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Abstract—Aiming at edge computing nodes' limited computing 

and storage capacity, a two-layer task scheduling model based on 

blockchain and task cache was proposed. The high-similarity task 

results were cached in the edge cache pool, and the blockchain-

assisted task caching model was combined to enhance system 

security. The genetic evolution algorithm was used to solve the 

minimum cost that the optimal scheduling model can obtain. The 

genetic algorithm’s initialization and mutation operations were 

adjusted to improve the convergence rate. Compared with 

algorithms without cache pooling and blockchain, the proposed 

joint blockchain and task caching task scheduling model reduced 

the cost by 9.4% and 14.3%, respectively. As the capacity space of 

the cache pool increased, the system cost gradually decreased. 

Compared with the capacity space of 3GB, the system cost of 

10Gbit capacity space was reduced by 10.6%. The system cost 

decreased as the computing power of edge nodes increased. 

Compared with edge nodes with a computing frequency of 8GHz, 

the nodes cost at 18GHz was reduced by 36.4%. Therefore, the 

proposed edge computing task scheduling model ensures the 

security of task scheduling based on reducing delay and control 

costs, providing a foundation for modern industrial task 

scheduling. 
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I. INTRODUCTION 

With the developing 5G communication and the Internet of 
Things, many intelligent devices with computing power are 
widely used in industrial automation systems. The rapid 
increase of intelligent equipment in factories leads to the 
explosive growth of industrial Internet data [1]. Due to local 
devices' limited computing resources and storage capacity, 
some resource-intensive tasks will be scheduled to cloud 
servers for processing. However, when cloud servers are 
deployed far from local devices, the interaction between tasks 
and data can result in significant latency, posing a risk of data 
leakage and attack [2-4]. The introduction of edge computing 
into the industrial Internet can satisfy the real-time demand, 
security, and reliability in the industry. By scheduling tasks to 
the edge, industrial equipment has sufficient resources to handle 
more complex tasks [5-7]. When the resource results of a task 
have high similarity, deploying task caching can reduce 
repeated resource calls [8]. Gao et al. proposed a case layer 
solution of joint unloading scheduling and resource allocation 
to reduce task delay and energy consumption in on-board edge 
computing, combining deep Q network and gradient descent 
method. This algorithm effectively reduced latency and energy 
consumption [9]. Chen et al. built an edge computing container 
deployment model for the delay-sensitive problem of tasks. 

Through ameliorating the initialization, crossover, and other 
operations of Genetic Algorithm (GA), the optimal deployment 
of containers was achieved. Compared with traditional 
algorithms, the deployment cost of this model was reduced by 
22% [10]. Although edge computing and task caching have 
many advantages, the diversity of servers brings an additional 
burden to task scheduling. 

Blockchain is a distributed accounting technology that 
integrates multiple technologies such as distributed storage, 
cryptography, and consensus mechanisms. It can ensure data 
security, tamper resistance and privacy, and can well match 
distributed edge computing [11-13]. The introduction of 
blockchain into a cloud-edge-end three-layer architecture can 
enhance industrial security. The collaboration between edge 
servers and blockchain enables secure data transmission and 
reliable storage, reducing computational costs and latency [14-
16]. Rivera A V et al. proposed a secure task-sharing blockchain 
framework to enhance user experience. They set up a trusted 
cooperation mechanism in multi-access edge computing and 
designed cooperation incentives to speed up computing. This 
framework ensured trust between servers and enabled real-time 
task sharing [17]. Zhang H et al. put forward a mobility 
management scheme using blockchain to address the security 
of unloading tasks. They used Lyapunov optimization 
algorithm, combined with base station wireless handover and 
service migration decisions, to achieve dynamic optimization 
of the target. This solution effectively reduced the latency and 
failure rate of computing tasks [18]. Chen J et al. proposed a 
decentralized management scheme based on blockchain to 
address the transparency in collaboration benefits. They used 
diligent proof and delegated diligent proof consensus 
mechanisms, combined with sequential decision-making and 
Byzantine fault-tolerant algorithms, to improve the time-
sensitivity of edge collaboration. This scheme had high security 
and fault tolerance [19]. Liu R et al. proposed a trusted data 
storage mechanism using blockchain to address data 
management security in the industry. Combining sharding and 
a two-layer Merkle tree structure, they utilized random low-
density parity correction code encoding to reduce storage 
pressure on lightweight nodes. This mechanism effectively 
reduced the network load of nodes and improved data storage 
security [20]. Li G et al. proposed edge bandwidth and storage 
optimization algorithms to overcome network overload caused 
by distributed transmission. They built a dynamic blockchain 
and combined it with a network simulator to construct 
blockchain. This algorithm improved both transmission 
bandwidth efficiency and blockchain construction efficiency 
[21]. 
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The computing power and storage capacity of edge servers 
are stronger than those of local devices, and edge computing 
has lower task latency. With the explosion of industrial task data, 
the resources of edge servers are gradually scarce, and the task 
scheduling problem of edge computing is NP hard. Although 
there are many researches on edge computing task scheduling, 
there are some problems. For multi-objective optimization 
problems, most studies are based on the optimization objectives 
of time delay and energy consumption to develop task 
schedules. For complex and repetitive tasks in the industrial 
Internet, task similarity should be taken into account to improve 
edge computing capability and efficiency. For data security 
issues, most studies mainly focus on data security and privacy, 
with little consideration given to the latency and energy 
consumption caused by them. Delay and energy consumption 
should be included, and the best outcome plan should be 
balanced between performance and security levels. Therefore, 
the research will combine the blockchain, edge computing and 
task cache, and propose a security enhanced edge computing 
task scheduling method based on the blockchain and task cache. 
On the basis of ensuring data security, appropriate task 
scheduling strategies will be developed to give full play to 
various technical advantages to meet the demand for delay, cost 
and security in the industrial scenario. Faced with the enormous 
security and resource pressures brought by massive data on 
industrial equipment, an optimization model is established to 
ensure the secure scheduling of tasks to the greatest extent 
possible. Considering the problem of high task similarity in 
industrial Internet, the research adopts the improved least 
access frequency algorithm to improve the hit rate of cache 
content. It combines block chain technology with edge 
computing to solve the problem of data leakage at edge nodes. 
As a supplement to the cache pool, blockchain increases task 
cache capacity and reduces task processing time. Therefore, the 
task scheduling method proposed in the study provides 
technical support for industrial task scheduling. 

II. METHODS AND MATERIALS 

To reduce the delay and cost of edge computing in the 
industrial Internet, this research combines task caching and 
blockchain to design new algorithms to improve the hit rate of 
task caching. Blockchain and task cache are introduced into 
edge computing and combined with task scheduling strategy to 
improve the processing efficiency of tasks, reduce costs, and 
achieve reliable data storage and low overhead of task 
scheduling. 

A. Blockchain-Based Edge Caching Model 

The rapid development of intelligent devices makes the 
industrial Internet have higher requirements for resources. Due 
to local devices' limited battery, storage, and computing 
resources, offloading computing tasks to the cloud layer can 
cause additional network latency and bandwidth consumption. 
Therefore, adding an edge server layer between the cloud layer 
and the local device layer can alleviate the burden on the cloud 

network. Fig. 1 shows a blockchain-based cloud-edge-end 
system, which is divided into three layers, including cloud 
servers, edge servers, and local devices. 

The local device layer is composed of industrial equipment 
and has minimal computing and information organization 
capabilities. The edge server layer is composed of edge devices 
with strong computing and caching capabilities, which can be 
used for mining in blockchain networks. The mining process 
consists of three steps: (1) Edge nodes add cached results to the 
blockchain and increase the task type of the cache pool. (2) 
When the task is scheduled to the edge server, this structure 
searches a cache pool and returns this result directly if it is 
found. If it is not found, it performs calculations locally and 
updates the cache pool and blockchain data. (3) For every new 
task type added to the edge node, it can receive corresponding 
rewards, increasing the interest of the edge server in mining. A 
cloud server layer owns powerful data storage and computing 
capabilities. When the total data in the blockchain network 
exceed its capacity, this system can upload some data requests 
to the cloud. These data in the industrial Internet are highly 
similar and have a large number. Storing relevant task data into 
the cache pool can speed up data processing. To ensure the 
cache pool security, the data source can only be task results 
processed by edge nodes and stored results in the blockchain. 
Fig. 2 shows the cache pool’s data source. 

The cache hit rate, task complexity, and promotion 
performance are important factors to measure the effectiveness 
of cache strategies, and cache strategies should be selected 
according to actual scenario needs. Based on the changes in 
tasks in industrial production, the Least Frequently Used (LFU) 
algorithm in traditional caching strategies is improved. A Task 
Caching of Improved LFU (TC-ILFU) algorithm is put forward 
to elevate the cache hit rate. The core of LFU is to prioritize the 
elimination of cache data with the lowest frequency of use. Fig. 
3 shows the main idea of ILFU-TC. This algorithm establishes 
a time task frequency table, records the hit rate data of cached 
task content over a period of time, and determines whether new 
tasks can be added to the cache pool based on the hit rate. 
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Local device 
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Fig. 1. Cloud-edge-end scheduling system based on blockchain. 
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Fig. 2. Cache pool data source. 
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Fig. 3. The main ideas of improved LFU. 

The time task frequency table records the task requirements 
for a period of time. When a new task appears in the edge cache 
pool, the first step is to determine whether it has been cached. 
For tasks belonging to the cache pool, the hit frequency is 
directly increased by 1, and the time task frequency table is 
updated. If the task has not appeared in the cache pool, it is 
determined whether there is sufficient space and time based on 
the cache pool capacity. If the cache capacity space is sufficient, 
the hit frequency is set to 0, and the time task frequency table is 
updated. If the cache capacity space is insufficient, the system 
will replace the task with the minimum number of hits in the 
cache pool with the new task. At this point, the hit frequency is 
set to 0, and the time task frequency table is updated. The 
system calculates the hit rate during this period and compares it 
with the set cache threshold. If the hit rate is greater than this 
cache threshold, the task content cache matches the task's 
characteristics. If the hit rate is less than the cache threshold, 
this system will select data with higher task frequency from the 
task frequency table at that time and import it into the cache 
pool to update the cache pool data. The blockchain network can 
bring safe and reliable cache data to edge computing and ensure 
that edge nodes can safely exchange information. In blockchain, 
the probability of orphan blocks being generated is represented 
by Eq. (1). 

 
1 nS

orpP e


 
               (1) 

In Eq. (1), 
orpP  represents the probability of orphan blocks. 

  is a fixed value, 1/ 600  .  nS  is a function of 

block size. The probability of generating new task blocks is 
represented by Eq. (2). 
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In Eq. (2), 
newP  represents the probability of a new task 

block. 
nP  is the hashing capability of blockchain networks. 

H  is the blockchain network’s hash power. The reward for 
mining new task blocks at edge nodes is represented by Eq. (3). 

 nSrew

n nR R e






             (3) 

In Eq. (3), rew

nR  represents the mining reward. R  is a 

task set. 

B. Edge Computing Task Scheduling Algorithm 

Due to local devices' limited battery capacity and computing 
resources, tasks are scheduled to edge servers for processing 
within the maximum latency allowed range. The local device 
generates tasks, and the task scheduling strategy follows 
constraints represented by Eq. (4). 

 0,1 , ,ijx i N j M  
             (4) 

In Eq. (4), 
ijx  is the scheduling location of the task. 
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1ijx   is the calculation of task i  on edge server j . 

0ijx   means the processing of tasks on local devices. N  is 

the total local device. M  is the total edge server. Blockchain 
is a decentralized distributed storage ledger with high security 
and certainty. The limited capacity of the cache pool requires a 
diverse range of task types to be cached, ensuring that task 
scheduling has multiple selectivity. According to the task 
scheduling strategy, when a task is calculated on an edge server, 
this server needs sufficient computing power to process the task 
and return this result to the device. The uplink rate of local 
device scheduling tasks to edge servers is approximated using 
Shannon's formula, represented by Eq. (5). 

 2 2 2
log 1 log 1

a

ij i i

ij ij

P h r
V B P B



 
    
 
      (5) 

In Eq. (5), 
ijV  represents the transmission rate of local 

device i  scheduling tasks to edge server j . B  is the 

bandwidth.   is the signal-to-noise ratio. 
ijP  is the 

transmission capacity of the device i . 
ih  is channel 

interference. 
a

ir


 is path decay. 2  is the power of 

Gaussian white noise. According to the task attributes, the 
upstream time for scheduling tasks from local devices to edge 
servers is represented by Eq. (6). 
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In Eq. (6), 
ijT  represents the transmission delay from the 

local device scheduling task to the edge server. 
ijr  is the local 

device’s task data scale. The upload energy consumption of 
local devices is represented by Eq. (7). 
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In Eq. (7), upE  represents the upload energy 

consumption of the local device.   is the transmission 

amplifier efficiency of the device. Local device consumption is 

 1 1 0, ,l l lE e e e . 
1

le  is idle local devices' energy consumption. 

0

le  represents local computing tasks' energy consumption. 
1

le  

means local device transmission's energy consumption. The 
task is represented by Eq. (8) when processing on the local 
device. 
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                  (8) 

In Eq. (8), l

iT  represents the calculation delay of the local 

device. 
ic  is the number of chips. l

if  represents the 

computing power of local devices. The energy consumption of 
terminal devices for processing tasks is represented by Eq. (9). 

 
2

0

l

i wjE f r
                (9) 

In Eq. (9), 
0E  represents the terminal calculation energy 

consumption.   is a chip architecture coefficient. 
wjr  is the 

demand for computing power. Local device generates tasks. 
According to the task scheduling strategy, the tasks are 
offloaded to the edge server for computation, and edge caching 
and blockchain based edge caching models are established. 
When there is content cache in the cache pool, retrieve cached 
data according to task indexing requirements. When data exist, 
the system directly distributes cached results. The task 
processing time is represented by Eq. (10). 

 se

1

lect

ijT T T n 
             (10) 

In Eq. (10), 
1T  represents the processing time of the task 

in the cache pool.  se lectT n  means data retrieval time. n  

is the cache data size. The energy consumption of the terminal 
server is represented by Eq. (11). 

1 1 ( )l select

upE E e T n 
            (11) 

In Eq. (11), 
1E  means the terminal server's calculated 

energy consumption in the cache pool. The cache pool's cache 
resources are limited. The edge caching model based on 
blockchain serves as an extension of the system cache pool. In 
blockchain, the processing time of tasks is represented by Eq. 
(12). 

 2 1

find select find

ijT T T T T n T    
     (12) 

In Eq. (12), 
2T  means the task processing time in the 

blockchain. 
findT  is the retrieval time. The terminal server's 

energy consumption is represented by Eq. (13). 

2 1 1 1 1( )l find l select l find

upE E e T E e T n e T      
   (13) 

In Eq. (13), 
2E  represents the computational energy 

consumption of the terminal server in the blockchain. The 
system does not retrieve the required task results in both the 
edge cache pool and the blockchain network. Under the 
constraint of delay, task computation can be performed on edge 
servers. The task calculation time is represented by Eq. (14). 
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In Eq. (14), 
e

iT  represents the processing time of edge 
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node i . 
e

if  is the computing power of i . The task 

processing time is represented by Eq. (15). 

 3 2

edge select find e

ij iT T T T T n T T     
    (15) 

In Eq. (15), 
3T  represents the task’s total processing time. 

Edge nodes' energy consumption is represented by Eq. (16). 

3 1 3

l

upE E e T 
               (16) 

In Eq. (16), 
3E  represents the computational energy 

consumption of the edge server. In the industrial Internet, the 
cache task scheduling strategy is implemented by considering 
time constraints, device computing capacity and storage 
capacity. The cost of blockchain rewards and task scheduling 
strategies constitutes the total system cost. To minimize task 
scheduling strategy's cost consumption, an optimal system cost 
can be obtained, represented by Eq. (17). 
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In Eq. (17),  , ,allE x y z  means the system's total energy 

consumption.  , ,allF x y z  is the optimal cost. y  and z  

are both the positions of task results, and  , 0,1y z .   is 

a conversion coefficient between energy consumption and cost. 
Edge computing task scheduling strategy for task caching 
belongs to multi-constraint optimization problem. As the tasks 
and cached data increase, the solution space of tasks also 
increases. Finding the optimal feasible solution in a vast 
solution space is crucial. Therefore, genetic evolutionary 
algorithms are used to solve for the lower cost that the optimal 
scheduling strategy can achieve. Fig. 4 shows the Task 
Scheduling Algorithm based on Genetic Optimization (TSA-
GO). Firstly, the task is initialized. The fitness function is used 
to determine the individual superiority or inferiority. By 
combining selection, crossover, and mutation operations, the 
optimal solution of the scheduling strategy is solved, achieving 
low-cost control. 
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Fig. 4. Task scheduling strategy based on differential genetic evolution. 

The task scheduling location adopts binary encoding, with 

0 and 1 indicating that the task is executed on the local device 
and edge server, respectively. During initialization, TSA-GO 
collects task deadlines, cache status, power, and device 
computing power to determine task resource requirements and 
determine task execution locations. The fitness function is 
determined by blockchain rewards and task scheduling 
strategies, and preliminary feasible solutions that meet the 
conditions are obtained. This system uses roulette wheel to 
select individuals with high fitness and combines single-point 
crossover to reduce the damage of crossover to the 
predetermined population. To prevent ineffective mutations in 
the algorithm, this study evaluates the mutated nodes. Random 
tasks in the task sequence serve as mutation points, and the 
probability of individual mutation is used to determine whether 
the task is mutated. The demand for resources in a task serves 
as a mutation point, and the mutation threshold is used to 
determine whether to mutate. 

III. RESULTS 

This experiment verified the edge computing task 
scheduling algorithm based on blockchain and task cache. 
Firstly, an analysis was conducted on the impact of task cache 
pools and blockchain on costs. Subsequently, TC-ILFU was 
compared and analyzed with other caching algorithms. Finally, 
the performance of TSA-GO was analyzed under different task 
scheduling strategies and compared with other optimization 
algorithms. 

A. Experimental and Analysis of Edge Caching Model Based 

on Blockchain 

To test blockchain based TC-ILFU, this experiment 
compared TC-ILFU with LFU, Least Recently Used (LRU) 
algorithm, and First in First Out (FIFO) algorithm. TC-ILFU 
was analyzed in terms of cost and hit rate. Table Ⅰ shows the 
experimental parameters. 

In Table Ⅰ, the computing power of local devices was the 
weakest, while the computing power of edge servers increased 
but did not exceed that of cloud computing servers. In Fig. 5, 
this experiment compared the effects of task cache pool and 
blockchain on system costs with and without cache pool and 
blockchain cache. 

TABLE I. EXPERIMENTAL PARAMETER SETTINGS 

Parameter Value 

Computing frequency of Local device 1GHz 

Idle power of local devices 0.3W 

On-load power of local devices 0.9W 

Computing frequency of edge servers 4GHz 

Computing frequency of cloud servers 12GHz 

Number of tasks [100, 200] 

Task scale [20, 40] Mbit 

Maximum tolerance time for tasks [0.1, 5] s 

Wireless channel bandwidth 18MHz 

Population size 100 

Channel noise -100dpm 

Iterations 1400 
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Fig. 5. The impact of cache pool and blockchain on costs. 

In Fig. 5(a), as the iteration increased, the cost gradually 
decreased. The average cost of a task cache pool was 435$, and 
the average cost of a non-cache pool was 480$. Compared to 
the situation without a cache pool, the cost with a cache pool 
was reduced by 9.4%. This is because the system only has the 
cost of task upload and edge computing, and the task cache pool 
can effectively reduce the cost of edge computing. In Fig. 5 (b), 
the average cost with blockchain caching was 450$, and the 
average cost without blockchain caching was 525$. The cost of 
having no blockchain cache was about 1.2 times that of having 
blockchain cache. This is because blockchain can backup all 
cached results, ensuring data consistency and immutability, 
improving the reliability and security of system data. Therefore, 
the introduction of cache pool and blockchain in edge 
computing can effectively reduce costs and save the cost of 

industrial Internet. Fig. 6 shows the impact of cache pool 
capacity space on cost under the same workload. 

In Fig. 6(a), when the capacity space was 3GBit, 5Gbit, 
8Gbit, and 10Gbit, the average cost of the system was 508$, 
495$, 483$, and 454$. Compared to the capacity spaces of 3GB, 
5Gbit, and 8Gbit, the cost of 10Gbit capacity space was reduced 
by 10.6%, 8.3%, and 6.0%. The larger the capacity space, the 
lower the system cost. In Fig. 6(b), as the capacity space of the 
cache pool increased, the system cost gradually decreased. This 
is because the cost distribution varies depending on the type of 
task. This experiment tested the impact of TC-ILFU on cost and 
hit rate in a fixed cache pool, comparing TC-ILFU with LFU, 
LRU, and FIFO. Fig. 7 shows the comparison results of cost 
and hit rate for different caching algorithms. 
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Fig. 6. The impact of cache pool capacity space on cost. 
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Fig. 7. Cost and hit rate of four caching algorithms. 
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In Fig. 7(a), as the iteration increased, the cost of all four 
caching algorithms decreased. The average cost of TC-ILFU, 
LFU, LRU, and FIFO was 478$, 500$, 489$, and 497$. 
Compared to LFU, LRU, and FIFO, TC-ILFU reduced costs by 
4.4%, 2.2%, and 3.8%. The time task frequency table avoided 
the impact of frequently accessed data in the past on the current 
cache pool data and improved the task hit rate. In Fig. 7(b), the 
average hit rate of TC-ILFU, LFU, LRU, and FIFO was 0.56, 
0.49, 0.53, and 0.50. Compared with LFU, LRU, and FIFO, TC-
ILFU improved hit rate by 14.3%, 5.7%, and 12.0%. When the 
task was 50, the hit rate of TC-ILFU and LFU was consistent. 
This is because the repetition rate of task data is low in a 
relatively short period of time. As the repetitive tasks increase, 
the hit rate of TC-ILFU gradually increases. 

B. Experiment and Analysis of Edge Computing Task 

Scheduling Algorithm 

This experiment compared all local task scheduling 
strategies (All-local), all edge task scheduling strategies (All-
edge), GA, Simulated Annealing (SA), and Hill Climbing (HC) 
to analyze TSA-GO from the perspectives of system latency, 
energy consumption, cost, and runtime. Fig. 8 shows the time 
and energy consumption of the system under different task 
scheduling strategies. 

From Fig. 8(a), the average latency of All-local, All-edge, 
and TSA-GO was 600ms, 408ms, and 332ms. All-local had the 
highest latency, with all tasks being executed on local devices, 
resulting in task loss due to limited resources and increasing 
task processing time. TSA-GO effectively reduced latency by 
jointly processing tasks with local devices and edge servers. In 
Fig. 8(b), the average energy consumption of All-local, All-
edge, and TSA-GO was 572J, 526J, and 272J. Compared with 
All-local and All-edge, TSA-GO reduced energy consumption 
by 52.4% and 48.3%, respectively. TSA-GO communicated 
resources through task cache pools and blockchain, effectively 
reducing the additional consumption caused by task growth. Fig. 
9 shows the cost and time comparison of different algorithms. 

In Fig. 9(a), as the iteration increased, the costs of all four 
algorithms decreased. The average cost of TSA-GO, GA, SA, 
and HC was 443$, 472$, 506$, and 508$, respectively. 
Compared with GA, SA, and HC, the cost of TSA-GO 
decreased by 6.1%, 12.5%, and 12.8%. This is because GA 
randomly generates a large number of solutions, increasing the 

solution space and making it difficult to find the optimal 
solution. SA belongs to completely greedy algorithms, and each 
time the current optimal solution is selected, only local optimal 
solutions can be searched. HC belongs to simple greedy 
algorithms, which select an optimal solution in the nearby 
solution space as the current solution until reaching a local 
optimal solution. TSA-GO restricts task initialization and 
reduces algorithm optimization time. Restricting mutation 
operations to avoid useless mutations can improve convergence 
rate. In Fig. 9(b), the running time of TSA-GO, GA, SA, and 
HC was 25600ms, 28880ms, 46680ms, and 35000ms, 
respectively. SA had the longest running time. The running time 
of TSA-GO and GA was moderate. TSA-GO searched for the 
optimal solution faster. This is because the optimization time of 
the algorithm is reduced when initializing the population. To 
further validate TSA-GO, experiments were conducted on 
factors such as the computing power of edge servers and the 
transmission rate of channels that affect system costs. Fig. 10 
shows the results of the impact of different computing power 
on costs. 

In Fig. 10(a), with the increase of edge computing frequency, 
the system cost gradually decreased. When the calculation 
frequency of edge nodes was 8GHz, 10GHz, 12GHz, 15GHz, 
and 18GHz, the average system cost was $330, $288, $245, 
$231, and $210, respectively. Compared to edge nodes with a 
computing frequency of 8GHz, the cost of nodes with an 
18GHz frequency was reduced by 36.4%. In Fig. 10 (b), the 
cost reduction rate in the channel rates of 8-10GHz, 10-12GHz, 
12-15GHz, and 15-18GHz range was 0.14, 0.19, 0.07, and 0.08, 
respectively. Cost convergence did not change regularly with 
the increase of edge computing frequency, and the cost 
reduction rate remained within 20%. Fig. 10 shows the impact 
of different channel rates on system costs. 

In Fig. 11(a), as the channel rate increased, the tasks 
uploaded to the edge server increased, and cost control became 
more optimized. When the channel upload rate was 5M/s, 8M/s, 
10M/s, 12M/s, and 15M/s, the average system cost was $465, 
$338, $302, $270, and $250, respectively. In Fig. 11(b), the cost 
reduction rate was 0.31, 0.13, 0.09, and 0.10 in the channel rates 
of 5-8M/s, 8-10M/s, 10-12M/s, and 12-15M/s, respectively. As 
the channel rate increased, the cost reduction rate gradually 
stabilized and remained around 10%. 

1000

20

800

600

400

200

0 30 40 50 60 70 80 90 100

Number of tasks

(a) System latency

L
a
te

n
c
y

(m
s)

1000

20

800

600

400

200

0 30 40 50 60 70 80 90 100

Number of tasks

(b) System energy consumption

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

(J
)

All-local

All-edge

TSA-GO

All-local

All-edge

TSA-GO

 

Fig. 8. Cost and running time of four algorithms. 
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Fig. 9. Cost and elapsed time of four algorithms. 
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Fig. 11. Cost of five channel rates. 

IV. DISCUSSION AND CONCLUSION 

A. Discussion 

To solve the transmission bandwidth limitation and data 
privacy threat existing in the industrial Internet, the research 
proposed to schedule the task to the edge server for processing 
to realize the real-time and security of data in industrial 

production. However, traditional task scheduling algorithms do 
not fully utilize edge cache resources, which can easily lead to 
the leakage of private data. Therefore, this research proposed a 
security enhanced edge computing task scheduling method 
based on blockchain and task cache. Firstly, the edge caching 
model of blockchain was utilized to cache the calculation 
results of multiple repetitive tasks in the intelligent factory, 
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reducing task latency. The task scheduling of coupling task 
caching and blockchain assisted caching was modeled as a cost 
minimization problem under multiple constraints. Meanwhile, 
the genetic optimization algorithm was combined to achieve 
optimal cost control. Yasir M and other researchers proposed a 
content caching strategy based on mobile edge computing, 
which significantly improved the cache performance of edge 
servers and increased the cache hit ratio [22]. The experimental 
results of this study showed that the cost of the TC-ILFU 
algorithm was reduced by 4.4%, and the hit rate was increased 
by 14.3%, which is similar to the results of Yasir M and other 
researchers, further confirming that the improved LFU 
algorithm can effectively improve the cache hit rate. Yin Z's 
research team has developed a multi-objective task scheduling 
strategy for intelligent production lines, which has a high task 
completion rate and can effectively reduce task service delays 
and energy consumption [23]. The experimental results of this 
study show that the TSA-GO algorithm reduces latency and 
energy consumption by 44.7% and 52.4%, respectively, which 
is consistent with the results of Yin Z's research team. The main 
reason is that the cloud edge end mode used in industrial task 
scheduling can effectively reduce cloud task processing 
overhead and transmission delay. Scholars such as Fu X have 
improved the overall completion time and convergence 
accuracy of cloud tasks using a hybrid particle swarm 
optimization genetic task scheduling algorithm [24]. This study 
shows that the TSA-GO algorithm reduces the cost by 6.1% and 
improves the system running time by about 10%, which is 
different from the research results of scholars such as Fu X. 
This is because scheduling tasks to edge services can effectively 
reduce cloud computing costs and accelerate task processing 
speed. 

B. Conclusion 

In conclusion, the research proposes that the security-
enhanced edge computing task scheduling method based on 
blockchain and task cache can effectively protect data privacy, 
reduce latency, reduce costs, and improve system security. The 
limitation of the research is that the dynamic scheduling 
scenario of time-varying resources was not fully considered. 
Subsequently, a Markov strategy scheduling algorithm was 
used to construct a dynamic model of the industrial 
environment. Based on the environmental resource changes, 
resource allocation strategies and scheduling strategies were 
dynamically predicted to reduce time and resource costs in 
industrial scenarios. 
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