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Abstract—This paper presents a novel approach for enhancing 

the visual quality of underwater images using various spatial 

processing techniques. This research addresses the common issues 

encountered in underwater imaging, such as color distortion, low 

clarity, low contrast, bluish or greenish tints caused by light 

scattering and absorption, and the presence of underwater 

organisms. To solve these problems, we utilize various image 

processing methods such as white balancing, Contrast Limited 

Adaptive Histogram Equalization (CLAHE) in Lab and HSV 

color spaces, sharpening, weight map generation, and multiscale 

fusion. The effectiveness of the proposed approach is evaluated 

quantitatively using mean squared error (MSE), peak signal-to-

noise ratio (PSNR), and structural similarity index (SSIM). The 

results indicate that the optimal CLAHE parameters are a block 

size 4x4 and a clip limit 1.2. These parameters yielded an MSE 

value of 0.7594, a PSNR value of 20.7121, and an SSIM value of 

0.8826, demonstrating superior performance compared to 

previous research. A qualitative evaluation was also conducted 

using eight respondents based on overall visual quality, color 

fidelity, and contrast enhancement. The assessment results 

demonstrate satisfactory outcomes, with a mean score of 4.3278 

and a standard deviation of 0.7238. Overall, this research 

demonstrates that effective and efficient enhancement of 

underwater image quality through computational methods can be 

achieved using simple techniques with appropriate parameters 

and placement, thereby enabling better scientific research and 

exploration of the underwater world. 
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I. INTRODUCTION 

Underwater environments are renowned for their stunning 
beauty and play a vital role in various technological and 
research fields, such as underwater infrastructure inspection 
and underwater archaeology. However, underwater imaging 
presents significant challenges due to the degradation of image 
quality caused by light absorption and scattering. This often 
results in images with a greenish or bluish tint at certain depths 
[1], which can hinder practical applications like object 
detection and visual exploration, where accurate color 
representation and contrast are crucial. 

Light plays a fundamental role in underwater image quality. 
The higher density of water compared to air leads to substantial 
light absorption, reducing light intensity, contrast, and visibility 
[2]. For instance, red light diminishes after a depth of 4-5 
meters, followed by orange, yellow, green, and blue, leading to 

undesirable color casts [3]. These effects significantly impact 
the accuracy and effectiveness of underwater imaging 
applications. 

In this context, computer vision-based image enhancement 
methods have emerged as effective solutions to address color 
cast and low contrast issues in underwater images. These 
methods provide advantages over traditional restoration 
techniques or deep learning approaches, which often require 
expensive hardware and extensive training datasets [4]. Among 
these methods, Contrast Limited Adaptive Histogram 
Equalization (CLAHE) has shown superior performance in 
enhancing contrast [5]. Despite its effectiveness, challenges 
related to noise and color cast persist. 

This study employs CLAHE in the HSV and Lab color 
spaces. In the HSV model, CLAHE is applied to the saturation 
and value components to enhance color purity and brightness. 
In the Lab model, CLAHE is used on the luminance component 
to recover images without affecting the chrominance, which 
could exacerbate color casts. The proposed approach involves 
correcting color distortion through color balancing, applying 
CLAHE to enhance contrast in the Lab and HSV color spaces, 
and then sharpening and modifying weight maps using 
Multiscale Fusion. This method aims to significantly improve 
the quality of underwater images, contributing to advancements 
in automated image processing technologies. 

This paper is organized as follows: Section II 
comprehensively reviews related works in underwater image 
enhancement, highlighting previous research and existing 
methods. Section III details the proposed method, including 
applying CLAHE and multiscale fusion techniques. Section IV 
presents the experimental results, showcasing the outcomes of 
our proposed method and comparing them with existing 
techniques. Finally, Section V concludes the paper by 
summarizing the key contributions and suggesting potential 
future research directions. 

II. RELATED WORKS 

Improving underwater image quality is a crucial area of 
research due to unique challenges such as color distortion and 
reduced visibility compared to standard images. Various 
techniques have been explored to address these issues, 
including color balancing, sharpening, and contrast 
optimization using Contrast Limited Adaptive Histogram 
Equalization (CLAHE) in different color spaces. CLAHE 
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combined with Discrete Wavelet Transform (DWT) has been 
employed to enhance contrast effectively. While this approach 
is beneficial, it does not entirely resolve noise issues in high-
frequency components [6]. Additionally, applying CLAHE in 
the YIQ and HSI color spaces has demonstrated improvements 
in image quality but introduced added complexity to the process 
[7]. The use of CLAHE in the Lab color space has shown 
significant contrast enhancement, although global illumination 
issues may not be fully addressed [8]. 

Further advancements include the application of CLAHE to 
luminance components in the YCbCr color space, which offers 
good contrast but often requires additional adjustments for 
varying lighting conditions [9]. Moreover, CLAHE applied to 
the L component in the Lab color space, in conjunction with 
edge detection using the Candy method, enhances edge details 
but may not fully improve overall color quality [10]. CLAHE 
applied to HSV images aids in color processing but can result 
in undesirable color casts [11]. Traditional enhancement 
techniques such as gamma correction and histogram 
equalization are beneficial; however, they may fall short in 
addressing image blur [1]. 

Recent approaches utilizing CLAHE-based multiscale 
fusion, combined with white balancing, gamma correction, 
sharpening, and weight map manipulation, have shown 
improvements in image quality. Nevertheless, issues with 
contrast and color cast persist [12]. Integrating Layered 
Difference Representation (LDR) with CLAHE for color 
correction has enhanced color distribution but can impact 
processing speed [13]. Applying CLAHE after white balancing 
and contrast enhancement improves image quality, although 
additional refinement is often necessary for optimal results 
[14]. Overall, the proposed methods demonstrate varying 
strengths and weaknesses in enhancing underwater image 
quality. The proposed research is anticipated to more 
effectively address color correction and noise removal by 
integrating CLAHE in color spaces such as Lab and HSV and 
utilizing multiscale fusion, color balancing, contrast 
optimization, and weight maps for more optimal results. 

III. THE PROPOSED METHOD 

The research method employed in this study comprises 
several stages, as illustrated in Fig. 1. Initially, a white 
balancing process is applied to the underwater image using 
affine transformation based on cumulative histogram statistics 
for each channel in the RGB color space for color correction. 
Prior to white balancing, a compensated red channel process is 
performed to address the loss of the red channel that occurs in 
underwater images. Subsequently, the method alternates among 
different processes: applying the CLAHE method in the Lab 
color space, applying the CLAHE method in the HSV color 
space, and applying the unsharp masking method based on the 
High Pass Filter principle. Finally, Multiscale Fusion is utilized 
to combine the results of white balancing, CLAHE-Lab, and 
CLAHE-HSV images, along with the Laplacian weight map, 
saliency, and saturation. 

To optimize the effectiveness of these methods, various 
parameter values are systematically tested through 
experiments. The goal is to observe how different parameter 
settings affect image quality and determine whether they yield 

optimal results. This optimization process involves evaluating 
parameter values based on the average error across multiple 
images, acknowledging that each image may require different 
settings due to its unique conditions. When an increase in error 
is detected, those parameter values are considered less effective 
and are not pursued further. Conversely, parameter values that 
result in reduced error are further refined and tested until 
improvements become minimal. This iterative approach 
ensures that the most effective parameter values are selected for 
enhancing image quality across diverse conditions. 

 

Fig. 1. Process of  research method. 

A. White Balancing 

White balancing is an important step in correcting color 
casts that appear due to the absorption of colors at specific 
depths, resulting in bluish or greenish images. This process can 
be performed in two steps. First, the compensated red channel 
can be adjusted as in Eq. (1). Second, the RGB channels can be 
processed using the simplest color balance method, which 
neutralizes or equalizes the channels' processing, as in Eq. (2) 
using an affine transformation [15]. The detailed flow is in Fig. 
2. 

𝐼𝑟𝑐(𝑥) =  𝐼𝑟(𝑥) +  𝛼. (𝐼𝑔̅ − 𝐼𝑟̅). (1 − 𝐼𝑟(𝑥)). 𝐼𝑔(𝑥) (1) 

 
Fig. 2. Process of the white balancing algorithm. 
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𝐼𝑟  and  𝐼𝑔 are the red and green color channels, respectively, 

each channel is normalized to the interval [0, 1]. 𝐼𝑟̅  and 𝐼𝑔̅ are 

the mean values of  𝐼𝑟  and  𝐼𝑔. 

Step 1: Calculate the average value for each color channel. 

Step 2: Determine the maximum value of the average for 
each color channel. 

Step 3: Calculate the ratio of each color channel by dividing 
each color by the total mean of the image, as in Eq. (2). 

𝑟𝑎𝑡𝑖𝑜(𝜆) =  
(𝑚𝑒𝑎𝑛(𝐼𝜆)𝜆∈{𝑅,𝐺,𝐵}

𝑚𝑎𝑥

𝑚𝑒𝑎𝑛(𝐼𝜆)
  (2) 

Step 4: Calculate the percentage of the constant "c" for each 
color channel using a value of 0.005, as in Eq. (3). 

𝑐𝑅,𝐺,𝐵 = 0.005 ×  𝑟𝑎𝑡𝑖𝑜(𝜆)             (3) 

Step 5: Determine the 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥  values for each color 
channel and convert them to one dimension. 

Step 6: Calculate the affine transformation using the 
computed values, as in Eq. (4). 

𝑓(𝑥) =  
(𝑥−𝑉𝑚𝑖𝑛)

(𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛)
× 255           (4) 

The cumulative histogram labeled "i" shows the number of 
pixels with low values or values equal to "i." To calculate 𝑉𝑚𝑖𝑛, 
we identify the lowest histogram label with a value greater than 
N x c1 while 𝑉𝑚𝑎𝑥 is the highest histogram label with a value 
lower or equal to N x (1-c2). The pixel interval [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] is 
mapped to the range [0, 255] using an affine transformation 
[15]. 

B. CLAHE Lab Dan HSV 

CLAHE is a local histogram equalization technique that 
enhances contrast in an image by dividing it into sub-images 
and performing contrast enhancement on each sub-image based 
on the characteristics of the pixels surrounding it. After 
equalization, neighboring sub-images are combined using 
bilinear interpolation to eliminate any artificial boundaries in 
the image. Moreover, CLAHE can also mitigate noise in an 
image by constraining the contrast in homogeneous areas. 

CLAHE has two primary parameters: block size and clip 
limit. The block size parameter is used to partition the image 
into sub-images. In contrast, the clip limit parameter reduces 
noise in the image by trimming the histogram at a specified 
value before calculating the Cumulative Distribution Function 
(CDF). These two CLAHE parameters serve to set the quality 
of the enhanced image  [16]. 

The CLAHE method enhances image quality in two color 
spaces: Lab and HSV. In the Lab color space, as illustrated in 
Fig. 3, CLAHE is applied to the Luminance (L) component to 
improve image brightness. After histogram equalization on the 
L component is completed, the L, a, and b components are 
recombined and converted back to RGB, resulting in the 
CLAHE-Lab image. Conversely, in the HSV color space, as 
depicted in Fig. 4, CLAHE is applied to the Saturation (S) and 
Value (V) components, separately or together. Before 
converting back to RGB, a comparison is made to evaluate the 
application of CLAHE to S, V, or both. The evaluation involves 

determining the optimal clip limit and block size based on MSE 
error values. Different images are obtained for each 
combination, with lower MSE values approaching zero, 
indicating better image quality. The general steps of the 
CLAHE method are as follows: 

 
Fig. 3. Process of the CLAHE-Lab algorithm. 

 
Fig. 4. Process of the CLAHE-HSV algorithm. 

Step 1: Divide the image into sub-images or blocks with a 
size M×N. 

Step 2: Normalize the histogram by calculating the image's 
Cumulative Distribution Function (CDF) value. CDF is defined 
as the running sum of the intensity I divided by the number of 
pixels in the image, as in Eq. (5). Here, f is the cumulative 
distribution, N is the maximum pixel value, M is the image size, 
and K is the frequency of occurrence of the pixel value. 

𝑓𝑖,𝑗(𝑛) =  
(𝑁−1)

𝑀
 . ∑ ℎ𝑖,𝑗

𝑛
𝑘=0 (𝐾)            (5) 
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Step 3: Calculate the maximum clip limit value in the 
histogram, as in Eq. (6). The clip limit (CL_ is influenced by an 
independent factor, the clip factor (α), which controls the 
illumination level. The clip factor range is from 0 to 100. Here, 
M is the size of the image region, N is the maximum pixel value 
(256), and Smax is the maximum pixel value in the region. 

𝛽 =  
𝑀

𝑁
 (1 +

𝛼

100
(𝑆𝑚𝑎𝑥 − 1))              (6) 

Step 4: After dividing the image into blocks, perform 
histogram normalization by finding the CDF in each region. 
The probability distribution is found by dividing the frequency 
of occurrence by the region's size. The cumulative distribution 
is obtained by adding the pixel probability distribution to the 
previous pixel value probability. This process is repeated for 
each pixel value in each region. 

Step 5: Find the clip limit value by specifying the clip factor 
within the range of 0 to 100. 

Step 6: Normalize the histogram by multiplying each pixel's 
cumulative distribution by the maximum value of the pixel 
value in the region. 

Step 7: Perform clipping by adding the pixel result from the 
normalization multiplication to the clip limit. If the resulting 
value exceeds the maximum pixel value, which is 255, it is 
replaced with the maximum pixel value. 

Step 8: After equalization, the sub-images are combined 
using bilinear interpolation to eliminate artificial boundaries 
and produce a smoother and better-combined result. 

C. Sharpening 

The method used in this study to enhance image sharpness 
is the unsharp masking method, designed to enhance unclear 
details in the image. The unsharp masking process involves 
several stages, starting with a low-pass filter process that 
produces a blurred image, followed by a high-pass filter that 
enhances the details in the image by subtracting the original 
image from the blurred image. The unsharp masking process 
consists of several stages. Firstly, a low-pass filter process is 
used to create a blurred image. Secondly, a high-pass filter 
enhances image details by subtracting the original image from 
the blurred image. Thirdly, a histogram stretching process is 
implemented to increase or decrease the image contrast by 
expanding or compressing the range of pixel intensity values. 
Finally, a normalized unsharp masking process normalizes 
image sharpness without parameter adjustment. The detailed 
flow of sharpening is shown in Fig. 5. 

𝑆 = (𝐼 + 𝑁 {𝐼 − 𝐺 × 𝐼})/2              (7) 

where, I represents the input or original image, G×I 
represents the blurred image generated by convolving the 
Gaussian filter with the original image, and N represents the 
linear normalization operator that adjusts histogram stretching. 
Operator N shifts and scales all color pixel intensities in the 
input image such that the transformed set of pixel values 
encompasses the full dynamic range. The normalized unsharp 
masking process, which does not require any parameter 
adjustments, appears to be more effective in enhancing image 
sharpness, as indicated by previous studies [1]. 

 
Fig. 5. Process of the sharpening algorithm. 

The unsharp masking process effectively enhances 
sharpness; however, it can result in undesirable halo effects 
caused by excessive sharpening. To overcome this issue, a 
multi-scale fusion strategy was used to minimize artifacts that 
may arise during image merging, producing a final outcome 
free of halo effects. 

D. Weightmap Generation 

After implementing several methods and generating three 
image results, namely CLAHE-Lab, CLAHE-HSV, and 
sharpening, the next step is to create three weights from these 
results. These weights, namely Laplacian Contrast (WL), 
Laplacian Saliency (WS), and Laplacian Saturation (WSat), aim 
to explore the spatial relationship of degraded regions. Each 
pixel weight is generated based on the object's characteristics, 
such as hue, saturation, and contrast [1]. 

1) Laplacian Contrast (WL) computes the global contrast by 

applying the absolute value of the Laplacian filter to each input 

luminance channel. Convolution is run using the Laplacian 

kernel, as in (8), where f(x) represents the input image on the 

Luminance component, and g(x) represents the Laplacian 

kernel. 

𝑊𝐿 =  |𝑓(𝑥) ∗ 𝑔(𝑥)|   (8) 

2) Laplacian Saliency (WS) is used to identify the most 

prominent objects that lack superiority in the underwater scene. 

A saliency map is generated to highlight the relevant areas. To 

detect the saliency level, we employed the Laplacian Saliency 

algorithm based on the regional contrast object proposed [17] 

This algorithm uses histogram-based contrast methods, as in 

Eq. (9) [18], to consider both global contrast and spatial 

coherence. 

𝑊𝑠𝑎𝑙(𝐼𝑝) =  ∑ (𝐼𝑝,𝑞 − 𝐼𝑘̅)
2𝑁

𝑖=1            (9) 

Where, 𝐼𝑝  represents the matrix value in the Lab color 

space, N denotes the number of rows (p) and columns (q), and 
𝐼𝑘̅ signifies the average value of each L, a, and b component. 

3) Laplacian Saturation (WSat) employs a fusion algorithm 

to extract chromatic information from highly saturated areas by 

measuring color intensity values in the image. The presence of 
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saturated colors enhances the clarity of the image. The weight 

map calculates the deviation for each pixel position between the 

color channel and illumination, as in Eq. (10). 

𝑊𝑠𝑎𝑡 =
√[(𝑅𝑘− 𝐿𝑘)2+ (𝐺𝑘− 𝐿𝑘)2+ (𝐵𝑘− 𝐿𝑘)2]

3
    (10) 

Where, 𝐼𝑘  represents the input value of each L, a, and b 

component, and 𝑅𝑘,𝐺𝑘 , 𝐵𝑘 signify the input values of each R, G, 

and B component and luminance 𝐿𝑘 of the kth input (each pixel 
value position). 

Furthermore, the weight map (Wk) is generated by 
combining these three weights using as in Eq. (11) 

𝑊𝑘
̅̅ ̅̅ (𝑥, 𝑦) =  

𝑊𝑘(𝑥,𝑦)+𝛿

∑ 𝑊𝑘(𝑥,𝑦)+𝛿𝑁
𝑘=1

        (11) 

Where Wk represents the normalized weight map for the kth 
input. N is the normalized aggregate map of each pixel, and the 
weight of each pixel in each map is divided by the total weight 
of the same pixel. Here, we set N to a constant coefficient of 2, 
and δ is a constant set to 0.001 to ensure that each weight map 
contributes to the result and prevents it from becoming 0 [19]. 

E. Multiscale Fusion 

Gaussian pyramids are formed for each weight (Wk) in each 
image by convolving each layer of the pyramid with a Gaussian 
filter. We then create Laplacian pyramids for each color 
channel based on the levels determined in each image. Finally, 
a merging process between the Gaussian and Laplacian 
pyramids for each color channel (R, G, and B) based on the 
levels, as in Eq. (12). 

𝑅𝑙,𝑘(𝑥) =  ∑ 𝐺𝑙[𝑊𝑘
̅̅ ̅̅ (𝑥, 𝑦)]𝑘 𝐿𝑙[𝐼𝑘(𝑥, 𝑦)]  (12) 

The formula consists of 𝑅𝑙,𝑘(𝑥) , which represents the 𝑙 
layer of the image pyramid for input image k, 𝐺𝑙[𝑊𝑘

̅̅ ̅̅ (𝑥, 𝑦)], 
which is the input of the pyramid from Gaussian filtering and 
𝐿𝑙[𝐼𝑘(𝑥, 𝑦)] , which is the normalized weight map before 
Laplacian filtering on the image. The pyramid is then 
reconstructed by merging images based on color channels, as in 
Eq. (13), resulting in a new pyramid for each color channel 
(fusion). Normalization is performed on the resulting fusion 
image by scaling it from 0 to 255 with data type uint8. 

𝐸𝑟𝑒𝑠(𝑥, 𝑦) =  ∑ 𝑈[𝑅𝑙,𝑘(𝑥, 𝑦)]𝑙            (13) 

where, 𝐸𝑟𝑒𝑠(𝑥, 𝑦)  is obtained by adding the combined 
contribution from all levels in the Gaussian-Laplacian pyramid, 
where l represents the pyramid level and k represents the 

number of input images. 𝑈[𝑅𝑙,𝑘(𝑥, 𝑦)] represents the output of 

the image pyramid. The merging process can reduce 
unnecessary image information or improve image quality from 
a lower-quality image to a higher-quality image. To evaluate 
the quality of the method used in this study, an error value is 
calculated. Fig. 6 illustrates the detailed flow of the multiscale 
fusion process. 

F. Evaluation Metrics 

Quantitative evaluation will be conducted by calculating the 
Mean Squared Error (MSE), Peak Signal-to-Noise Ratio 
(PSNR) [3], and Structural Similarity Index (SSIM) between 
the processed images and ground truth images. Higher PSNR 

values and lower MSE values indicate better-quality 
underwater images that more closely match the ground truth. In 
comparison, higher SSIM values reflect better image structure 
and texture preservation. Additionally, the proposed method 
will be compared with several existing methods to assess its 
performance [20]. 

To demonstrate the quantitative improvements achieved by 
the proposed method in mitigating color cast and enhancing 
contrast in underwater images, the Universal Image Quality 
Metric (UIQM) will be computed. The UIQM consists of three 
components: the Underwater Image Color Metric (UICM) to 
assess color fidelity, the Underwater Image Sharpness Metric 
(UISM) to evaluate sharpness, and the Underwater Image 
Contrast Metric (UIConM) to measure contrast. The overall 
UIQM value is obtained by aggregating these three metrics. A 
higher UIQM value indicates better image quality and results 
that align more closely with human visual perception. 

Qualitative evaluation will also be performed using a 
Google Forms survey. Respondents will rate the effectiveness 
of the proposed method in producing noticeable improvements 
compared to the original images. Ratings will range from 5 
(Excellent) to 1 (Bad). The average score and standard 
deviation of the survey responses will be calculated to provide 
insights into the method's subjective assessment. 

 
Fig. 6. Process of the multiscale fusion algorithm. 

IV. EXPERIMENTAL RESULTS 

The UIEB dataset consists of 950 underwater images from 
Google, YouTube, and prior research. These images were 
enhanced using nine methods: fusion-based, two-step-based, 
retinex-based, UDCP, regression-based, GDCP, Red Channel, 
histogram prior, and blurriness-based. For each original image, 
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nine enhanced versions were produced using different methods. 
Fifty respondents evaluated these versions to select the best one 
as the reference image (ground truth), without knowing the 
enhancement method used. The effectiveness of the 
enhancement methods was assessed by comparing error values 
across techniques. For quantitative and qualitative evaluation, a 
subset of 90 images from the 950 was used to ensure 
consistency in the comparative analysis [20]. The proposed 
method will be implemented using Python in Google Colab. 

We conducted a series of experiments to optimize the 
CLAHE method by varying the block sizes (2×2, 4×4, 6×6, 
8×8, and 12×12) and clipping limits (ranging from 0.2 to 2.0 
with increments of 0.2). Optimal kernel usage during the 
sharpening stage also contributed to the improved final results 
of the proposed method. After performing white balancing, we 
combined the processed image results from CLAHE-Lab, 
CLAHE-HSV, and Sharpening. The enhancement in 
underwater image quality, based on the average error of the 
proposed method, indicated superior performance. 90 
underwater images were used to determine the best parameter 
combination. 

The experimental results reveal that the optimal clipping 
limit for the CLAHE method is 1.2 with a block size of 4×4, 
yielding the lowest Mean Squared Error (MSE) of 0.7594. 
Comparative values for different block sizes and clipping limits 
are presented in Table I, with corresponding evaluation graphs 
shown in Fig. 7. The Peak signal-to-noise ratio (PSNR) 
obtained was 20.7121. Values for block sizes and clipping 
limits are detailed in Table II, and the evaluation graph is 
illustrated in Fig. 8. Additionally, the Structural Similarity 
Index (SSIM) recorded a value of 0.8826. Details for block 
sizes and clipping limits are shown in Table III, with the 
evaluation graph displayed in Fig. 9. The sharpening process, 
using a 3×3 kernel with a sigma value of 5, was also assessed 
and demonstrated better results compared to other parameter 
settings. 

TABLE I.  EVALUATION RESULTS OF MSE FOR VARIOUS BLOCK SIZES 

DAN CLIP LIMITS 

BLOCK SIZE 
CLIP LIMIT 

1.2 1.4 1.6 1.8 2.0 

2x2 0.7712 0.7808 0.7944 0.8122 0.8316 

4x4 0.7594 0.7648 0.7753 0.7838 0.8009 

6x6 0.7647 0.7686 0.7786 0.7838 0.7967 

8x8 0.7663 0.7676 0.7723 0.7770 0.7896 

12x12 0.7881 0.7860 0.7928 0.7976 0.8078 

BLOCK SIZE 
CLIP LIMIT 

0.2 0.4 0.6 0.8 1.0 

2x2 0.8493 0.8223 0.7980 0.7808 0,7730 

4x4 0.8428 0.8137 0.7904 0.7723 0,7633 

6x6 0.8457 0.8178 0.7956 0.7801 0,7693 

8x8 0.8617 0.8183 0.7952 0.7790 0.7708 

12x12 0.8543 0.8316 0.8127 0.7985 0.7903 

Our findings suggest that the proposed method can compete 
with more complex techniques while requiring lower 
computational resources. As summarized in Table IV, our 
method outperforms several previous studies regarding MSE, 
PSNR, and SSIM. The method's stability against error 
variations is notable, with the proposed method exhibiting more 
excellent stability than competing methods. Although a larger 
clip limit reduces error, excessive values increase error. 

To assess whether color cast and contrast have been 
improved from the original images, we also performed 
quantitative testing using the Underwater Image Quality Metric 
(UIQM), which includes the Underwater Image Colorfulness 
Metric (UICM), Underwater Image Sharpness Metric (UISM), 
and Underwater Image Contrast Metric (UIConM). The UIQM 
evaluation demonstrated improved values compared to the 
original images. The UICM for color was 3.1474, UISM for 
sharpness was 4.4132, UIConM for contrast was 0.2374, and 
UIQM for overall Human Visual System (HVS) assessment 
was 2.2408. The proposed method achieved values of UICM 
4.8774, UISM 5.6065, UIConM 0.3134, and UIQM 2.9136. 

 

Fig. 7. Quantitative Evaluation Results (MSE). 

TABLE II.  EVALUATION RESULTS OF PSNR FOR VARIOUS BLOCK SIZES 

DAN CLIP LIMITS 

BLOCK SIZE 
CLIP LIMIT 

0.2 0.4 0.6 0.8 1.0 

2x2 20.4632 20.5596 20.6266 20.6596 20.6199 

4x4 20.4942 20.6105 20.6893 20.7387 20.7332 

6x6 20.4881 20.6012 20.6817 20.7246 20.7426 

8x8 20.4887 20.6135 20.7063 20.7568 20.7784 

12x12 20.4604 20.5480 20.6128 20.6447 20.6635 

BLOCK SIZE 
CLIP LIMIT 

1.2 1.4 1.6 1.8 2.0 

2x2 20.5583 20.4111 20.2486 20.0791 19.9032 

4x4 20.7121 20.6128 20.4758 20.3496 20.2104 

6x6 20.7370 20.6771 20.5645 20.4765 20.3605 

8x8 20.7818 20.7654 20.6870 20.6299 20.5242 

12x12 20.6331 20.6206 20.5266 20.4426 20.3367 
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Fig. 8. Quantitative Evaluation Results (PSNR). 

TABLE III.  EVALUATION RESULTS OF SSIM FOR VARIOUS BLOCK SIZES 

DAN CLIP LIMITS 

BLOCK SIZE 
CLIP LIMIT 

0.2 0.4 0.6 0.8 1.0 

2x2 0.8728 0.8759 0.8791 0.8814 0.8826 

4x4 0.8737 0.8774 0.8804 0.8823 0.8830 

6x6 0.8740 0.8777 0.8804 0.8805 0.8828 

8x8 0.8728 0.8781 0.8811 0.8824 0.8823 

12x12 0.8740 0.8778 0.8801 0.8806 0.8810 

BLOCK SIZE 
CLIP LIMIT 

1.2 1.4 1.6 1.8 2.0 

2x2 0.8825 0.8811 0.8792 0.8765 0.8735 

4x4 0.8826 0.8813 0.8788 0.8746 0.8726 

6x6 0.8821 0.8804 0.8776 0.8746 0.8713 

8x8 0.8820 0.8802 0.8777 0.8748 0.8709 

12x12 0.8802 0.8785 0.8748 0.8715 0.8673 

 
Fig. 9. Quantitative Evaluation Results (SSIM). 

Furthermore, a qualitative evaluation was conducted 
through a survey of eight respondents from diverse 
backgrounds, including experts such as faculty members 

specializing in underwater image quality enhancement and non-
experts such as students interested in image processing, divers, 
and students outside the field of image processing. Respondents 
rated the images on a scale of 1-5 (very poor to very good). The 
average score and standard deviation for two expert 
respondents were 3.9444 and 0.5953, respectively. For six non-
expert respondents, the average score was 4.4556, with a 
standard deviation of 0.7181. The overall average score for all 
respondents was 4.3278, with a standard deviation of 0.7238. 
The qualitative evaluation categorized the proposed method as 
"Good," with a score of 4, reflecting favorable results from a 
subjective perspective. 

The survey revealed that images with initial color cast and 
low contrast received the highest ratings after enhancement. 
Conversely, images with minimal color cast and high noise but 
already visually good exhibited decreased rating post-
processing, as the method focuses more on correcting color cast 
and blur or lack of detail. Nonetheless, the results from the 
proposed method closely approach ground truth images with 
improved MSE, PSNR, and SSIM values compared to the 
original images. These findings indicate that a more 
straightforward method can yield better images with lower 
computational cost. Spatial methods in underwater image 
processing must be applied carefully, as incorrect method 
placement can worsen subsequent processing stages. Several 
sample images from all tested methods are shown in Fig. 10. 

A qualitative evaluation was performed by surveying the 
proposed method for 90 underwater images and comparing the 
results with the original images. The survey involved eight 
respondents from diverse backgrounds, including experts such 
as professors who specialize in enhancing underwater image 
quality, and non-experts such as students who focus on image 
processing research, students who are passionate about the 
beauty of the underwater world (divers), and students outside 
the image processing field. The respondents rated the results on 
a 1-5 scale (very poor to excellent). 

Based on the calculation of the average score and standard 
deviation from two expert respondents, the average score was 
3.9444 and a standard deviation of 0.5953. The average score 
for the six non-expert respondents was 4.4556, and a standard 
deviation of 0.7181. Overall, the average score for all 
respondents was 4.3278, with a standard deviation of 0.7238. 
The qualitative evaluation results of the proposed method fall 
within the 'Good' category with a score of 4, indicating positive 
outcomes from a subjective perspective. 

Based on the survey results, the image characteristics that 
received the highest scores were images with color cast and low 
contrast, respectively. After enhancement, these images 
appeared significantly better than their original versions. 
Conversely, the original images with little color cast and high 
noise decreased in quality compared to the original because of 
the proposed method's emphasis on improving underwater 
images with color cast and low contrast. 

Despite this, the proposed image produced results closer to 
the ground truth image, with better values for the MSE, PSNR, 
and SSIM calculations than the original image. Fig. 10 shows 
some image samples resulting from all the methods employed 
in this research. 
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Fig. 10. The image samples of all processing stages, including the initial 

image (first row), the image after white balancing (second row), the image 
after CLAHE-Lab (third row), the image after CLAHE-HSV (fourth row), the 

image after sharpening (fifth row), and the image after multiscale fusion (sixth 

row). 

TABLE IV.  QUANTITATIVE EVALUATION RESULTS OF IMAGE QUALITY 

ASSESSMENT USING MSE, PSNR, AND SSIM 

Method MSE (10−3) PSNR (dB) SSIM 

Fusion-based [21] 1.1280 17.6077 0.7721 

Retrinex-based [22] 1.2924 17.0168 0.6071 

GDCP [23] 4.0160 12.0929 0.5121 

Histogram prior [24] 1.7019 15.8215 0.5396 

Blurriness-based [25] 1.9111 15.3180 0.6029 

Water CycleGAN [26] 1.7298 15.7508 0.5210 

Dense GAN [27] 1.2152 17.2843 0.4426 

Water-Net [20] 0.7976 19.1130 0.7971 

Mixture CLAHE-Fusion 

(method in this study) 
0.7594 20.7121 0.8826 

V. CONCLUSION 

This research proposes a method of enhancing underwater 
image quality aimed at the problem of color cast and low 
contrast in underwater images caused by light scattering and 

absorption. The white balance method effectively corrects the 
color cast commonly found in bluish or greenish underwater 
images. Histogram equalization has been shown to reduce 
image errors by using clipping and block size techniques in the 
CLAHE method, along with color space conversion to Lab and 
HSV.   The use of image sharpening methods also helps in the 
process of enhancing edges in underwater images, although the 
results obtained may still be insufficiently sharp for pattern 
recognition purposes. The final output is obtained by 
combining the results using Multiscale Fusion, which employs 
three weights, namely the Laplacian Contrast Weight (WL), 
Saliency Weight (WS), and Saturation Weight (WSat). 

Based on the quantitative evaluation results, the proposed 
method showed a significant improvement in the average 
values, with the initial MSE value of 2.2497 reduced to 0.7594, 
the initial PSNR value of 15.7480 increased to 20.7121, and the 
initial SSIM value of 0.7299 increased to 0.8826. Additionally,  
the qualitative evaluation results indicated that the average and 
standard deviation values chosen by the eight respondents 
showed good results, with a score of 4 (Good) from a subjective 
perspective. The calculation of the average score and standard 
deviation from eight respondents showed an average value of 
4.3278 and a standard deviation of 0.7238. Based on these 
evaluation results, it can be concluded that utilizing a simple 
method to enhance underwater image quality with appropriate 
parameter settings and method placement can considerably 
enhance the quality of underwater images and expedite the 
computation time. 

Despite successfully enhancing the quality of underwater 
images, further development is necessary due to its 
effectiveness only for not very deep depths. When capturing 
images at deeper depths, the lighting conditions become 
affected, resulting in lower contrast and color cast. Therefore, 
future research could focus on developing or combining the 
proposed method with others, such as dehazing, adaptive 
methods, or machine learning, to address additional challenges 
in underwater image processing. 
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