 describes the application of FFT on saxophone
signals, enabling the conversion of frequency information into
a magnitude-based domain.

5) Triangular bandpass filter: A bandpass filter is an

electronic filter that permits only a specific range of

frequencies to pass through while suppressing or obstructing

frequencies outside that range. It is engineered to transmit

signals within a designated bandwidth while impeding signals

that are beyond it. Bandpass filters are frequently employed in

a wide range of applications such as audio processing, medical

equipment, and wireless communication systems [34] [35].

These filters can be constructed using different methods,

including passive RC filters, active filters, and digital filters.

The center frequency, bandwidth, and quality factor are crucial

design parameters that govern the filter's selectivity, gain, and

noise performance.

To obtain a smooth magnitude spectrum for our research,
which significantly shrunk the feature size, we used 20 triangle
bandpass filters. We need to note that Hertz is represented by
f in this context. The linear scale frequency is converted to Mel
scale frequency using Eq. (6), which is defined as,

Mel(f) = 2595 log10 (1 +
𝑓

700
) (6)

Spectral envelop extraction is achieved by utilizing
triangular bandpass filters, as described in reference [36]. Mel
frequency filters are constructed using triangular bandpass
filters that are dispersed unevenly along the Mel frequency
axis. In other words, the low-frequency axis has a higher
density of filters, whereas the high-frequency area has a lower
density of filters. References [37] and [38] are used to support
this, which is shown in Fig. 6 (for 26 filters).

Fig. 5. FFT transformation.

FFT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

42 | P a g e

www.ijacsa.thesai.org

Fig. 6. Filter bank.

In order to create a filter bank, Eq. (6) is employed, which
is visible in Fig. 6. The equation is defined as follows:

𝐻𝑚(𝑘) =

{

0 𝑘 < 𝑓(𝑚 − 1)
𝑘−𝑓(𝑚−1)

𝑓(𝑚)−𝑓(𝑚−1)
 𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

𝑓(𝑚+1)−𝑘

𝑓(𝑚+1)−𝑓(𝑚)
 𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1)

0 𝑘 > 𝑓(𝑚 + 1)

 (7)

In this case, the letters "M" stand for the total number of
filters used (26 in Fig. 6), while the letters "f()" stand for a list
of M+2 Mel-spaced frequencies. The plots of the 26 filters
cross over, each filter bank having a different pattern. The first
filter starts at the first point, peaks at the second point, and then
resets to zero at the third. The continuation of this pattern for
succeeding filter banks results in an orderly evolution that
improves the accuracy and thoroughness of our study.

Overall, a significant step in lowering feature size and
obtaining spectral envelop extraction is the use of Mel
frequency filters and triangular bandpass filters. These filters
work by applying a non-uniform distribution along the Mel
frequency axis, so more filters are found in the low-frequency
zone and fewer in the high-frequency region. A filter bank that
can be utilized for several purposes can be made using this
process.

6) The filter's energy logarithm: The logarithm of filter

energy is a commonly employed technique in audio

classification, which entails computing the energy of an audio

signal in particular frequency bands, followed by taking the

logarithm of those energies.

This approach generally reduces the dimensionality of the
feature space by transforming the raw energy values into
logarithmic values, which are less sensitive to small
fluctuations in signal amplitude. This is crucial since audio
signals can exhibit a wide range of amplitudes, and the
logarithmic transformation helps to normalize energy values
across different signals. Moreover, the logarithm of filter
energy can capture both high- and low-energy components of
a signal, rendering it valuable for classification tasks such as
music genre classification or speech recognition. The
technique enables the extraction of pertinent features from an
audio signal, such as energy distribution across different
frequency bands, which can differentiate between various
audio signals.

Our study uses Eq. (8) to calculate log-energy by adding
the filtered components from each filter. This process offers
insightful information about the data.

𝑆(𝑚) = log10[∑ |𝑋(𝑘)|2𝑁−1
𝐾=0 . 𝐻𝑚(𝑘)] 0 ≤ 𝑚 ≤ 𝑀 (8)

We determine the log-energy, denoted as S(m), by taking
the base-10 logarithm of the spectral magnitude weighted sum
within the filter bank's channel. Specifically, the sum of the
squared magnitudes of the discrete Fourier transform (DFT)
coefficients in each frequency bin is multiplied by the
corresponding filter weights (Hm(k)). This calculation is
performed for each filter bank channel, resulting in a log-
energy value for each bin per frame of filter.

Overall, the logarithm of filter energy is a potent tool in
audio classification, often combined with other techniques
such as Mel Frequency Cepstral Coefficients (MFCCs) to
achieve high classification accuracy. Recent studies have
shown that combining the logarithm of filter energy with deep
learning approaches can significantly enhance the
performance of audio classification systems [39] [40] [41].

7) DCT (Discrete Cosine Transform): A widely used

mathematical technique for evaluating and processing various

sorts of signals, including audio signals, is the discrete cosine

transform (DCT). In the realm of audio classification, the DCT

is frequently utilized to alter an audio signal from the time

domain to the frequency domain, thereby making it possible

to efficiently analyze and extract essential features.

The DCT mainly breaks down a signal into a collection of
cosine functions of differing frequencies, with each function
having its own amplitude. The output frequency coefficients
represent the contribution of each frequency component to the
original signal. These coefficients can then be deployed as
features for audio classification.

Several variations of DCT are available, with DCT Type II
being the most commonly used version, often referred to as the
"standard" DCT. This version is employed in the widely
popular audio compression format, MP3. So we can say that
DCT is an immensely powerful tool for audio analysis and
classification. By capturing vital frequency information that is
not immediately evident in the time domain, the DCT greatly
enhances the accuracy and efficiency of audio classification
[42] [43].

We applied the Discrete Cosine Transform (DCT) to
transform the Mel frequency domain, which characterizes the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

43 | P a g e

www.ijacsa.thesai.org

logarithmic power spectrum of an audio signal, back into the
time domain [44]. This crucial step yields Mel Cepstral
Coefficients as the output. The Mel Frequency Cepstral
Coefficient (MFCC) was the final preprocessing step, as
described in a paper [45]. The MFCC version produces a more
condensed image compared to the Mel filterbank. It achieves
decorrelation of many energies from the prior energy band
using the DCT, a compression method utilized for audio and
image files. By converting higher frequencies to lower
frequencies, the DCT principle compresses audio and image
data, allowing different sounds to have distinct visual
representations. This completes the data preprocessing stage.

IV. DATASET OVERVIEW

Our final objective was to increase our model's accuracy,
even when it was trained on a modestly sized dataset. This was
accomplished using a portion of the Freesound Dataset Kaggle
2018 (“FSD Kaggle 2018”) dataset, a considerably larger
dataset than the one we utilized. The total dataset is many
gigabytes in size and consists of forty-two audio classes. More
information about the dataset can be found at [46] [47].

We also experimented with a seemingly more extensive
dataset compared to FSD, namely ESC-50, having a sample
rate of 44100 KHz and a substantial size of approximately 2
gigabytes. This dataset encompasses 50 distinct classes and
comprises a total of 2000 audio files. To further amplify its
scale, we applied augmentation techniques.

Upon our rigorous customization of the dataset, we have
taken the initiative to share it on Kaggle, ensuring it serves as
a substantial resource for future researchers. The concise FSD-
Kaggle dataset as well as the CSV file can be found at
https://www.kaggle.com/datasets/jewelmd/subset-of-fsd-
kaggle-2018, while the augmented variant is available at this
link: https://www.kaggle.com/datasets/jewelmd/augmented-
esc-50-441-khz.

Through a combination of careful dataset selection and
model construction, we were able to achieve our target of
higher accuracy, even with a limited dataset. Our results
demonstrate the effectiveness of our approach, as well as the
importance of careful dataset selection and model construction
in achieving accurate and reliable results.

A. Contents of Our Dataset

From the Kaggle competition, we have specifically chosen
ten diverse classes pertaining to musical instruments where we
have 300 audio files (30 audio files per class). We will also be
working with a CSV file that will help us associate the audio
files' obscure names with the respective musical instrument
classes. The ten instrument classes we are working with are
‘Acoustic_guitar’, ‘Bass_drum’, ‘Cello’, ‘Clarinet’,
‘Double_bass’, ‘Flute’, ‘Hi-hat’, ‘Saxophone’, ‘Snare_drum’,
and ‘Violin_or_fiddle’. We will employ advanced analytical
techniques to classify these instruments based on the data we
have gathered.

The ESC-50 dataset initially comprised 50 distinct classes,
40 files per class, total (40 x 50) 2000 audio files. Through
augmentation, the dataset underwent a sixfold expansion,
yielding a total of 12000 audio files. Detailed explanations of
this augmentation process are provided in the dedicated
Section IV on data augmentation.

B. Employing Data Augmentation Techniques

In our endeavors with the ESC-50 dataset, we diligently
applied data augmentation methods. Given our focus on audio
data, we navigated through a plethora of techniques tailored
specifically for enhancing this type of information. Audio data
augmentation has emerged as a pivotal practice within the
domain of machine learning, particularly in tasks pertaining to
audio processing. This practice involves artificially
amplifying the diversity of a dataset by subjecting original
audio samples to an array of transformations. The overarching
objective is to equip machine learning models with the
capacity to adeptly handle a wider range of real-world
scenarios. Notably, recent years have seen the advent of
seminal research papers [48][49][50] that have propelled
advancements in this domain. Below, we outline the detailed
steps taken to implement data augmentation on the ESC-50
dataset in Fig. 7.

1) Initialization and directory definitions: In the

initialization phase, necessary packages were imported.

Following this, paths for both the original and augmented

dataset directories were established. Then this module verifies

if the augmented dataset directory already exists; if not, it

creates it. This step ensures the availability of essential

directories for seamless data processing.

Fig. 7. Data augmentation steps.

https://www.kaggle.com/datasets/jewelmd/subset-of-fsd-kaggle-2018
https://www.kaggle.com/datasets/jewelmd/subset-of-fsd-kaggle-2018
https://www.kaggle.com/datasets/jewelmd/augmented-esc-50-441-khz
https://www.kaggle.com/datasets/jewelmd/augmented-esc-50-441-khz

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

44 | P a g e

www.ijacsa.thesai.org

2) List audio files: This step involves obtaining a list of

audio files from the designated original dataset directory.

Parameter definitions

In this step, key parameters for data augmentation are
established. These include pitch shift steps, time stretch factors,
and noise levels, which are essential for modifying the audio
data.

Below are the parameters we applied to the audio files,
visible in Table I.

TABLE I. AUGMENTATION TYPES AND FACTORS

Augmentation type 1st factor 2nd factor

Pitch shift step -2 2

Time stretch factor 0.8 1.2

Noise level 0.001 0.01

3) Iteration over audio files: This step involves a loop that

iterates through each audio file in the list. For each file, it

performs two tasks: extracts the class label from the file name

and loads the audio file.

4) Data augmentation: In the data augmentation phase, an

empty list named augmented_audios is initialized to store

modified versions of the audio. Pitch shifting is applied for each

specified pitch shift step, and the augmented audio is appended

to the list. Similarly, time stretching is implemented for

designated factors, and the altered audio is added to

augmented_audios. Additionally, background noise is

introduced by generating random noise and combining it with

the audio. This augmented audio is then included in the

augmented_audios list, completing the data augmentation

process.

5) Saving augmented files: In this step, each augmented

audio file from the list augmented_audios undergoes a two-part

process: first, a unique file name is generated, and then the

augmented audio is saved to the designated augmented dataset

directory. This ensures that the augmented versions are

properly stored for future use.

We derived six additional files from a single audio
recording. Initially, the ESC-50 dataset comprised 2000 audio
files. After implementing data augmentation, this number
multiplied to 12000 (2000 x 6). This expansion is due to the
application of three distinct types of data augmentation, each
with two contributing factors, resulting in a sixfold increase in
dataset size.

a) CSV file generation: With the dataset update resulting

in a total of 12000 audio files, it became imperative to also

update our CSV file for training purposes. To accomplish this,

we developed a script that generated a new CSV file containing

all the newly created file names and their respective categories.

To implement the proposed approach for audio data
classification, it is necessary to set up a folder (named
'wavfiles') to store all the raw audio files and a corresponding
CSV file is required too. This CSV file should consist of at least
two columns: one labeled 'filename' containing the names of the

audio files, and the other labeled 'category' representing their
respective classes.

For instance, if we have an audio file named
'Audio_file_001', it would be associated with the class 'Flute'.
While the CSV file may contain additional columns like 'take'
or 'length', our primary focus will be on these two columns.

V. DATASET PRE-PROCESSING AND CLEANING

Our whole model, including the pre-processing phases, was
conducted within a Python environment (version 3.7) before
beginning the analysis. We carefully incorporated crucial
libraries like "Python speech features," "Tqdm," "Librosa," and
other necessary packages to enable a seamless analysis,
establishing a solid platform for a thorough study of the data.

We carried out a thorough analysis of the distribution of all
classes in our audio dataset (Fig. 8), which revealed a
significant amount of dead space in the audio files. Eliminating
these duplicate sections will greatly improve the quality and
effectiveness of our study, producing more reliable and
significant outcomes.

To prepare an audio dataset for classification, it is needed to
remove any dead spots, i.e., the silent parts in the files. This
process, known as cleaning, ensures that the data is of high
quality and is free of any unnecessary noise. As depicted in Fig.
9, after cleaning the dataset and storing it in a separate directory,
the distribution of classes has undergone a transformation,
indicating the effectiveness of this approach in enhancing the
quality of the data. We performed this cleaning process on all
of our datasets, including FSD, ESC-50, and Augmented ESC-
50. However, in the Figure, only FSD-Kaggle is depicted.

A. Plotting and Cleaning

The first step in the procedure was to create a directory
called "Clean" that would be used to store the cleaned audio
recordings. We also initialized four dictionaries that were
crucial to the task at hand: signals, FFT, Filter bank, and
MFCCs. We chose to use 26 filters, 512 FFT, and a signal rate
of 16000 for each dictionary. Additionally, with a 25 ms
window size, we used the short-term Fourier transformation as
well as an 1103 sample per second sampling frequency. The
ideal number for our needs was 13, hence the MFCCs were
programmed to have 13 Cepstral Coefficients. For both
versions of the ESC-50 dataset, we employed a signal rate of
44100, as the data versions we utilized were formatted at this
rate.

Fig. 8. Before cleaning.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

45 | P a g e

www.ijacsa.thesai.org

Fig. 9. After cleaning.

1) Removing dead spots: To optimize the quality of the

audio signal, we executed a series of steps to prepare our data

for effective training. The specific procedures are outlined in

Table II.

The process aims to enhance audio data quality for analysis.
It begins by smoothing amplitude representation with an
envelope calculation. Sample rates are adjusted for
compatibility (44100 Hz for ESC-50, 16000 Hz for FSD). A
mask generated from the envelope function refines the signal,
followed by filtering for data accuracy. Processed audio files
are stored in a dedicated "clean" directory for organized
analysis.

TABLE II. STEPS TAKEN FOR REMOVING DEAD SPOTS FROM AUDIO FILES

Steps Description

1. Calculate Envelope Utilized a window size of 0.1s and a frequency of 1 period/minute to obtain a smooth amplitude representation.

2. Up/Down-Sampling Adjusted the sample rate to 16000 Hz (for FSD), 44100 Hz (for ESC-50) for compatibility and signal refinement.

3. Generate Mask Utilized the envelope function to create a mask and applied it at a 0.005 rate after adjusting the sample rate.

4. Apply Filter Successfully removed redundant or erroneous data using a filter.

5. Create "clean" Directory Established a directory named "clean" to store processed audio files.

For greater clarity, a specific example of the 'Flute' is
presented, illustrating its appearance before being cleaned,
which exhibited several dead spots. Following the removal of
these dead spots from the audio file, a visual representation of
the cleaned Flute can be observed in Fig. 10 and Fig. 11 as it is
evident that there are a lot of dead spots.

Fig. 10. Before removing dead space.

Fig. 11. After removing dead space.

B. Exploratory Data Analysis (EDA)

As part of the preprocessing phase, we created an 'eda.py'
file with the following functionalities:

This script is designed to conduct a comprehensive analysis
of the audio dataset. It encompasses tasks such as feature
extraction, generating visualizations, and potentially deriving
insights into the characteristics of the audio files. The
visualizations produced by this script serve as valuable aids for
informing further analysis or gaining a deeper understanding of
the dataset before proceeding with more advanced tasks like
machine learning or signal processing.

To begin, we imported required libraries including os, tqdm,
pandas, numpy, and matplotlib. Following that, we established
several plotting functions to facilitate visual representation and
analysis.

Plotting Functions:

1) Plot_signals(signals): This function takes a dictionary

of time series signals and plots them in a 2x5 grid, showing the

waveforms of different audio samples, visible in Figure 12.

2) Plot_fft(fft): This function takes a dictionary of Fourier

Transforms and plots them in a 2x5 grid, displaying the

frequency domain representation of different audio samples,

visible in Fig. 13.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

46 | P a g e

www.ijacsa.thesai.org

Fig. 12. Time series plot for clean data.

Fig. 13. FFT plot of clean data.

3) Plot_fbank(fbank): This function takes a dictionary of

Filter Bank Coefficients and displays them in a 2x5 grid as

images, showing the distribution of frequency components,

visible in Fig. 14.

Fig. 14. Filter Bank plot of clean data.

4) Plot_mfccs(mfccs): This function takes a dictionary of

Mel Frequency Cepstrum Coefficients and displays them in a

2x5 grid as images, representing the features of audio signals,

visible in Fig. 15.

Fig. 15. MFCCs plot of clean data.

We applied these procedures to all three datasets: FSD-
Kaggle, ESC-50, and Augmented ESC-50. However, in this
demonstration, we are specifically showcasing the plotting for
the FSD-Kaggle dataset.

Then we read the CSV file and created a DataFrame (df) to
store the data. We also set the index of the DataFrame, which is
likely a unique identifier for each audio file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

47 | P a g e

www.ijacsa.thesai.org

In the next stage to process the audio files, this script reads
the WAV file located in the wavfiles/ directory and computes
the sample rate and the signal. It then calculates the length of
the audio file in seconds and stores it in the DataFrame under
the column 'length'.

So, this script (eda.py) is designed to read and process a
dataset of audio files, extracting features like signal length, and
generating visualizations to help analyze the audio data. It
leverages libraries like Pandas, NumPy, Matplotlib, and others
for efficient data handling and visualization

VI. MODEL BUILDING

A. Model Preparation

To enhance our model, we focused on managing class
distribution and balance during training. With a specially
designed function, we generated the input (X) and target (Y)
matrices, randomly sampling one-second audio chunks,

utilizing only a tenth of a second per sample. This data
transformation enabled accurate prediction of the target
variable Y, significantly improving our analysis.

We also paid close attention to the model's properties,
including its sampling rate, window length, step size, and N
FFT value. By taking a meticulous approach to model
preparation, we were able to optimize our neural network's
performance and accuracy. The procedures for building this
model were completed by following Seth Adams' guidelines on
audio classification [51]. So, we developed a separate script
named 'cfg.py' to handle configuration settings. These settings
are particularly pertinent to the processing of audio data. Within
this script, we constructed a class named 'Config' with the
specific purpose of managing these parameters. The 'Config'
class not only provides predefined values for certain parameters
but also allows for tailored adjustments when an instance of the
class is created. The outlined configurations are detailed below
in Table III:

TABLE III. NAME AND VALUE OF THE PARAMETER

Parameter Property Default Value (customizable)

mode A string, indicating the mode 'conv'

nfilt An integer, representing the number of filters 26

nfeat An integer, specifying the number of features 13

nfft An integer, representing the size of the Fast Fourier Transform (FFT) 512

rate An integer, denoting the sample rate 16000

Due to their customizable nature, we fine-tuned these values
to align with our specific needs. For instance, we configured the
mode to 'time' when training our model on RNN and adjusted
the rate to 44100 Hz for the ESC-50 dataset. We also defined
the step size here which is one-tenth of the sample rate. We used
it for processing audio data.

B. Convolutional Neural Network (CNN) Model

Audio classification can employ both 1D and 2D
Convolutional Neural Networks, based on the input's data
representation type. When the audio's time and frequency
domains need to be analyzed, a 2D CNN is more appropriate.
A 2D CNN was used for both ethnicity recognition and gender
classification tasks in [52] but the feature maps extracted from
the input images were combined and encoded into a 1D vector
to facilitate classification. For tasks that involve the temporal
structure of the audio, a 1D CNN is more suitable. Ultimately,
the selection of the CNN architecture should be based on the
audio data's specific characteristics and the classification task
requirements.

During this phase of our project, we have successfully
constructed several Convolutional Neural Network (CNN)
models. The first step in building this model involved decoding
the hot encoded Y matrix and converting it back to its original

class form. We utilized the powerful Numpy Argmax function
to accomplish this, which allowed us to map the encoded data
back to its original column with ease.

The next step involved specifying the input shape for the
convolutional layer, a critical aspect in ensuring the model's
efficacy in detecting underlying data features. Key parameters,
such as batch size, epochs, shuffling (enabled), class weighting
(utilized Scikit-learn), and the reserved test data proportion,
were defined. Following this, a sequence of convolutional and
pooling layers was implemented to compress and stack the data
over time, effectively reducing the dimensionality of high-
dimensional input spaces. This process enabled the construction
of a CNN architecture adept at capturing significant data
features. The specific architecture of CNN models is given
below in Table IV.

The ESC-50 CNN model consists of 10 layers, including
Conv2D layers with varying filter numbers (16, 32, 64, 128)
and 3x3 kernels with ReLU activation. It also features
MaxPooling, Dropout (0.5), Flatten, and Dense layers with 128
and 64 units, each followed by ReLU activation. The output
layer has 50 units with Softmax activation. The model utilizes
the Adam optimizer and employs Categorical Crossentropy as
the loss function.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

48 | P a g e

www.ijacsa.thesai.org

TABLE IV. SEQUENTIAL CNN ARCHITECTURE

ESC-50 – CNN model Augmented ESC-50 – CNN model

Number of Layers: 10 Number of Layers: 15

Layer Types and Details:

 - Conv2D (16 filters), (3x3), ReLU

 - Conv2D (32 filters), (3x3), ReLU

 - Conv2D (64 filters), (3x3), ReLU
 - Conv2D (128 filters), (3x3), ReLU

 - MaxPool2D

 - Dropout (0.5)
 - Flatten

 - Dense (128 units), ReLU

 - Dense (64 units), ReLU
 - Output Dense (50 units), Softmax

Layer Types and Details:

 - Conv2D (128 filters), (3x3), ReLU

 - Batch Normalization

 - MaxPool2D
 - Conv2D (256 filters), (3x3), ReLU

 - Batch Normalization

 - MaxPool2D
 - Conv2D (512 filters), (3x3), ReLU

 - Batch Normalization

 - MaxPool2D
 - Flatten

 - Dense (1024 units), ReLU

 - Dropout (0.5)
 - Dense (512 units), ReLU

 - Dropout (0.5)

 - Output Dense (50 units), Softmax

Optimizer: Adam Optimizer: Adam (Learning Rate: 1e-3)

Loss Function: Categorical Crossentropy Loss Function: Categorical Crossentropy

 Additional Techniques:

- Learning Rate Scheduling

- Early Stopping

The Augmented ESC-50 CNN model has 15 layers,
featuring Conv2D layers with varying filters, Batch
Normalization, MaxPooling, Flatten, Dense layers, and
Dropout for regularization. The output layer has 50 units with
Softmax activation. The model uses the Adam optimizer (LR:
1e-3) and Categorical Crossentropy as the loss function.
Additional techniques include Learning Rate Scheduling and
Early Stopping.

Here are two CNN models designed for the ESC-50 and
augmented ESC-50 datasets. The model used for the FSD-
Kaggle dataset (with 10 classes) mirrors that of ESC-50, with
the only difference being the last dense layer which has 10
units. We implemented various supplementary techniques as
outlined below.

1) Learning rate scheduling: Learning Rate Scheduling

dynamically adjusts the learning rate during training. We

implemented a custom schedule using a function,

lr_schedule(epoch), which scales the rate based on epoch

thresholds (e.g., 10, 20, 30, 40).

2) Early stopping: Early Stopping prevents overfitting by

monitoring validation loss and stopping training after a set

number of epochs with no improvement (patience=10). Using

restore_best_weights = True ensures the model retains the best

state.

3) Batch normalization: Batch Normalization stabilizes

training, speeds up convergence, and reduces overfitting by

normalizing activations within each layer. This leads to better

generalization and enables the use of higher learning rates,

ultimately enhancing the model's performance.

C. RNN (Recurrent Neural Network) Model

In our ongoing efforts to optimize machine learning
algorithms, we developed RNN models to complement our
existing CNN architecture. Unlike CNNs, RNNs employ
LSTM (Long Short-Term Memory) units, which excel in
processing sequential data due to their long-term memory
capabilities. Our RNN model demonstrated exceptional
proficiency in learning from such data. Our rigorous training
and testing procedures guaranteed that the model would exhibit
accuracy and adaptability to new datasets. More detailed
descriptions of our RNN model can be found in the Table V:

The FSD-Kaggle RNN model (10 classes) comprises nine
layers, including two LSTM layers with 128 units each. It
incorporates a Dropout layer (rate: 0.5) for regularization,
followed by TimeDistributed Dense layers with varying units
(64, 32, 16, and 8) and ReLU activation. The model concludes
with a Flatten layer and a Dense layer (10 units, softmax
activation), tailored for multi-class classification. It is
optimized using Adam with Categorical Crossentropy loss,
suiting the classification task's requirements.

The RNN model for ESC-50 and Augmented ESC-50
datasets consists of 13 layers. It includes LSTM units, Batch
Normalization, and Dropout layers. TimeDistributed Dense
layers with ReLU activation are utilized, followed by Flatten
and a final Dense layer for multi-class classification. The model
uses Adam optimizer (LR: 0.001) and employs Categorical
Crossentropy as the loss function. Additional techniques like
Learning Rate Scheduling and Early Stopping are implemented
for improved training performance and prevention of
overfitting.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

49 | P a g e

www.ijacsa.thesai.org

TABLE V. SEQUENTIAL RNN ARCHITECTURE

FSD-Kaggle(10 classes) – RNN model ESC-50 & Augmented ESC-50 – RNN model

Number of Layers: 9 Number of Layers: 13

Layer Types and Details:

- LSTM (128 units), return_sequences=True, input_shape=input_shape

 - LSTM (128 units), return_sequences=True

 - Dropout (0.5)

 - TimeDistributed(Dense(64, activation='relu'))

 - TimeDistributed(Dense(32, activation='relu'))

 - TimeDistributed(Dense(16, activation='relu'))

 - TimeDistributed(Dense(8, activation='relu'))

 - Flatten

 - Dense (10 units, softmax)

Layer Types and Details:

- LSTM (256 units), return_sequences=True, input_shape=input_shape

 - Batch Normalization

 - Dropout (0.3) or [0.2 for augmented]

 - LSTM (256 units), return_sequences=True

 - Batch Normalization

 - Dropout (0.3)

 - TimeDistributed(Dense(128, activation='relu'))

 - Batch Normalization

 - TimeDistributed(Dense(64, activation='relu'))

 - Batch Normalization

 - TimeDistributed(Dense(32, activation='relu'))

 - Flatten

 - Dense (50 units, softmax)

Optimizer: Adam Optimizer: Adam (Learning Rate: 0.001)

Loss Function: Categorical Crossentropy Loss Function: Categorical Crossentropy

 Additional Techniques:

- Learning Rate Scheduling

- Early Stopping

ESC-50 and augmented ESC-50 models were similar, with
dropout rates of 0.3 and 0.2 respectively. Additional techniques
were applied with adjusted rates compared to the CNN model.
Here, Learning Rate Scheduling is implemented with an initial
constant rate for the first 10 epochs, followed by an exponential
decrease. Early Stopping is employed to halt training if no
improvement is detected over six consecutive epochs.

D. Comparison of ModeTraining Parameters

For all models, the class weight is consistently set to
'Balanced'. Monitors are configured as 'val_acc' and
'val_accuracy' in 'max' mode, while both 'save_best_only' and
'save_weights_only' are uniformly set to 'True'. The main
distinguishing factors emerge in the number of epochs, the
allocation for validation split, and the incorporation of class
weights alongside a learning rate scheduler, visible in Table VI.

TABLE VI. COMPARISON OF TRAINING CONFIGURATIONS

Parameter FSD-Kaggle ESC-50 Augmented ESC-50

CNN RNN CNN RNN CNN RNN

Period 1 1 1 1 1 1

Batch Size 32 32 32 32 32 32

Shuffle True True True True True True

Validation Split 0.1 0.1 0.2 0.2 0.2 0.2

Epochs 15 15 100 30 50 30

Learning Rate Scheduler No No No Yes Yes Yes

Early Stopping No No No Yes Yes Yes

Total Files 300 2000 12000

VII. ANALYSES OF RESULTS

Within this section, we will assess the performance of
multiple deep learning models, including Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN). The
CNN models harnessed convolutional and pooling layers to
effectively capture underlying data features, resulting in

impressive accuracy rates within relatively short training
periods. On the other hand, RNN models, employing LSTM
units for sequential data processing, required more time to train
due to their computational complexity. After training across
various epochs for each respective model, we achieved good
accuracy levels. A comparative table (Table VII) detailing the
performance of these diverse models is provided below.

TABLE VII. COMPARATIVE TABLE DETAILING THE PERFORMANCE OF THESE DIVERSE MODELS

Model Architecture Accuracy (%) Loss (%)

Train Test Train Test

FSD-Kaggle

(small dataset)

CNN 96.26 96.52 10.03 9.99

RNN 87.84 87.88 33.60 34.55

ESC-50 CNN 86.33 88.47 45.02 40.86

RNN 92.86 92.89 22.70 27.38

Augmented ESC-50 CNN 71.25 76.20 104.41 84.84

RNN 77.29 79.18 80.90 73.23

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

50 | P a g e

www.ijacsa.thesai.org

In our study, we observe that for smaller datasets, CNNs
outperform RNNs. As dataset size increases, RNNs prove
superior in learning underlying features. CNNs efficiently
capture important data features but may struggle with
sequential data. Conversely, RNNs, with LSTM units, excel in
processing sequences, but at a higher computational cost and
time investment compared to CNNs.

We also observed a performance decrease after applying
data augmentation, possibly due to factors like over-
augmentation and model sensitivity. Fine-tuning augmentation
parameters and exploring alternative techniques may mitigate
this. Future research could delve into optimizing augmentation
strategies and model configurations for improved performance.
In addition, the augmented RNN's accuracy of 79.18% implies
a potential for increased robustness in real-world scenarios,
given its training on a dataset comprising 12,000 audio files.

A. Result Visualization and Analysis

This step involves visualizing the model's performance
metrics, such as accuracy and loss, over the training process.
By plotting these metrics, it provides a clear overview of how
well the model is learning from the data. These visualizations
help in understanding the effectiveness and progress of the
training process.

1) FSD-kaggle dataset: A peek at the accuracy and loss

curves reveals good convergence for both CNN and RNN

models after running for 15 epochs. So, we got higher accuracy

and lower loss (given in Table VII). We achieved around

96.52% and 87.88% accuracy during testing on the FSD-

Kaggle dataset for CNN and RNN models respectively. On the

other hand, we had a very lower loss too for both architectures.

However, on the FSD-Kaggle dataset, the performance of CNN

model was better than RNN model during training and testing

on dataset. The visualizations are shown in Figures 16 through

19.

2) ESC-50 dataset: After running 100 epochs for the ESC-

50 dataset on the CNN model and 50 epochs on the RNN model,

we got 88.47% and 92.89% accuracy on a testing dataset of the

CNN and RNN model respectively (given in Table VII). So,

here the RNN model outperforms the CNN model. We can see

from the graphs that there is a bit of instability at the initial

phase of training for the ESC-50 RNN model but after running

for 25 epochs it seems to be stable. The visualizations are

shown in Fig. 20 through Fig. 23.

Fig. 16. Accuracy vs. epoch for FSD-Kaggle CNN model.

Fig. 17. Loss vs. epoch for FSD-Kaggle CNN model.

Fig. 18. Accuracy vs. epoch for FSD-Kaggle RNN model.

Fig. 19. Loss vs. epoch for FSD-Kaggle RNN model.

Fig. 20. Accuracy vs. epoch for ESC-50 CNN model.

Fig. 21. Loss vs. epoch for ESC-50 CNN model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

51 | P a g e

www.ijacsa.thesai.org

Fig. 22. Accuracy vs. epoch for ESC-50 RNN model.

Fig. 23. Loss vs. epoch for ESC-50 RNN model.

3) Augmented ESC-50 dataset: From the accuracy and loss

curves of CNN and RNN models on the Augmented ESC-50

dataset, it is clear that the RNN model achieved more accuracy

and lower loss during training. We ran around 50 epochs for

both of the models and got around 76% and 79% accuracy on

testing for CNN and RNN models respectively (given in Table

VII). During training, the RNN model took a bit longer time

since there were LSTM layers. Probably the reason lies in the

fact that LSTM cells can store more information over extended

time periods. From the substantial amount of loss, it can be said

that the model had difficulties adapting to the augmented

features generated by the augmented dataset. This also suggests

that RNN outperforms CNN on new data. The visualizations

are shown in Fig. 24 through Fig. 27.

Fig. 24. Accuracy vs epoch for augmented ESC-50 CNN model.

Fig. 25. Loss vs epoch for augmented ESC-50 CNN model.

Fig. 26. Accuracy vs. epoch for augmented ESC-50 RNN model.

Fig. 27. Loss vs. epoch for augmented ESC-50 RNN model.

So, using different datasets, and testing various models
based on CNN and RNN architectures, we have come to a
conclusion where we can say that both CNN and RNN models
can classify audio but the measurement of accuracy and the
convergence of the graph curves depend on numerous factors
including the complexity of the dataset and the ability of the
model to extract several underlying features. We have also seen
that for larger datasets RNN model outperformed the CNN
model.

VIII. CONCLUSIONS

This study delves into audio classification using CNN and
RNN-LSTM models, exploring their performance across
different dataset sizes. We found that CNNs excel with smaller
datasets, efficiently capturing key features, while RNN-LSTM
models better perform with larger datasets, revealing intricate
underlying patterns. The impact of data augmentation was also
examined, revealing a nuanced balance between augmentation
and performance. While augmented models showed improved
robustness, some experienced a minor accuracy reduction,
highlighting the need for parameter fine-tuning. Our research
contributes valuable insights for optimizing audio
classification, paving the way for applications in diverse real-
world scenarios. Future studies can build upon these findings to
further refine these models' capabilities.

REFERENCES

[1] D. G. Bhalke, C. B. Rama Rao, D. S. Bormane, “Automatic musical
instrument classification using fractional Fourier transform based- MFCC
features and counter propagation neural network”, Journal of Intelligent
Information Systems, 2016, Volume 46, Number 3, Page 425

[2] Monica S. Nagawade, Varsha R. Ratnaparkhe, “Musical Instrument
Identification using MFCC”, 2017 2nd IEEE International Conference
On Recent Trends in Electronics Information & Communication
Technology (RTEICT), May 19-20, 2017, India.

[3] T. Virtanen, M. D. Plumbley, and D. Ellis, Computational Analysis of
Sound Scenes and Events. Springer, 2018.

[4] Sharath Adavanne and Tuomas Virtanen. Sound event detection using
weakly labeled dataset with stacked convolutional and recurrent neural
network. In DCASE Workshop, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

52 | P a g e

www.ijacsa.thesai.org

[5] Sharath Adavanne, Konstantinos Drossos, Emre Çakır, and Tuomas
Virtanen. Stacked convolutional and recurrent neural networks for bird
audio detection. In EUSIPCO, 2017.

[6] Miroslav Malik, Sharath Adavanne, Konstantinos Drossos, Tuomas
Virtanen, Dasa Ticha, and Roman Jarina. Stacked convolutional and
recurrent neural networks for music emotion recognition. In Sound and
Music Computing Conference (SMC), 2017.

[7] Jordi Pons, Thomas Lidy, and Xavier Serra. Experimenting with
musically motivated convolutional neural networks. In Content-Based
Multimedia Indexing (CBMI) Workshop, pages 1–6, 2016.

[8] Sander Dieleman and Benjamin Schrauwen. End-to-end learning for
music audio. In IEEE ICASSP, pages 6964–6968, 2014.

[9] K. Koutini, H. Eghbal-zadeh and G. Widmer, "Receptive Field
Regularization Techniques for Audio Classification and Tagging With
Deep Convolutional Neural Networks," in IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 29, pp. 1987-2000, 2021,
doi: 10.1109/TASLP.2021.3082307.

[10] Tara N Sainath, Ron J Weiss, Andrew Senior, Kevin W Wilson, and Oriol
Vinyals. Learning the speech front-end with raw wave form cldnns. In
Sixteenth Annual Conference of the International Speech Communication
Association, 2015.

[11] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very deep
convolutional neural networks for raw waveforms. In IEEE ICASSP,
pages 421–425, 2017.

[12] Meinard Müller, Member, IEEE, Daniel P. W. Ellis, Senior Member,
IEEE, Anssi Klapuri, Member, IEEE, and Gaël Richard, Senior Member,
IEEE. “Signal processing for music analysis”. IEEE Journal of selected
topics in signal processing, VOL. 5, NO. 6, OCTOBER 2011

[13] Jadhav, P. S. (2015). Classification of Musical Instruments Sounds by
Using MFCC and Timbral Audio Descriptors. International Journal of
Research in Information Technology and Computing (IJRITCC), 3(7),
5001-5006. https://doi.org/10.17762/ijritcc.v3i7.4778

[14] Essid, S., Richard, G., & David, B. (2004). Efficient musical instrument
recognition on solo performance music using basic features. AES 25th
International Conference, London, United Kingdom, June 17-19, 2004

[15] M. Erdal Ozbek , Nalan Ozkurt and F. Acar Savaci, ”Wavelet ridges for
musical instrument classification”,J Intell Inf Syst (2012) 38:241–256,
DOI 10.1007/s10844-011-0152-9

[16] Farbod Foomany and Karthikeyan Umapathy, “Classification of music
instruments using wavelet-based time-scale features”, 2013 IEEE
ICMEW.

[17] Y. KIKUCHI, N. AOKI and Y. DOBASHI, "A Study on Automatic
Music Genre Classification Based on the Summarization of Music
Data," 2020 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC), Fukuoka, Japan, 2020, pp.
705-708, doi: 10.1109/ICAIIC48513.2020.9065046.

[18] F. H. Rachman, R. Sarno and C. Fatichah, "Music Emotion Detection
using Weighted of Audio and Lyric Features," 2020 6th Information
Technology International Seminar (ITIS), Surabaya, Indonesia, 2020, pp.
229-233, doi: 10.1109/ITIS50118.2020.9321046.

[19] Taneja, Y. Gulati, T. Chugh, P. Joshi and N. Thakur, "Heart Audio
Classification Using Deep Learning," 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), Miami, FL,
USA, 2020, pp. 485-488, doi: 10.1109/ICMLA51294.2020.00082.

[20] V. Viswanath and B. P. Babu, "Vehicle Classification with Audio and
Video Modalities Using CNN and Decision-Level Fusion," 2020 12th
International Conference on Computational Intelligence and
Communication Networks (CICN), Bhimtal, India, 2020, pp. 482-486,
doi: 10.1109/CICN49253.2020.9242556.

[21] S. Nivetha, "A Survey on Speech Feature Extraction and Classification
Techniques," 2020 International Conference on Inventive Computation
Technologies (ICICT), Coimbatore, India, 2020, pp. 48-53, doi:
10.1109/ICICT48043.2020.9112582.

[22] Chauhan, P. M., & Desai, N. P. (2014). Mel Frequency Cepstral
Coefficients (MFCC) based speaker identification in noisy environment
using wiener filter. 2014 International Conference on Green Computing
Communication and Electrical Engineering (ICGCCEE).

[23] Karpagavalli S and Chandra E, ” A Review on Automatic Speech
Recognition Architecture and Approaches”, International Journal of

Signal Processing, Image Processing and Pattern Recognition Vol.9,
No.4, (2016), pp.393-404

[24] C. Poonkuzhali, R. Karthiprakash, S. Valarmathy and M. Kalamani, An
Approach to feature selection algorithm based on Ant Colony
Optimization for Automatic Speech Recognition, International journal of
Advanced Research in Electrical, Electronics and Instrumentation
Engineering, 11(2), and 2013.

[25] Yuan Meng, Speech recognition on DSP: Algorithm optimization and
performance analysis, The Chinese university of Hong Kong, July 2004,
pp. 1-18.

[26] Lindasalwa Muda, Mumtaj Begam and I. Elamvazuthi, Voice recognition
algorithm using MFCC & DTW techniques, Journal Of Computing,
Volume 2, Issue 3, March 2010, ISSN 2151-9617, pp. 138-143.

[27] Fredric J. Harris, Mexber, IEEE, “On then Use of Windows for Harmonic
Analysis with the Discrete Fourier Transform”in Proceeding of the IEEE,
January 1978.

[28] Herman R. (2016), An Introduction to Fourier Analysis, Chapman and
Hall/CRC, eBook ISBN 9781315367064.

[29] Andersson T. (2004). Audio Classification and Content Desicription. M
Sc. Thesis, Department of Computer Science Electrical Engeerring,
University of Techonology

[30] Terenzi A, Cecchi S, Sorcioni S and Piazza F. (2019), Features Extraction
Applied to the Analysis of the Sounds Emitted by Honey Bees in a
Beehive, in 2019 11 International Symposium on Image and Signal
Processing and Analysis (ISPA), IEEE, pp. 03-08.
https://doi.org/10.1109/ispa.2019.8868934

[31] Grama L and Rusu C. (2017), Audio Signal Classification Using Linear
Predictive Coding and Random Forests, in 2017 International Conference
on Speech Technology and Human-Computer Dialogue (SpeD), IEEE,
pp. 1-9.

[32] Jasim, Wala'A & Jasim, Nibras & Abdual, Saba & Saddam, Saba &
Jasem, Esra & Harfash, J. (2022). Wind Sounds Classification Using
Different Audio Feature Extraction Techniques. Informatica. 45.
10.31449/inf.v45i7.3739.

[33] Parwinder Pal Singh, Pushpa Rani,” An Approach to Extract Feature
using MFCC”, IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-
3021, ISSN (p): 2278-8719 Vol. 04, Issue 08 (August. 2014), ||V1|| PP 21-
25

[34] Fadhel, M. A., & Salman, D. M. (2020). Design of Bandpass Filter using
Modified Hairpin Resonator for ISM Applications. International Journal
of Emerging Trends in Engineering Research, 8(6), 1769-1775.

[35] Challa, S., & Deenadayalan, E. (2019). Design of Microstrip Bandpass
Filter for Wireless Applications. International Journal of Engineering and
Advanced Technology, 8(4), 1262-1266.

[36] Siddhant C. Joshi, Dr. A.N.Cheeran, “MATLAB Based Feature
Extraction Using Mel Frequency Cepstrum Coefficients for Automatic
Speech Recognition”, International Journal of Science, Engineering and
Technology Research (IJSETR), Volume 3, Issue 6, June 2014

[37] Yuan Meng, Speech recognition on DSP: Algorithm optimization and
performance analysis, The Chinese university of Hong Kong, July 2004,
pp. 1-18.

[38] Sirko Molau, Michael Pitz, Ralf Schl¨uter, and Hermann Ney, Computing
Mel-frequency cepstral coefficients on the power spectrum, University of
Technology, 52056 Aachen, Germany

[39] X. Zhang, X. He, and Y. Wang, "Logarithm Filter Energy-Based Audio
Classification Using Convolutional Neural Networks," IEEE Access, vol.
8, pp. 28372-28379, 2020.

[40] Wang, L., Liu, Y., & Liu, J. (2021). Audio classification using logarithmic
filter energy feature and convolutional neural network. Digital Signal
Processing, 116, 103044. doi:10.1016/j.dsp.2021.103044

[41] Zhang, J., Li, Z., Li, X., & Jia, P. (2021). Audio classification based on
multi-level feature fusion with logarithmic filter bank energies. Journal of
Ambient Intelligence and Humanized Computing, 12(9), 10263-10272.
doi:10.1007/s12652-020-02705-2

[42] Deep Convolutional Neural Networks with Discrete Cosine Transform for
Audio Classification," by C. Bajaj, S. Saini, and S. Sharma. IEEE
International Conference on Signal Processing and Communication
(ICSC), 2021. DOI: 10.1109/ICSC51661.2021.9386934

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

53 | P a g e

www.ijacsa.thesai.org

[43] Discrete Cosine Transform-Based Audio Feature Extraction for Music
Genre Classification," by A. Gomila and V. Perez-Marin. IEEE Access,
vol. 9, pp. 37327-37337, 2021. DOI: 10.1109/ACCESS.2021.3060033

[44] Gaurav, Devanesamoni Shakina Deiv, Gopal Krishna Sharma, Mahua
Bhattacharya, Development of Application Specific Continuous Speech
Recognition System in Hindi, Journal of Signal and Information
Processing, 2012, 3, pp. 394-401.

[45] M. S. Imran, A. F. Rahman, S. Tanvir, H. H. Kadir, J. Iqbal and M.
Mostakim, "An Analysis of Audio Classification Techniques using Deep
Learning Architectures," 2021 6th International Conference on Inventive
Computation Technologies (ICICT), Coimbatore, India, 2021, pp. 805-
812, doi: 10.1109/ICICT50816.2021.9358774.

[46] M. S. Imran, A. F. Rahman, S. Tanvir, H. H. Kadir, J. Iqbal and M.
Mostakim, "An Analysis of Audio Classification Techniques using Deep
Learning Architectures," 2021 6th International Conference on Inventive
Computation Technologies (ICICT), Coimbatore, India, 2021, pp. 805-
812, doi: 10.1109/ICICT50816.2021.9358774.

[47] Eduardo Fonseca1∗, Manoj Plakal2, Frederic Font1, Daniel P. W. Ellis2,
Xavier Favory1, Jordi Pons1, Xavier Serra1, “General-purpose tagging of
free sound audio with audio set labels: task description, dataset, and

baseline”, Detection and Classification of Acoustic Scenes and Events
2018.

[48] Khan, A. A., Khan, M. A., & Khan, M. A. (2022). Data augmentation and
deep learning methods in sound classification: A systematic review. arXiv
preprint arXiv:2208.06099.

[49] Wang, J., Liu, X., Sun, D., & Zhang, H. (2021). Sample mixed-based data
augmentation for domestic audio tagging. IEEE Access, 9, 128119-
128128.

[50] Sprengel, P. A., Li, S., & Wang, Z. (2023). Data augmentation on
convolutional neural networks to classify mechanical noise. Applied
Acoustics, 229, 108959.

[51] S. Adams, Audio-classification, https: //github.com/seth814/Audio-
Classification, Apr. 2020

[52] M. Jewel, M. I. Hossain and T. H. Tonni, "Bengali Ethnicity Recognition
and Gender Classification using CNN & Transfer Learning," 2019 8th
International Conference System Modeling and Advancement in Research
Trends (SMART), Moradabad, India, 2019, pp. 390-396, doi:
10.1109/SMART46866.2019.9117549.

