
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

479 | P a g e

www.ijacsa.thesai.org

Security Enhanced Edge Computing Task Scheduling

Method Based on Blockchain and Task Cache

Cong Li

The Information Engineering Institute, Yellow River Conservancy Technical Institute, Kaifeng, 475004, China

Abstract—Aiming at edge computing nodes' limited computing

and storage capacity, a two-layer task scheduling model based on

blockchain and task cache was proposed. The high-similarity task

results were cached in the edge cache pool, and the blockchain-

assisted task caching model was combined to enhance system

security. The genetic evolution algorithm was used to solve the

minimum cost that the optimal scheduling model can obtain. The

genetic algorithm’s initialization and mutation operations were

adjusted to improve the convergence rate. Compared with

algorithms without cache pooling and blockchain, the proposed

joint blockchain and task caching task scheduling model reduced

the cost by 9.4% and 14.3%, respectively. As the capacity space of

the cache pool increased, the system cost gradually decreased.

Compared with the capacity space of 3GB, the system cost of

10Gbit capacity space was reduced by 10.6%. The system cost

decreased as the computing power of edge nodes increased.

Compared with edge nodes with a computing frequency of 8GHz,

the nodes cost at 18GHz was reduced by 36.4%. Therefore, the

proposed edge computing task scheduling model ensures the

security of task scheduling based on reducing delay and control

costs, providing a foundation for modern industrial task

scheduling.

Keywords—Blockchain; task cache; edge computing; task

scheduling; industrial internet

I. INTRODUCTION

With the developing 5G communication and the Internet of
Things, many intelligent devices with computing power are
widely used in industrial automation systems. The rapid
increase of intelligent equipment in factories leads to the
explosive growth of industrial Internet data [1]. Due to local
devices' limited computing resources and storage capacity,
some resource-intensive tasks will be scheduled to cloud
servers for processing. However, when cloud servers are
deployed far from local devices, the interaction between tasks
and data can result in significant latency, posing a risk of data
leakage and attack [2-4]. The introduction of edge computing
into the industrial Internet can satisfy the real-time demand,
security, and reliability in the industry. By scheduling tasks to
the edge, industrial equipment has sufficient resources to handle
more complex tasks [5-7]. When the resource results of a task
have high similarity, deploying task caching can reduce
repeated resource calls [8]. Gao et al. proposed a case layer
solution of joint unloading scheduling and resource allocation
to reduce task delay and energy consumption in on-board edge
computing, combining deep Q network and gradient descent
method. This algorithm effectively reduced latency and energy
consumption [9]. Chen et al. built an edge computing container
deployment model for the delay-sensitive problem of tasks.

Through ameliorating the initialization, crossover, and other
operations of Genetic Algorithm (GA), the optimal deployment
of containers was achieved. Compared with traditional
algorithms, the deployment cost of this model was reduced by
22% [10]. Although edge computing and task caching have
many advantages, the diversity of servers brings an additional
burden to task scheduling.

Blockchain is a distributed accounting technology that
integrates multiple technologies such as distributed storage,
cryptography, and consensus mechanisms. It can ensure data
security, tamper resistance and privacy, and can well match
distributed edge computing [11-13]. The introduction of
blockchain into a cloud-edge-end three-layer architecture can
enhance industrial security. The collaboration between edge
servers and blockchain enables secure data transmission and
reliable storage, reducing computational costs and latency [14-
16]. Rivera A V et al. proposed a secure task-sharing blockchain
framework to enhance user experience. They set up a trusted
cooperation mechanism in multi-access edge computing and
designed cooperation incentives to speed up computing. This
framework ensured trust between servers and enabled real-time
task sharing [17]. Zhang H et al. put forward a mobility
management scheme using blockchain to address the security
of unloading tasks. They used Lyapunov optimization
algorithm, combined with base station wireless handover and
service migration decisions, to achieve dynamic optimization
of the target. This solution effectively reduced the latency and
failure rate of computing tasks [18]. Chen J et al. proposed a
decentralized management scheme based on blockchain to
address the transparency in collaboration benefits. They used
diligent proof and delegated diligent proof consensus
mechanisms, combined with sequential decision-making and
Byzantine fault-tolerant algorithms, to improve the time-
sensitivity of edge collaboration. This scheme had high security
and fault tolerance [19]. Liu R et al. proposed a trusted data
storage mechanism using blockchain to address data
management security in the industry. Combining sharding and
a two-layer Merkle tree structure, they utilized random low-
density parity correction code encoding to reduce storage
pressure on lightweight nodes. This mechanism effectively
reduced the network load of nodes and improved data storage
security [20]. Li G et al. proposed edge bandwidth and storage
optimization algorithms to overcome network overload caused
by distributed transmission. They built a dynamic blockchain
and combined it with a network simulator to construct
blockchain. This algorithm improved both transmission
bandwidth efficiency and blockchain construction efficiency
[21].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

480 | P a g e

www.ijacsa.thesai.org

The computing power and storage capacity of edge servers
are stronger than those of local devices, and edge computing
has lower task latency. With the explosion of industrial task data,
the resources of edge servers are gradually scarce, and the task
scheduling problem of edge computing is NP hard. Although
there are many researches on edge computing task scheduling,
there are some problems. For multi-objective optimization
problems, most studies are based on the optimization objectives
of time delay and energy consumption to develop task
schedules. For complex and repetitive tasks in the industrial
Internet, task similarity should be taken into account to improve
edge computing capability and efficiency. For data security
issues, most studies mainly focus on data security and privacy,
with little consideration given to the latency and energy
consumption caused by them. Delay and energy consumption
should be included, and the best outcome plan should be
balanced between performance and security levels. Therefore,
the research will combine the blockchain, edge computing and
task cache, and propose a security enhanced edge computing
task scheduling method based on the blockchain and task cache.
On the basis of ensuring data security, appropriate task
scheduling strategies will be developed to give full play to
various technical advantages to meet the demand for delay, cost
and security in the industrial scenario. Faced with the enormous
security and resource pressures brought by massive data on
industrial equipment, an optimization model is established to
ensure the secure scheduling of tasks to the greatest extent
possible. Considering the problem of high task similarity in
industrial Internet, the research adopts the improved least
access frequency algorithm to improve the hit rate of cache
content. It combines block chain technology with edge
computing to solve the problem of data leakage at edge nodes.
As a supplement to the cache pool, blockchain increases task
cache capacity and reduces task processing time. Therefore, the
task scheduling method proposed in the study provides
technical support for industrial task scheduling.

II. METHODS AND MATERIALS

To reduce the delay and cost of edge computing in the
industrial Internet, this research combines task caching and
blockchain to design new algorithms to improve the hit rate of
task caching. Blockchain and task cache are introduced into
edge computing and combined with task scheduling strategy to
improve the processing efficiency of tasks, reduce costs, and
achieve reliable data storage and low overhead of task
scheduling.

A. Blockchain-Based Edge Caching Model

The rapid development of intelligent devices makes the
industrial Internet have higher requirements for resources. Due
to local devices' limited battery, storage, and computing
resources, offloading computing tasks to the cloud layer can
cause additional network latency and bandwidth consumption.
Therefore, adding an edge server layer between the cloud layer
and the local device layer can alleviate the burden on the cloud

network. Fig. 1 shows a blockchain-based cloud-edge-end
system, which is divided into three layers, including cloud
servers, edge servers, and local devices.

The local device layer is composed of industrial equipment
and has minimal computing and information organization
capabilities. The edge server layer is composed of edge devices
with strong computing and caching capabilities, which can be
used for mining in blockchain networks. The mining process
consists of three steps: (1) Edge nodes add cached results to the
blockchain and increase the task type of the cache pool. (2)
When the task is scheduled to the edge server, this structure
searches a cache pool and returns this result directly if it is
found. If it is not found, it performs calculations locally and
updates the cache pool and blockchain data. (3) For every new
task type added to the edge node, it can receive corresponding
rewards, increasing the interest of the edge server in mining. A
cloud server layer owns powerful data storage and computing
capabilities. When the total data in the blockchain network
exceed its capacity, this system can upload some data requests
to the cloud. These data in the industrial Internet are highly
similar and have a large number. Storing relevant task data into
the cache pool can speed up data processing. To ensure the
cache pool security, the data source can only be task results
processed by edge nodes and stored results in the blockchain.
Fig. 2 shows the cache pool’s data source.

The cache hit rate, task complexity, and promotion
performance are important factors to measure the effectiveness
of cache strategies, and cache strategies should be selected
according to actual scenario needs. Based on the changes in
tasks in industrial production, the Least Frequently Used (LFU)
algorithm in traditional caching strategies is improved. A Task
Caching of Improved LFU (TC-ILFU) algorithm is put forward
to elevate the cache hit rate. The core of LFU is to prioritize the
elimination of cache data with the lowest frequency of use. Fig.
3 shows the main idea of ILFU-TC. This algorithm establishes
a time task frequency table, records the hit rate data of cached
task content over a period of time, and determines whether new
tasks can be added to the cache pool based on the hit rate.

Cloud server

layer

Edge server

layer

Local device

layer

Blockchain

network

Fig. 1. Cloud-edge-end scheduling system based on blockchain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

481 | P a g e

www.ijacsa.thesai.org

Data

base

Blockchain

Cache

Cache

Cache

Update data

Data

base

Data

base

Task

Fig. 2. Cache pool data source.

Start

Establish a time

task frequency

table

Set hit

frequency to 0

Is the cache hit rate

greater than the

threshold?

End

Select data with higher

task frequency to update

the cache pool

Update the time task

frequency table

YesIs it cached in cache

pool?

Hit frequency

increased by 1

Is the capacity

sufficient？

new task

Minimum

replacement

frequency cache

Calculate hit rate

No

Yes

No

Yes

No

Fig. 3. The main ideas of improved LFU.

The time task frequency table records the task requirements
for a period of time. When a new task appears in the edge cache
pool, the first step is to determine whether it has been cached.
For tasks belonging to the cache pool, the hit frequency is
directly increased by 1, and the time task frequency table is
updated. If the task has not appeared in the cache pool, it is
determined whether there is sufficient space and time based on
the cache pool capacity. If the cache capacity space is sufficient,
the hit frequency is set to 0, and the time task frequency table is
updated. If the cache capacity space is insufficient, the system
will replace the task with the minimum number of hits in the
cache pool with the new task. At this point, the hit frequency is
set to 0, and the time task frequency table is updated. The
system calculates the hit rate during this period and compares it
with the set cache threshold. If the hit rate is greater than this
cache threshold, the task content cache matches the task's
characteristics. If the hit rate is less than the cache threshold,
this system will select data with higher task frequency from the
task frequency table at that time and import it into the cache
pool to update the cache pool data. The blockchain network can
bring safe and reliable cache data to edge computing and ensure
that edge nodes can safely exchange information. In blockchain,
the probability of orphan blocks being generated is represented
by Eq. (1).

 
1 nS

orpP e


 
 (1)

In Eq. (1),
orpP represents the probability of orphan blocks.

 is a fixed value, 1/ 600  .  nS is a function of

block size. The probability of generating new task blocks is
represented by Eq. (2).

 nSn
new

P
P e

H




 (2)

In Eq. (2),
newP represents the probability of a new task

block.
nP is the hashing capability of blockchain networks.

H is the blockchain network’s hash power. The reward for
mining new task blocks at edge nodes is represented by Eq. (3).

 nSrew

n nR R e






 (3)

In Eq. (3), rew

nR represents the mining reward. R is a

task set.

B. Edge Computing Task Scheduling Algorithm

Due to local devices' limited battery capacity and computing
resources, tasks are scheduled to edge servers for processing
within the maximum latency allowed range. The local device
generates tasks, and the task scheduling strategy follows
constraints represented by Eq. (4).

 0,1 , ,ijx i N j M  
 (4)

In Eq. (4),
ijx is the scheduling location of the task.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

482 | P a g e

www.ijacsa.thesai.org

1ijx  is the calculation of task i on edge server j .

0ijx  means the processing of tasks on local devices. N is

the total local device. M is the total edge server. Blockchain
is a decentralized distributed storage ledger with high security
and certainty. The limited capacity of the cache pool requires a
diverse range of task types to be cached, ensuring that task
scheduling has multiple selectivity. According to the task
scheduling strategy, when a task is calculated on an edge server,
this server needs sufficient computing power to process the task
and return this result to the device. The uplink rate of local
device scheduling tasks to edge servers is approximated using
Shannon's formula, represented by Eq. (5).

 2 2 2
log 1 log 1

a

ij i i

ij ij

P h r
V B P B



 
    
 
  (5)

In Eq. (5),
ijV represents the transmission rate of local

device i scheduling tasks to edge server j . B is the

bandwidth.  is the signal-to-noise ratio.
ijP is the

transmission capacity of the device i .
ih is channel

interference.
a

ir


 is path decay. 2 is the power of

Gaussian white noise. According to the task attributes, the
upstream time for scheduling tasks from local devices to edge
servers is represented by Eq. (6).

 2log 1

ij ij

ij

ij ij

r r
T

V B P
 


 (6)

In Eq. (6),
ijT represents the transmission delay from the

local device scheduling task to the edge server.
ijr is the local

device’s task data scale. The upload energy consumption of
local devices is represented by Eq. (7).

 
1

2log 1

l

ij

up

ij

e r
E

B P 



 (7)

In Eq. (7), upE represents the upload energy

consumption of the local device.  is the transmission

amplifier efficiency of the device. Local device consumption is

 1 1 0, ,l l lE e e e .
1

le is idle local devices' energy consumption.

0

le represents local computing tasks' energy consumption.
1

le

means local device transmission's energy consumption. The
task is represented by Eq. (8) when processing on the local
device.

l i

i l

i

c
T

f


 (8)

In Eq. (8), l

iT represents the calculation delay of the local

device.
ic is the number of chips. l

if represents the

computing power of local devices. The energy consumption of
terminal devices for processing tasks is represented by Eq. (9).

 
2

0

l

i wjE f r
 (9)

In Eq. (9),
0E represents the terminal calculation energy

consumption.  is a chip architecture coefficient.
wjr is the

demand for computing power. Local device generates tasks.
According to the task scheduling strategy, the tasks are
offloaded to the edge server for computation, and edge caching
and blockchain based edge caching models are established.
When there is content cache in the cache pool, retrieve cached
data according to task indexing requirements. When data exist,
the system directly distributes cached results. The task
processing time is represented by Eq. (10).

 se

1

lect

ijT T T n 
 (10)

In Eq. (10),
1T represents the processing time of the task

in the cache pool.  se lectT n means data retrieval time. n

is the cache data size. The energy consumption of the terminal
server is represented by Eq. (11).

1 1 ()l select

upE E e T n 
 (11)

In Eq. (11),
1E means the terminal server's calculated

energy consumption in the cache pool. The cache pool's cache
resources are limited. The edge caching model based on
blockchain serves as an extension of the system cache pool. In
blockchain, the processing time of tasks is represented by Eq.
(12).

 2 1

find select find

ijT T T T T n T    
 (12)

In Eq. (12),
2T means the task processing time in the

blockchain.
findT is the retrieval time. The terminal server's

energy consumption is represented by Eq. (13).

2 1 1 1 1()l find l select l find

upE E e T E e T n e T      
 (13)

In Eq. (13),
2E represents the computational energy

consumption of the terminal server in the blockchain. The
system does not retrieve the required task results in both the
edge cache pool and the blockchain network. Under the
constraint of delay, task computation can be performed on edge
servers. The task calculation time is represented by Eq. (14).

wje

i e

i

r
T

f


 (14)

In Eq. (14),
e

iT represents the processing time of edge

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

483 | P a g e

www.ijacsa.thesai.org

node i .
e

if is the computing power of i . The task

processing time is represented by Eq. (15).

 3 2

edge select find e

ij iT T T T T n T T     
 (15)

In Eq. (15),
3T represents the task’s total processing time.

Edge nodes' energy consumption is represented by Eq. (16).

3 1 3

l

upE E e T 
 (16)

In Eq. (16),
3E represents the computational energy

consumption of the edge server. In the industrial Internet, the
cache task scheduling strategy is implemented by considering
time constraints, device computing capacity and storage
capacity. The cost of blockchain rewards and task scheduling
strategies constitutes the total system cost. To minimize task
scheduling strategy's cost consumption, an optimal system cost
can be obtained, represented by Eq. (17).

 
  

     
       

0

1 1 2 3

1
, ,

1 1

, , , , 1

n i

all

i i i i i i up

Sn

all all i n

x E
E x y z

x y E y z E z E E

F x y z E x y z z R e


 





  
    
          


   



 (17)

In Eq. (17),  , ,allE x y z means the system's total energy

consumption.  , ,allF x y z is the optimal cost. y and z

are both the positions of task results, and  , 0,1y z .  is

a conversion coefficient between energy consumption and cost.
Edge computing task scheduling strategy for task caching
belongs to multi-constraint optimization problem. As the tasks
and cached data increase, the solution space of tasks also
increases. Finding the optimal feasible solution in a vast
solution space is crucial. Therefore, genetic evolutionary
algorithms are used to solve for the lower cost that the optimal
scheduling strategy can achieve. Fig. 4 shows the Task
Scheduling Algorithm based on Genetic Optimization (TSA-
GO). Firstly, the task is initialized. The fitness function is used
to determine the individual superiority or inferiority. By
combining selection, crossover, and mutation operations, the
optimal solution of the scheduling strategy is solved, achieving
low-cost control.

Binary

encoding

Population

initialization

Calculate

fitness

Reaching the

expected threshold

or maximum number

of iterations？

The optimal

solution of task

scheduling strategy

Select operation

Cross operation

Mutation operation

Begin

End

Yes No

Fig. 4. Task scheduling strategy based on differential genetic evolution.

The task scheduling location adopts binary encoding, with

0 and 1 indicating that the task is executed on the local device
and edge server, respectively. During initialization, TSA-GO
collects task deadlines, cache status, power, and device
computing power to determine task resource requirements and
determine task execution locations. The fitness function is
determined by blockchain rewards and task scheduling
strategies, and preliminary feasible solutions that meet the
conditions are obtained. This system uses roulette wheel to
select individuals with high fitness and combines single-point
crossover to reduce the damage of crossover to the
predetermined population. To prevent ineffective mutations in
the algorithm, this study evaluates the mutated nodes. Random
tasks in the task sequence serve as mutation points, and the
probability of individual mutation is used to determine whether
the task is mutated. The demand for resources in a task serves
as a mutation point, and the mutation threshold is used to
determine whether to mutate.

III. RESULTS

This experiment verified the edge computing task
scheduling algorithm based on blockchain and task cache.
Firstly, an analysis was conducted on the impact of task cache
pools and blockchain on costs. Subsequently, TC-ILFU was
compared and analyzed with other caching algorithms. Finally,
the performance of TSA-GO was analyzed under different task
scheduling strategies and compared with other optimization
algorithms.

A. Experimental and Analysis of Edge Caching Model Based

on Blockchain

To test blockchain based TC-ILFU, this experiment
compared TC-ILFU with LFU, Least Recently Used (LRU)
algorithm, and First in First Out (FIFO) algorithm. TC-ILFU
was analyzed in terms of cost and hit rate. Table Ⅰ shows the
experimental parameters.

In Table Ⅰ, the computing power of local devices was the
weakest, while the computing power of edge servers increased
but did not exceed that of cloud computing servers. In Fig. 5,
this experiment compared the effects of task cache pool and
blockchain on system costs with and without cache pool and
blockchain cache.

TABLE I. EXPERIMENTAL PARAMETER SETTINGS

Parameter Value

Computing frequency of Local device 1GHz

Idle power of local devices 0.3W

On-load power of local devices 0.9W

Computing frequency of edge servers 4GHz

Computing frequency of cloud servers 12GHz

Number of tasks [100, 200]

Task scale [20, 40] Mbit

Maximum tolerance time for tasks [0.1, 5] s

Wireless channel bandwidth 18MHz

Population size 100

Channel noise -100dpm

Iterations 1400

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

484 | P a g e

www.ijacsa.thesai.org

700

650

600

550

500

450

400
0 200 400 600 800 1000 1200 1400

Iterations

C
o

st
($

)

700

650

600

550

500

450

400

0 200 400 600 800 1000 1200 1400
Iterations

C
o

st
($

)

With cache pool

No cache pool

With blockchain cache

No blockchain cache

(a) The impact of cache pool on costs (b) The impact of blockchain on costs
Fig. 5. The impact of cache pool and blockchain on costs.

In Fig. 5(a), as the iteration increased, the cost gradually
decreased. The average cost of a task cache pool was 435$, and
the average cost of a non-cache pool was 480$. Compared to
the situation without a cache pool, the cost with a cache pool
was reduced by 9.4%. This is because the system only has the
cost of task upload and edge computing, and the task cache pool
can effectively reduce the cost of edge computing. In Fig. 5 (b),
the average cost with blockchain caching was 450$, and the
average cost without blockchain caching was 525$. The cost of
having no blockchain cache was about 1.2 times that of having
blockchain cache. This is because blockchain can backup all
cached results, ensuring data consistency and immutability,
improving the reliability and security of system data. Therefore,
the introduction of cache pool and blockchain in edge
computing can effectively reduce costs and save the cost of

industrial Internet. Fig. 6 shows the impact of cache pool
capacity space on cost under the same workload.

In Fig. 6(a), when the capacity space was 3GBit, 5Gbit,
8Gbit, and 10Gbit, the average cost of the system was 508$,
495$, 483$, and 454$. Compared to the capacity spaces of 3GB,
5Gbit, and 8Gbit, the cost of 10Gbit capacity space was reduced
by 10.6%, 8.3%, and 6.0%. The larger the capacity space, the
lower the system cost. In Fig. 6(b), as the capacity space of the
cache pool increased, the system cost gradually decreased. This
is because the cost distribution varies depending on the type of
task. This experiment tested the impact of TC-ILFU on cost and
hit rate in a fixed cache pool, comparing TC-ILFU with LFU,
LRU, and FIFO. Fig. 7 shows the comparison results of cost
and hit rate for different caching algorithms.

3Gbit

5Gbit

8Gbit

10Gbit

(a) Results of four cache spaces on cost (b) Distribution of four cache space on cost

600

550

500

450

0 200 400 600 800 1000

Iterations

C
o

st
($

)

3 5 8 10

450

400

500

550

600

C
o

st
($

)

Cache Space (Gbit)

Fig. 6. The impact of cache pool capacity space on cost.

420

460

500

540

580

620

0 200 400 600 800 1000 1200 1400

Iterations

C
o

st
($

)

(a) Cost of four caching algorithms

TC-ILFU

LFU

LRU

FIFO

TC-ILFU

LFU

LRU

FIFO

0.0

0.2

0.4

0.6

0.8

50 100 150 200

(b) Hit rate of four caching algorithms

Number of tasks

H
it

 r
at

e

Fig. 7. Cost and hit rate of four caching algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

485 | P a g e

www.ijacsa.thesai.org

In Fig. 7(a), as the iteration increased, the cost of all four
caching algorithms decreased. The average cost of TC-ILFU,
LFU, LRU, and FIFO was 478$, 500$, 489$, and 497$.
Compared to LFU, LRU, and FIFO, TC-ILFU reduced costs by
4.4%, 2.2%, and 3.8%. The time task frequency table avoided
the impact of frequently accessed data in the past on the current
cache pool data and improved the task hit rate. In Fig. 7(b), the
average hit rate of TC-ILFU, LFU, LRU, and FIFO was 0.56,
0.49, 0.53, and 0.50. Compared with LFU, LRU, and FIFO, TC-
ILFU improved hit rate by 14.3%, 5.7%, and 12.0%. When the
task was 50, the hit rate of TC-ILFU and LFU was consistent.
This is because the repetition rate of task data is low in a
relatively short period of time. As the repetitive tasks increase,
the hit rate of TC-ILFU gradually increases.

B. Experiment and Analysis of Edge Computing Task

Scheduling Algorithm

This experiment compared all local task scheduling
strategies (All-local), all edge task scheduling strategies (All-
edge), GA, Simulated Annealing (SA), and Hill Climbing (HC)
to analyze TSA-GO from the perspectives of system latency,
energy consumption, cost, and runtime. Fig. 8 shows the time
and energy consumption of the system under different task
scheduling strategies.

From Fig. 8(a), the average latency of All-local, All-edge,
and TSA-GO was 600ms, 408ms, and 332ms. All-local had the
highest latency, with all tasks being executed on local devices,
resulting in task loss due to limited resources and increasing
task processing time. TSA-GO effectively reduced latency by
jointly processing tasks with local devices and edge servers. In
Fig. 8(b), the average energy consumption of All-local, All-
edge, and TSA-GO was 572J, 526J, and 272J. Compared with
All-local and All-edge, TSA-GO reduced energy consumption
by 52.4% and 48.3%, respectively. TSA-GO communicated
resources through task cache pools and blockchain, effectively
reducing the additional consumption caused by task growth. Fig.
9 shows the cost and time comparison of different algorithms.

In Fig. 9(a), as the iteration increased, the costs of all four
algorithms decreased. The average cost of TSA-GO, GA, SA,
and HC was 443$, 472$, 506$, and 508$, respectively.
Compared with GA, SA, and HC, the cost of TSA-GO
decreased by 6.1%, 12.5%, and 12.8%. This is because GA
randomly generates a large number of solutions, increasing the

solution space and making it difficult to find the optimal
solution. SA belongs to completely greedy algorithms, and each
time the current optimal solution is selected, only local optimal
solutions can be searched. HC belongs to simple greedy
algorithms, which select an optimal solution in the nearby
solution space as the current solution until reaching a local
optimal solution. TSA-GO restricts task initialization and
reduces algorithm optimization time. Restricting mutation
operations to avoid useless mutations can improve convergence
rate. In Fig. 9(b), the running time of TSA-GO, GA, SA, and
HC was 25600ms, 28880ms, 46680ms, and 35000ms,
respectively. SA had the longest running time. The running time
of TSA-GO and GA was moderate. TSA-GO searched for the
optimal solution faster. This is because the optimization time of
the algorithm is reduced when initializing the population. To
further validate TSA-GO, experiments were conducted on
factors such as the computing power of edge servers and the
transmission rate of channels that affect system costs. Fig. 10
shows the results of the impact of different computing power
on costs.

In Fig. 10(a), with the increase of edge computing frequency,
the system cost gradually decreased. When the calculation
frequency of edge nodes was 8GHz, 10GHz, 12GHz, 15GHz,
and 18GHz, the average system cost was $330, $288, $245,
$231, and $210, respectively. Compared to edge nodes with a
computing frequency of 8GHz, the cost of nodes with an
18GHz frequency was reduced by 36.4%. In Fig. 10 (b), the
cost reduction rate in the channel rates of 8-10GHz, 10-12GHz,
12-15GHz, and 15-18GHz range was 0.14, 0.19, 0.07, and 0.08,
respectively. Cost convergence did not change regularly with
the increase of edge computing frequency, and the cost
reduction rate remained within 20%. Fig. 10 shows the impact
of different channel rates on system costs.

In Fig. 11(a), as the channel rate increased, the tasks
uploaded to the edge server increased, and cost control became
more optimized. When the channel upload rate was 5M/s, 8M/s,
10M/s, 12M/s, and 15M/s, the average system cost was $465,
$338, $302, $270, and $250, respectively. In Fig. 11(b), the cost
reduction rate was 0.31, 0.13, 0.09, and 0.10 in the channel rates
of 5-8M/s, 8-10M/s, 10-12M/s, and 12-15M/s, respectively. As
the channel rate increased, the cost reduction rate gradually
stabilized and remained around 10%.

1000

20

800

600

400

200

0 30 40 50 60 70 80 90 100

Number of tasks

(a) System latency

L
a
te

n
c
y

(m
s)

1000

20

800

600

400

200

0 30 40 50 60 70 80 90 100

Number of tasks

(b) System energy consumption

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

(J
)

All-local

All-edge

TSA-GO

All-local

All-edge

TSA-GO

Fig. 8. Cost and running time of four algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

486 | P a g e

www.ijacsa.thesai.org

TSA-GO

GA

SA

HC

350
0

Iterations

C
o

st
($

)

(a) Cost of four algorithms

450

550

650

750

200 400 600 800 1000 1200 1400
0

10000

20000

30000

40000

50000

E
la

p
se

d
 t

im
e
(m

s)

(b) Elapsed time of four algorithms

Algorithm type

SATSA-GO GA HC

Fig. 9. Cost and elapsed time of four algorithms.

175
0

Iterations

C
o

st
($

)

(a) Cost of five computing frequency

8GHz

10GHz

12GHz

15GHz

18GHz

225

275

325

375

425

200 400 600 800 1000

C
o

st
 r

e
d

u
c
ti

o
n

 r
a
te

0.00

0.05

0.10

0.15

0.20

0.25

8-10GHz 10-12GHz 12-15GHz 15-18GHz

Computing frequency

(b) Cost reduction rate

Fig. 10. Cost of five computing power.

5M/s

8M/s

10M/s

12M/s

15M/s

200
0

Iterations

C
o

st
($

)

(a) Cost of five Channel rates

C
o

st
 r

e
d

u
c
ti

o
n

 r
a
te

0.00
5-8M/s

Channel rates

(b) Cost reduction rate

200 400 600 800 1000

250

300

350

400

450

500

550

8-10M/s 10-12M/s 12-15M/s

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fig. 11. Cost of five channel rates.

IV. DISCUSSION AND CONCLUSION

A. Discussion

To solve the transmission bandwidth limitation and data
privacy threat existing in the industrial Internet, the research
proposed to schedule the task to the edge server for processing
to realize the real-time and security of data in industrial

production. However, traditional task scheduling algorithms do
not fully utilize edge cache resources, which can easily lead to
the leakage of private data. Therefore, this research proposed a
security enhanced edge computing task scheduling method
based on blockchain and task cache. Firstly, the edge caching
model of blockchain was utilized to cache the calculation
results of multiple repetitive tasks in the intelligent factory,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

487 | P a g e

www.ijacsa.thesai.org

reducing task latency. The task scheduling of coupling task
caching and blockchain assisted caching was modeled as a cost
minimization problem under multiple constraints. Meanwhile,
the genetic optimization algorithm was combined to achieve
optimal cost control. Yasir M and other researchers proposed a
content caching strategy based on mobile edge computing,
which significantly improved the cache performance of edge
servers and increased the cache hit ratio [22]. The experimental
results of this study showed that the cost of the TC-ILFU
algorithm was reduced by 4.4%, and the hit rate was increased
by 14.3%, which is similar to the results of Yasir M and other
researchers, further confirming that the improved LFU
algorithm can effectively improve the cache hit rate. Yin Z's
research team has developed a multi-objective task scheduling
strategy for intelligent production lines, which has a high task
completion rate and can effectively reduce task service delays
and energy consumption [23]. The experimental results of this
study show that the TSA-GO algorithm reduces latency and
energy consumption by 44.7% and 52.4%, respectively, which
is consistent with the results of Yin Z's research team. The main
reason is that the cloud edge end mode used in industrial task
scheduling can effectively reduce cloud task processing
overhead and transmission delay. Scholars such as Fu X have
improved the overall completion time and convergence
accuracy of cloud tasks using a hybrid particle swarm
optimization genetic task scheduling algorithm [24]. This study
shows that the TSA-GO algorithm reduces the cost by 6.1% and
improves the system running time by about 10%, which is
different from the research results of scholars such as Fu X.
This is because scheduling tasks to edge services can effectively
reduce cloud computing costs and accelerate task processing
speed.

B. Conclusion

In conclusion, the research proposes that the security-
enhanced edge computing task scheduling method based on
blockchain and task cache can effectively protect data privacy,
reduce latency, reduce costs, and improve system security. The
limitation of the research is that the dynamic scheduling
scenario of time-varying resources was not fully considered.
Subsequently, a Markov strategy scheduling algorithm was
used to construct a dynamic model of the industrial
environment. Based on the environmental resource changes,
resource allocation strategies and scheduling strategies were
dynamically predicted to reduce time and resource costs in
industrial scenarios.

REFERENCES

[1] Li H, Li X, Liu X, Bu X, Li H, Lyu Q. Industrial internet platforms:
applications in BF ironmaking. Ironmaking & Steelmaking, 2022
49(9):905-916.

[2] Dziubinski K, Bandai M. Bandwidth Efficient IoT Traffic Shaping
Technique for Protecting Smart Home Privacy from Data Breaches in
Wireless LAN. IEICE Transactions on communications, 2021, 104(8):
961-973.

[3] Salem R B, Aimeur E, Hage H. A Multi-Party Agent for Privacy
Preference Elicitation. Artificial Intelligence and Applications, 2023,
1(2): 98-105.

[4] Mokayed H, Quan T Z, Alkhaled L, Sivakumar V. Real-time human
detection and counting system using deep learning computer vision
techniques. Artificial Intelligence and Applications, 2023, 1(4): 221-229.

[5] Chen M, Zhang L. Application of edge computing combined with deep
learning model in the dynamic evolution of network public opinion in
emergencies. Journal of supercomputing, 2023, 79(2): 1526-1543.

[6] Liu L, Zhao M, Yu M, Jan M A, Lan D, Taherkordi A. Mobility-Aware
Multi-Hop Task Offloading for Autonomous Driving in Vehicular Edge
Computing and Networks. IEEE transactions on intelligent transportation
systems, 2023, 24(2): 2169-2182.

[7] Meneguette R, De Grande R, Ueyama J, Rocha Filho, G P, Madeira E.
Vehicular Edge Computing: Architecture, Resource Management,
Security, and Challenges. ACM computing surveys, 2023, 55(1): 4-50.

[8] Shi W, Wu J, Chen L, Zhang X, Wu H. Energy-efficient cooperative
offloading for mobile edge computing. Wireless networks, 2023, 29(6):
2419-2435.

[9] Gao J, Kuang Z, Gao J, Zhan L. Joint Offloading Scheduling and
Resource Allocation in Vehicular Edge Computing: A Two Layer
Solution. IEEE Transactions on Vehicular Technology, 2023, 72(3):
3999-4009.

[10] Chen Y, He S, Jin X, Jin X, Wang Z, Wang F, Chen L. Resource
utilization and cost optimization oriented container placement for edge
computing in industrial internet. Journal of supercomputing, 2023, 79(4):
3821-3849.

[11] Sharma P, Jindal R, Borah M D. Blockchain Technology for Cloud
Storage: A Systematic Literature Review. ACM computing surveys,
2021, 53(4):89-120.

[12] Zhang Q, Zhao Z. Distributed storage scheme for encryption speech data
based on blockchain and IPFS. Journal of supercomputing, 2023, 79(1):
897-926.0.

[13] Nguyen T, Thai M T. Denial-of-Service Vulnerability of Hash-Based
Transaction Sharding: Attack and Countermeasure. IEEE Transactions on
Computers, 2023, 72(3): 641-652.

[14] Zhang Q, Li C, Du T, Luo Y. Multi-level caching and data verification
based on ethereum blockchain. Wireless networks, 2023, 29(2):713-727.

[15] Kong L, Tan J, Huang J, Chen G, Wang S, Jin X, Zeng P. Edge-
computing-driven Internet of Things: A Survey. ACM computing
surveys, 2023, 55(8): 1-41.

[16] Li X, Lan X, Mirzaei A, Bonab M J A. Reliability and robust resource
allocation for Cache-enabled HetNets: QoS-aware mobile edge
computing. Reliability Engineering & System Safety, 2022, 220(4):
108272-108287.

[17] Rivera A V, Refaey A, Hossain E. A Blockchain Framework for Secure
Task Sharing in Multi-Access Edge Computing. IEEE Network: The
Magazine of Computer Communications, 2021,35(3): 176-183.

[18] Zhang H, Wang R, Sun W, Zhao H. Mobility Management for
Blockchain-based Ultra-dense Edge Computing: A Deep Reinforcement
Learning Approach. IEEE Transactions on Wireless Communications,
2021, 20(11): 7346-7359.

[19] Chen J, Pu C, Wang P, Huang X, Liu Y. A blockchain-based scheme for
edge–edge collaboration management in time-sensitive networking.
Journal of King Saud University-Computer and Information Sciences,
2024 36(1): 101902-101918.

[20] Liu R, Yu X, Yuan Y, Ren Y. BTDSI: A blockchain-based trusted data
storage mechanism for Industry 5.0. Journal of King Saud University -
Computer and Information Sciences, 2023,35(8): 101674-101683.

[21] Li G, Dong Y, Li J, Song X. Strategy for dynamic blockchain construction
and transmission in novel edge computing networks. Future Generation
Computer Systems, 2022, 130(5): 19-32.

[22] Yasir M, uz Zaman S K, Maqsood T, Rehma, F, Mustafa S. CoPUP:
Content popularity and user preferences aware content caching
framework in mobile edge computing. Cluster Computing, 2023, 26(1):
267-281.

[23] Yin Z, Xu F, Li Y, Fan C, Zhang F, Han G, Bi Y. A multi-objective task
scheduling strategy for intelligent production line based on cloud-fog
computing. Sensors, 2022, 22(4): 1555-1575.

[24] Fu X, Sun Y, Wang H, Li H. Task scheduling of cloud computing based
on hybrid particle swarm algorithm and genetic algorithm. Cluster
Computing, 2023, 26(5): 2479-2488.

