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Abstract—Vehicular Ad-hoc Networks (VANETs) are 

engineered to meet the distinctive demands of vehicular 

communication, facilitating interactions between vehicles and 

roadside infrastructure to enhance road safety, traffic efficiency, 

and diverse applications such as traffic management and 

infotainment services. However, the looming threat of Distributed 

Denial of Service (DDoS) attacks in VANETs poses a significant 

challenge, potentially disrupting critical services and 

compromising user safety. To address this challenge, this study 

proposes a novel deep learning (DL)-based model that integrates 

Long Short-Term Memory (LSTM) architecture with self-

attention mechanisms to effectively detect DDoS attacks in 

VANETs. By incorporating autoencoders for feature extraction, 

the model leverages the sequential nature of VANET data, 

prioritizing relevant information within input sequences to 

accurately identify malicious activities. With an impressive 

accuracy of 98.39%, precision of 97.79%, recall of 98.00%, and 

F1-score of 98.20%, the proposed approach demonstrates 

remarkable efficacy in safeguarding VANETs against cyber 

threats, thereby contributing to enhanced road safety and network 
reliability. 
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I. INTRODUCTION 

Securing communication among vehicles has become a 
significant focus in computer science recently. Employing a 
spontaneously formed network installed on a vehicle is a method 
to achieve this. A mobile ad hoc network, VANET, facilitates 
communication between nearby cars. Vehicles in VANETs are 
furnished with wireless communication tools, such as Dedicated 
Short-Range Communication (DSRC) or Cellular-Vehicle-to-
Everything (C-V2X) technology, allowing direct 
communication between vehicles (V2V) and between vehicles 
and infrastructure (V2I). These communication capabilities 
facilitate the transmission of essential safety information, 
including vehicle location, velocity, and heading, as well as non-
safety-related information, such as traffic conditions and service 
advertisements [1]. The dynamic nature of vehicular 
environments poses several challenges to the design and 
operation of VANETs. Vehicles move at high speeds, leading to 
rapidly changing network topologies and communication 
conditions. 

Moreover, VANETs are subject to intermittent connectivity, 
network partitions, and unpredictable communication delays 
due to factors such as vehicle mobility, radio interference, and 
obstacles in the environment. Despite these challenges, 
VANETs offer immense potential to improve traffic safety and 
effectiveness via the deployment of intelligent transportation 
systems (ITS). By enabling vehicles to cooperate and share 
information in real time, VANETs can mitigate accidents, 
reduce traffic congestion, and provide drivers with timely and 
context-aware services. 

In recent years, research efforts in VANETs have focused on 
addressing key issues such as communication reliability, 
security, privacy, and scalability. Advanced communication 
protocols, routing algorithms, and congestion control 
mechanisms have been proposed to optimize the performance of 
VANETs in dynamic and resource-constrained environments 
[2]. Additionally, protective metrics such as verification, data 
encryption, and threat detection are crucial to defend VANETs 
from harmful intrusions and illegal access. As the automotive 
industry continues to embrace connected and autonomous 
vehicles (CAVs), the role of VANETs is expected to become 
increasingly prominent. CAVs rely on VANETs for cooperative 
perception, decision-making, and coordination, enabling them 
to safely and effectively manoeuvre through intricate traffic 
situations. Additionally, advancing technologies like 5G and 
edge computing offer promising possibilities to further enhance 
the capabilities of VANETs by providing high-speed 
connectivity and low-latency communication services. Various 
attack types in VANETs are classified by origin and behavior. 
External attacks, originating outside the network, aim to disrupt 
VANET operations through unauthorized access or denial-of-
service tactics. Internal attacks originate from compromised 
nodes within the network, challenging detection and mitigation 
efforts. Active attacks manipulate or disrupt communication, 
while passive attacks eavesdrop to gather data. Area attacks 
target specific regions, affecting multiple vehicles or units, and 
communication attacks disrupt communication channels. 
Rational attackers engage in malicious activities without 
personal gain, complicating security measures [3]. These attack 
types emphasize the need for comprehensive strategies to 
protect VANET integrity and user privacy. 
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A. DDoS Attack in VANET 

In a Denial of Service (DoS) attack, the attacker interferes 
with the services provided by a service provider, preventing 
legitimate users from accessing the network despite the 
availability of resources [4]. The attacker achieves this by 
blocking the communication medium in specific areas, limiting 
the attack to the service provider's scope. This can be done in 
two ways: the attacker either floods the resources with an 
overwhelming number of requests, keeping them occupied with 
fake requests, or extends the attack by sending numerous 
requests to block communication, thus preventing the RSU from 
processing any OBU requests. Conversely, DDoS attacks are a 
distributed form of DoS attacks where multiple attackers from 
various locations simultaneously target one or more service 
providers, causing significant inconvenience. 

 
Fig. 1. DDoS attack. 

In these attacks, a larger number of malicious OBU nodes 
block legitimate users from accessing services through multiple 
RSUs by spamming the network, leading to increased 
transmission delays. This type of attack poses a significant threat 
to VANETs, as illustrated in Fig. 1, where cars C and I disrupt 
services provided by an RSU by preventing cars B, D, E, G, F, 
H, and J from accessing it. The primary objectives of the paper 
are as below: 

 To propose a novel DL-based method for the effective 
detection of DDoS attacks in VANET. 

 To incorporate auto encoders for better feature 
extraction. 

 Evaluate the efficiency of the proposed model with the 
current approaches. 

The remaining of the paper is structured as: Section II 
provides an overview of existing methodologies for detecting 
attacks in VANETs, laying the foundation for the proposed 
research. Section III outlined the method details of the proposed 
approach. The outcomes of the study, including the efficiency of 
the suggested approach in detecting alternative approaches, are 
discussed in Section IV. Final, Section V offers remarks 
summarizing the findings and implications of our work. 

II. LITERATURE REVIEW 

Zu et al. [5] introduced a detection method that utilized 
beacon packets in vehicles to trace malicious vehicle sources. 
Their approach involved Roadside Units (RSUs) instructing 
vehicles to execute key transmission and reception, enabling 
them to assert their physical presence. RSUs then analyzed 
beacon packets to construct a neighbor graph, determining 
vehicle credibility. Experimental findings validated the efficacy 
of the proposed method, achieving identification and monitoring 
of Sybil vehicles with accuracy and recall rates of 98.53% and 
95.93%, respectively. Significantly, the approach surpassed 
current solutions, especially in sustaining consistent detection 
rates in conditions of high vehicular density. 

The FC-LSR system, proposed by Almazroi et al. [6], 
introduced a fog computing-based lightweight solution to 
combat Sybil attacks in 5G-equipped vehicular networks. 
Utilizing Modified Merkle Patricia Trie (MMPT) and Merkle 
Hash Tree (MHT), the system securely stored vehicles' 'current 
status' values while ensuring data anonymity. Significantly, the 
approach surpassed current solutions, especially in sustaining 
consistent detection rates in conditions of high vehicular density. 
However, limitations involve vulnerability to neighbor-based 
manipulation and single-point failure risks. 

Ahmed et al. [7] proposed an Intrusion Detection System 
(IDS) utilizing ML to mitigate DDoS attacks in VANETs. The 
approach addressed rising security concerns, particularly due to 
DoS and DDoS attacks flooding the network with malicious 
packets. By combining Random Projection (RP) and 
Randomized Matrix Factorization (RMF) methods, the IDS 
sought to improve detection abilities by extracting significant 
features from network traffic data. Experimental evaluation 
revealed outstanding accuracy compared to existing methods, 
with a combined accuracy of 0.98. However, research focused 
specifically on the identification of DoS and DDoS attacks and 
did not address energy consumption or computational 
complexity. 

Dayyani & Abbaspour [8] proposed the SybilPSIoT method, 
which proposed a combined method integrating prevention and 
detection in a decentralized manner in Social Internet of Things 
(SIoT) based on smart contracts. A model utilized signed SIoT 
network entities and labels functioning as points in a network, 
and incorporating trust paths to assess the target node. Game 
theory was employed for access control to prevent Sybil from 
creating new objects. The method was found to be efficient in 
rapid detection and prevention of Sybil, considering the 
limitations of smart contracts. Evaluation data showed its 
superior performance compared to the SybilSCAR approach. 

A DL model based on GRU was proposed by ALMahadin et 
al. [9] for detecting anomalies in VANET network traffic hence 
it is crucial for identifying unknown threats like DoS floods and 
providing security insights for multimedia services. The 
proposed model, SEMI-GRU, utilized a semi-supervised 
approach to enhance accuracy. Results showed that SEMI-GRU 
outperformed existing methods with low false positive rates. 
However, challenges remained, including real-time detection 
and limited labeled data accessibility. 
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Vermani et al. [10] suggested a framework utilizing 
ensemble learning to identify malicious nodes. in SDN-based 
VANETs, with a particular emphasis on internal position 
falsification attacks. Various ML algorithms, including SVM, k-
NN, Logistic Regression (LR), Naïve Bayes (NB), and Random 
Forest (RF), were evaluated using the VeReMi dataset.  Among 
the ML algorithms tested, Random Forest demonstrated the 
most effective performance in identifying attacks. Additionally, 
the study compared two collective classification techniques, 
voting and stacking, used for the purpose of decision-making. 
Both approaches improved classification accuracy and reduced 
prediction time, with stacking requiring less time than voting 
while achieving comparable accuracy levels to Random Forest. 
However, the study's focus on internal position falsification 
attacks within SDN-based VANETs limited its generalizability 
to other attack types and VANET configurations. 

Magsi et al. [11] aimed to propose a comprehensive solution 
addressing the security, privacy, and routing challenges in 
Vehicular Named Data Networking (VNDN). Introduced three 
key components: an ML-based reputation evaluation model, a 
decentralized blockchain system for privacy preservation, and 
the enhancement of VNDN routing through a transition from 
pull to push-based content dissemination using a Publish-
Subscribe (Pub-Sub) approach. The approach utilised ML 
techniques for attacker detection, blockchain for privacy 
preservation, and Pub-Sub for efficient content distribution. For 
evaluation, utilized the BurST-Australian dataset for 
Misbehavior Detection (BurST-ADMA) and applied five ML 
classifiers, including LR, Decision Tree, KNN, RF, and NB. The 
outcomes demonstrated that the RF achieved the highest 
accuracy rate in identifying attackers, followed by Decision 
Tree. Despite promising outcomes, the study faced limitations, 
such as reliance on simulation-based datasets and potential 
scalability challenges associated with blockchain integration. 

Alsarhan et al. [12] proposed the utilization of SVM along 
with three intelligent optimization algorithms - Genetic 
Algorithm, Particle Swarm Optimization, and Ant Colony 
Optimization for attack detection in VANET. The primary 
objective was to optimize the accuracy of intrusion detection in 
VANETs by fine-tuning the parameters of the SVM classifier 
using optimization algorithms. The model addressed the security 
vulnerabilities in VANETs and improve the reliability of 
communication among smart vehicles. To assess how well the 
suggested approach works, trials were carried out utilizing the 
NSL-KDD dataset, and the performance of each optimization 
algorithm in optimizing SVM parameters was assessed based on 
classification accuracy. The study sought to contribute to the 
development of more robust intrusion detection systems for 
VANETs, thereby enhancing the security of vehicular 
communication systems. Despite the promising results obtained, 
the study acknowledged limitations such as reliance on 
simulated data and the exclusive focus on SVM-based detection 
methods. 

Patil & Mallapur [13] enhanced the security of message 
dissemination within VANET by integrating ML, blockchain, 
and the interplanetary file system (IPFS). The methodology 
involved blockchain technology to create immutable records of 
events in a distributed environment, complemented by IPFS for 
storing event content with addressability. Metadata information 

from IPFS was managed using smart contracts and uploaded to 
a distributed ledger. Subsequently, K-means clustering was 
employed to classify vehicles as malicious or benign, followed 
by the use of a SVM classifier to find malicious event messages. 
The evaluation of the proposed system demonstrated its 
effectiveness in identifying and filtering out malicious 
messages, thereby ensuring the transmission of only secure 
messages within the network. Furthermore, the approach 
exhibited minimal consumption time compared to existing 
methods, indicating its efficiency in event detection and 
validation. However, limitations included the reliance on 
theoretical analysis and simulations for evaluation. 

Canh & HoangVan [14] proposed a ML-driven strategy to 
identify blackhole attacks within VANET, aiming to fortify 
network security. Initially, a thorough dataset comprising both 
normal and malicious traffic flows was compiled to facilitate 
analysis. Distinctive features were identified to differentiate 
blackhole attacks from typical network behavior. Subsequently, 
a range of ML algorithms, including Gradient Boosting (GR), 
RF, SVMs, KNN, NB, and LR, were evaluated for their efficacy 
in differentiating between normal and harmful nodes. 
Experimental outcomes showcased the superior performance of 
GR and RF algorithms in pinpointing blackhole nodes, followed 
by SVMs and KNN. Although NB and LR demonstrated 
relatively lower effectiveness, they offered valuable insights 
into the detection process. 

In response to the urgent need for robust detection 
mechanisms to safeguard VANET against DDoS attacks, a 
hybrid algorithm based on SVM kernels, AnovaDot, and 
RBFDot, was proposed by Adhikary et al. [15]. The aim was to 
enhance the DDoS attacks detection in VANETs and mitigate 
potential threats to commuter safety and network integrity. The 
proposed hybrid algorithm leveraged features such as packet 
drop, jitter, and collisions to simulate network communication 
scenarios under both normal conditions and DDoS attacks. The 
hybrid model exhibited higher accuracy and effectiveness in 
differentiating between normal and DDoS attacks, as evidenced 
by improved performance metrics across the evaluation criteria. 
One limitation was the complexity of implementing and fine-
tuning the hybrid model, which required significant 
computational resources and expertise. Additionally, the 
effectiveness of the algorithm varied depending on the specific 
characteristics of the VANET environment and the nature of the 
DDoS attacks encountered. 

Anyanwu et al. [16] introduced an IDS targeting DDoS 
attacks. With the Radial Basis Function (RBF) kernel of the 
SVM classifier and a Grid Search Cross-Validation (GSCV) 
method, the IDM aimed to enhance detection accuracy. 
Deployed on OBUs, it analysed vehicular data to classify 
messages as benign of a DDoS attack. Experimental results 
demonstrated superior performance compared to alternative ML 
algorithms, with optimal RBF-SVM parameters of "C"=100 and 
"gamma" (γ)=0.1. Achieving an accuracy 99.33% and a 
detection rate 99.22%, the IDM outperformed existing 
benchmarks, highlighting its efficacy in detecting DDoS 
intrusions. 

A fog computing-based Sybil attack detection framework 
(FSDV) was proposed by Paranjothi & Atiquzzaman.[17] 
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FSDV utilized onboard units (OBUs) installed in vehicles to 
establish a dynamic fog for detecting rogue nodes, aiming to 
mitigate scenarios with high vehicle density. Evaluations 
conducted through simulations using OMNET++ and SUMO 
simulators revealed significant improvements with FSDV, 
achieving a reduction of 43% in processing delays, 13% in 
overhead, and 35% in FPR compared to existing schemes. 
Notably, FSDV demonstrated scalability and efficiency, 
outperforming previous techniques by up to 32%. Furthermore, 
it eliminated the reliance on roadside infrastructures or historical 
vehicle data for rogue node detection, providing a notable 
advantage. Despite its effectiveness, FSDV is subject to 
simulation-based constraints. 

Velayudhan et al. [18] developed the Emperor Penguin 
Optimization (EPO) based Routing protocol (EPORP) to tackle 
the challenge of identifying Sybil attacks and enhancing system 
efficiency in VANETs. The main goal was to detect Sybil 
attacks and bolster security within VANETs, achieved through 
the utilization of the Rumour riding technique for Sybil attack 
detection and the Split XOR (SXOR) operation for safeguarding 
messages and data. In SXOR, the optimal key was generated 
using the EPO algorithm. Results indicated that the EPORP 
protocol outperformed others with a higher delivery ratio (0.96), 
demonstrating superior message delivery capabilities. However, 
the study faced limitations including reliance on simulation-
based assessments. 

The Sybil Detection using Classification (SDTC) approach 
was introduced by Kakulla & Malladi [19] to mitigate Sybil 
attacks within VANETs. SDTC leveraged Extreme Learning 
Machine (ELM) to enhance detection accuracy while reducing 
false positives. Through extensive simulations conducted in 
realistic VANET environments, the performance of SDTC was 
assessed across various metrics, including accuracy, and 
processing time. The outcomes indicated that SDTC achieved 
superior detection accuracy compared to existing 
methodologies, accompanied by a notable decrease in false 
positives. Nonetheless, limitations were identified, such as 
reliance on simulated environments, potential performance 
variability under diverse conditions, and concerns regarding 
scalability. 

Despite advancements in security solutions for VANET, a 
notable gap persists in the realm of DDoS attack detection 
tailored explicitly to VANET environments. Existing studies 
have predominantly focused on traditional DDoS detection 
methods, often adapted from general network security 

approaches, which may not adequately address the unique 
characteristics and challenges of VANETs. The limited 
emphasis on DDoS attacks within VANET contexts underscores 
the necessity for dedicated research efforts aimed at developing 
specialized detection mechanisms capable of efficiently and 
effectively identifying and mitigating DDoS threats in 
VANETs. DDoS attacks pose significant risks to VANETs by 
disrupting critical services, compromising traffic management 
systems, and jeopardizing the safety of drivers and passengers. 
Thus, there is an urgent need for innovative approaches that 
leverage VANETs' dynamic nature, such as the mobility of 
vehicles and the dynamic network topology, to develop robust 
and adaptive DDoS detection mechanisms. 

III. MATERIALS AND METHODS 

Attack detection in VANETs is essential to ensure the 
dependability and safety of vehicular communication networks 
because it allows mitigation actions to be implemented in a 
timely manner, preventing disruptions to vital services and 
possible risks to pedestrians and passengers. So, in this paper a 
novel DL model is proposed incorporating the self-attention in 
LSTM architecture for efficient detection of DDoS attack in 
VANET. The workflow of the suggested method is depicted in 
block in Fig. 2. 

A. Dataset 

The study utilized VeReMi dataset sourced from Kaggle 
[20]. The VeReMi dataset is a simulated dataset developed for 
assessing attack detection mechanisms in VANETs and offers a 
diverse range of traffic behaviors and attacker scenarios. The 
dataset includes multiple scenarios featuring different vehicle 
and attacker densities (high, medium and low), as well as 
repeated parameter sets to ensure randomness. Each scenario 
contains detailed message logs from both attacking and benign 
vehicles, capturing various attributes like reception timestamps, 
claimed transmission times, sender IDs, GPS positions, RSSI 
values, and noise vectors. Additionally, a ground truth file 
accompanies the dataset, documenting the true Basic Safety 
Messages (BSM) attribute values for both attackers and benign 
vehicles. With a total of 225 simulation runs categorized by 
density, the dataset provides insight into the performance of 
attack detection methods across different VANET settings. 
Table I illustrates the parameters of the attacks in VeReMi 
dataset. Table II provides a comprehensive description of the 
VeReMi dataset, detailing the attributes and categories of 
attacks included in the dataset. 

 
Fig. 2. Illustration of the proposed model. 
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TABLE I.  DESCRIPTION OF VEREMI ATTACK TYPE 

ID (ATTACK) PARAMETERS 

1 (Constant) x= 5560, y=5820 

2 (Constant offset) ∆x = 250, ∆y = −150 

4 (Random) uniformly random in playground 

8 (Random offset) ∆x, ∆y uniformly random from [−300, 300] 

16 (Eventual stop) stop probability + = 0.025 each position update (10Hz) 

TABLE II.  VEREMI DATASET DESCRIPTION 

Attributes Description 

Reception Timestamp Timestamp of message reception 

Claimed Transmission Time Time claimed by the sender 

Sender ID Unique identifier for the sender 

GPS Position Geographic coordinates (latitude, longitude) 

RSSI Value Received Signal Strength Indicator 

Noise Vector Noise values associated with the message 

Attack Type Type of attack (Constant, Constant offset, Random, Random offset, Eventual stop) 

Ground Truth True values of Basic Safety Messages (BSM) attributes for both attackers and benign vehicles 
 

B. Data Preprocessing and Augmentation 

Preprocessing is the cornerstone for robust and effective 
DDoS attack detection in VANETs, as it ensures that the data is 
cleansed, transformed, and structured to empower subsequent 
analysis and modeling. Its significance cannot be overstated, 
serving as the pivotal stage where raw data from the Veremi 
dataset is refined into a form conducive to accurate detection. 
By systematically cleaning the data, handling missing values, 
removing duplicates, and normalizing numerical features, 
preprocessing establishes a solid foundation for subsequent 
analysis. Also, noise reduction techniques enhanced the data 
quality. Data augmentation complements preprocessing efforts, 
enhancing the diversity and size of the dataset for robust model 
training. Through synthetic data generation techniques, such as 
data mirroring or noise injection, the dataset's diversity is 
increased, allowing models to generalize better to unseen 
scenarios. Random perturbation introduces variations to existing 
data samples, simulating different environmental conditions and 
enhancing model robustness. Augmentation via simulation 
further enriches the dataset by modeling diverse traffic 
conditions, network configurations, and attack scenarios. 

C. Feature Selection and Extraction using Convolution 
Autoencoder 

In the study, convolutional autoencoders are used for the 
feature extraction method.  Autoencoders present a compelling 
approach for feature extraction including spatial patterns in 
DDoS attack detection within VANETs, utilising the Veremi 
dataset. Comprising an encoder and decoder as shown in Fig. 3, 
Autoencoders aim to condense input information into a reduced-
dimensional latent space while endeavouring to accurately 
reproduce the initial input. This condensed representation, often 
referred to as the latent space or bottleneck layer, encapsulates 
essential features crucial for distinguishing between normal and 
anomalous traffic behavior, including potential DDoS attacks. 
By training on the Veremi dataset, autoencoders efficiently 
reduce the dimensionality of the high-dimensional input data 
while preserving critical information, aiding in mitigating the 
curse of dimensionality inherent in VANET data analysis. 
Moreover, their capability to capture complex patterns and 

relationships throughout the data makes them particularly adept 
at identifying subtle deviations indicative of DDoS attacks. As 
autoencoders operate in an unsupervised manner, they alleviate 
the need for labeled attack data, thereby enabling the learning of 
representations directly from raw input data without manual 
feature engineering or annotation. This underscores their 
significance as a potent tool for facilitating robust DDoS attack 
detection mechanisms to the unique challenges posed by 
VANET environments and the characteristics of the Veremi 
dataset. 

 
Fig. 3. Basic architecture of convolution autoencoder. 

In a convolutional autoencoder, the encoder operation 
involves convolutional layers followed by down sampling 
operations such as max-pooling. Mathematically, the output 
feature map Z at each layer can be represented as Eq. (1). 

                                𝑍 = 𝑓𝑐𝑜𝑛𝑣(𝑋)                                    (1) 

where 𝑓𝑐𝑜𝑛𝑣 denotes the convolutional operation applied to 
the input data 𝑋. The decoder operation comprises up sampling 
operations followed by convolutional layers. The reconstructed 

output 𝑋̂ is given by Eq. (2), 

                          𝑋̂=𝑓𝑑𝑒𝑐𝑜𝑛𝑣(𝑍)                                   (2) 

where 𝑓𝑑𝑒𝑐𝑜𝑛𝑣 represents the deconvolutional operation 
applied to the latent representation. Autoencoders operate by 
minimizing the reconstruction error between the input data and 
the output reconstructed by the decoder. The loss function 
measures the discrepancy between the original input data 𝑋 and 

its reconstruction 𝑋̂ . The mean square error (MSE) is a 
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commonly used loss function for autoencoders as given by Eq. 
(3), 

                   𝐿𝑀𝑆𝐸 =
1

𝑁
∑ ‖𝑋𝑖 − 𝑋𝑖̂‖

2
𝑁
𝑖=1                              (3) 

where, N is the number of samples in the dataset. The 
convolution operation involves sliding a kernel over the input 
data to perform feature extraction [23]. Mathematically, the 
output feature map 𝑍 at each layer can be calculated by Eq. (4), 

      𝑍𝑖,𝑗 = ∑ ∑ (𝑋𝑖+𝑚,𝑗+𝑛 × 𝐾𝑚,𝑛) + 𝑏𝑁−1
𝑛=0  𝑀−1

𝑚=0             (4) 

Max-pooling is frequently used following convolutional 
layers to decrease the size of feature maps and diminish spatial 
dimensions. This process involves choosing the highest value 
from a group of neighboring values. In mathematical terms, the 
result of the max-pooling operation can be represented by Eq. 
(5), 

    𝑍𝑖,𝑗 = 𝑚𝑎𝑥𝑚,𝑛∈𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛𝑋𝑖+𝑚,𝑗+𝑛                     (5) 

The algorithm for the Convolution Autoencoder is given 
below. 

Algorithm 1 Convolution Autoencoder 

Input: Veremi dataset, num_epochs: Number of training epochs, 

mini_batch_size: Size of mini-batches for stochastic gradient 
descent, learning_rate: Learning rate for optimization algorithm  

Output:Trained convolutional autoencoder model 

Initialize parameters: 

   - Initialize weights and biases for convolutional and 
deconvolutional layers randomly 

Define Loss Function: 

   - Define Mean Squared Error (MSE) loss function 

Training Loop: 

   for epoch in range(num_epochs): 

       for each mini-batch in training set: 

           a. Forward Pass: 

              - Compute encoder output (latent representation) using 

Equation (1) 

              - Compute decoder output (reconstruction) using Equation 

(2) 

           b. Compute Loss: 

              - Compute MSE loss between input and reconstruction 
using Equation (3) 

           c. Backpropagation: 

              - Update encoder and decoder parameters using gradient 

descent 

       d. Validate model performance: 

           - Compute MSE loss on validation set 

 Feature Extraction: 

   - Use trained encoder to extract features from VANET dataset: 

     - Pass input data through encoder to obtain latent 

representations (encoded features) 

Output: Extracted features serve as input for downstream analysis 
tasks 

D. LSTM Self Attention Model 

A self-attention mechanism-equipped LSTM model is 
proposed in this paper for effectively detecting DDoS attacks in 
VANETs utilizing the sequential nature of the data and focusing 
on relevant parts of the input sequence. The basic architecture of 
LSTM model is given in Fig. 4. The LSTM, type of recurrent 
neural network (RNN), especially proficient at managing 
sequential data, like time-series information, found in VANETs. 
It maintains state, allowing it to acquire long-range 
dependencies in the data while mitigating the vanishing gradient 
problem. The LSTM model consists of LSTM cells, each of 
which has input, forget, and output gates to regulate the flow of 
information. The state equations for the LSTM network are 
given as follows, 

Input Gate, 𝐼𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖)           (6) 

Forget Gate, 𝐹𝑡 = 𝜎(𝑊𝑓. [ℎ𝑡−1 ,𝑥𝑡] + 𝑏𝑓)          (7) 

Candidate Memory,𝐶𝑡̌ = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑐)    (8) 

Memory Cell, 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̌           (9) 

Output Gate, 𝑂𝑡 = 𝜎(𝑊0 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)      (10) 

Hidden State, ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)           (11) 

where, 𝑥𝑡 is the input variable at each time step t. The input 
vectors are represented by several weight matrices 𝑊𝑖, 𝑊𝑓, and 

𝑊𝑐 . The sigmoid activation function is shown by 𝜎 , 
Furthermore, the bias values for the input, cell state, forget gate, 
and output gate are indicated by 𝑏𝑖 𝑏𝑓, 𝑏𝑐, and 𝑏𝑜, respectively. 

 
Fig. 4. LSTM architecture. 

Self-attention allows the model to focus on different parts of 
the input sequence, prioritizing important information and 
disregarding unimportant sections. It computes attention 
weights for each time step based on the input sequence. The 
model architecture of LSTM with Self-attention mechanism is 
provided by Fig. 5. 

The attention weights 𝛼𝑡 are evaluated as a function of the 
hidden states ℎ𝑡 of the LSTM cells as given in Eq. (12). 

                           𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝛼ℎ𝑡)                              (12) 

The context vector 𝑐 is evaluated as the weighted sum of the 
hidden states a in Eq. (13). 

                                  𝑐 = ∑ ∝𝑡 ℎ𝑡
𝑇
𝑡=1                                   (13) 
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Fig. 5. LSTM Self attention model. 

The context vector 𝑐 obtained from the self-attention 
mechanism is then used as input to a classification layer, a fully 
connected layer followed by a softmax activation function, to 
predict the probability of DDoS attacks. 

The context vector 𝑐 obtained from the self-attention 
mechanism is then used as input to a classification layer, a fully 
connected layer followed by a softmax activation function, to 
predict the probability of DDoS attacks. By integrating the 
LSTM with self-attention, the model effectively captures long-
term dependencies and relevant features in the sequential data, 
which are critical for identifying DDoS attacks. This combined 
approach utilizes the strengths of both LSTM and self-attention, 
making it a potent tool for robust DDoS attack detection in the 
challenging VANET environment. The self-attention 
mechanism, in particular, makes the model prioritize crucial 
parts of the input sequence, thus improving detection 
performance without requiring extensive labeled data, which is 
a significant advantage in unsupervised learning contexts. 

E. Hardware and Software Setup 

The model was developed and trained using Google 
Collaboratory with GPU acceleration. The software 
environment for the detection of DDoS attacks in VANET is 
implemented in Python using TensorFlow which is known for 
its scalability and deployment capabilities. The extensive 
computing resources of Google Colab combined with Keras's 
user-friendly interface made the process of developing models 
easier and guaranteed the successful training and application of 
intricate neural network designs. The system with Intel Core i5-
8300H CPU, 16GB RAM, and a GTX1050 GPU is used to 
perform this research. Hyperparameters are essential 
configuration parameters that define the behavior and operation 
of a DL framework during training. Table III represents the 
hyperparameters used. 

TABLE III.  HYPERPARAMETER SPECIFICATION 

Hyperparameters Values 

Optimizer Adam 

No. of epochs 50 

Loss Function Binary Cross Entropy 

Activation Function Softmax 

Batch size 32 

IV. RESULT AND DISCUSSION 

A. Performance Evaluation 

The performance was evaluated using the evaluation metrics 
as shown in Table IV. These metrics provide quantifiable 
assessments of the model's performance and aid in determining 
how effectively it can detect DDoS attack in VANET. To assess 
the impact of feature selection, experiments are conducted 
before and after feature selection. The classification report of the 
DDoS attack detection using LSTM self-attention model is 
given in Table V. From Table V, it is clear that the model 
demonstrates high performance across various evaluation 
metrics, indicating its effectiveness in correctly identifying both 
positive and negative instances with an 98.39% accuracy, 
97.79% precision, 98.00% recall, and 98.20% F1-score, these 
metrics highlight the model's ability to achieve a balance 
between minimizing FP and FN, making it reliable for real-
world applications where precision and recall are equally 
important. The visual depiction of the assessment outcome of 
the suggested model is given in Fig. 6. 

TABLE IV.  EVALUATION PARAMETERS 

Performance Metrics Equations 

Accuracy 
(𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 

+  𝐹𝑁) 

Precision 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

Recall 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) 

F1 Score 

2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ∗  𝑟𝑒𝑐𝑎𝑙𝑙 ) 
/ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
+  𝑟𝑒𝑐𝑎𝑙𝑙) 

where, 𝑇𝑃-true positives, 𝐹𝑃 -false positives, 𝑇𝑁 -true negatives and 𝐹𝑁 -

false negatives 

TABLE V.  CLASSIFICATION REPORT OF PROPOSED METHOD BEFORE AND 

AFTER FEATURE SELECTION 

Evaluation Metrics 
Before Feature 

Selection 

After Feature 

Selection 

Accuracy 97.20% 98.39% 

Precision 96.80% 97.79% 

Recall 97.00% 98.00% 

F1- Score 96.90% 98.20% 

 
Fig. 6. Graphical representation of performance evaluation. 
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The Receiver Operating Characteristic (ROC) curve is 
crucial for evaluating the performance of the proposed model. It 
plots the TP Rate (TPR) against the FP Rate (FPR) as in Fig. 7, 
showcasing the trade-off between sensitivity and specificity. 
The Area Under the ROC Curve (AUC) acts as a singular 
numerical representation capturing the model's capacity to 
differentiate between different classes. The proposed model 
provides an AUC of 0.985 indicating perfect classification 
whether the VANET is detected with DDoS attack or not. This 
graphical representation and the accompanying AUC offer 
meaningful observations about the model's efficacy, making the 
ROC curve an essential component in the assessment of 
classification algorithms. 

 
Fig. 7. ROC curve. 

To provide a detailed breakdown of the model's 
performance, the confusion matrix is presented in Fig. 8. This 
matrix offers insights into the model's ability to correctly 
classify instances of DDoS attacks and benign activities. 

 
Fig. 8. Confusion matrix. 

To further evaluate the training process of our proposed 
model, we present the accuracy and loss curves over the training 
epochs. Fig. 9 depicts the accuracy and loss curves respectively, 
showcasing the convergence behavior and stability of the model 
during training. 

 
Fig. 9. Accuracy and Loss plot of the proposed model.

B. Performance Comparison 

The proposed method is compared with existing models for 
various attack detection which utilises both DL and ML. Table 
IV shows the effectiveness of the suggested method in 
comparison with the current techniques regarding accuracy. 

In addition to performance metrics, the training times of 
various models were recorded to assess computational 
efficiency. Table VII presents the training times for the proposed 
model and other baseline models. 

In addition to its superior performance metrics (98.39% 
accuracy, 97.79% precision, 98.00% recall, and 98.20% F1-
score), the proposed model demonstrates efficient training with 
a time of just 3.5 hours [24]. This outperforms the training times 
of other baseline models, highlighting the proposed model's 
advantage in both computational efficiency and detection 
capability. The proposed model’s balanced approach to 
minimizing both training time and achieving high detection 
accuracy makes it an optimal choice for real-time DDoS attack 
detection in VANETs. 
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TABLE VI.  PERFORMANCE COMPARISON 

Methodology Accuracy 

GRU [9] 90.89 

SVM + ANOVA [15] 97.20 

SVM+GSCV [16] 96.40 

DT+NN [21] 95.00 

Deep Belief Network [22] 96.00 

PROPOSED MODEL 98.39 

TABLE VII.  TRAINING TIME COMPARISON 

Model Training time (hours) 

GRU 4.8 

SVM+ANOVA 5.0 

SVM+GSCV 5.2 

DT+NN 4.0 

Deep Belief Network 5.6 

Proposed model 3.5 

V. CONCLUSION 

DDoS detection in VANETs arises from the critical 
importance of maintaining the reliability and security of 
vehicular communication networks. As vehicles increasingly 
rely on VANETs for real-time communication and cooperation 
to enhance road safety, and traffic efficiency, and enable various 
applications, the potential impact of DDoS attacks becomes 
increasingly significant. The proposed method for DDoS attack 
detection in VANETs, which combines LSTM with a self-
attention mechanism, exhibits outstanding performance across 
multiple evaluation metrics. With an 98.39% accuracy, 97.79% 
precision, 98.00% recall, and 98.20% F1-score, the model 
demonstrates remarkable efficacy in accurately identifying 
instances of DDoS attacks while maintaining a balance between 
minimizing FP and FN. The ROC curve analysis further 
validates the model's effectiveness, yielding an AUC of 0.985, 
signifying its excellent ability to discern between classes. 
Comparison with existing methods underscores the superiority 
of the proposed approach, solidifying its position as a robust and 
efficient resolution for amplifying the safety and dependability 
of automotive communication networks. Future research could 
focus on incorporating real-time adaptive learning mechanisms 
to improve the model's responsiveness to emerging DDoS attack 
patterns. Additionally, integrating this model with other 
cybersecurity frameworks could create a comprehensive, multi-
layered defence system for VANETs, enhancing overall 
network resilience and safety. 
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