
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

788 | P a g e

www.ijacsa.thesai.org

Enhanced Harris Hawks Optimization Algorithm for

SLA-Aware Task Scheduling in Cloud Computing

Junhua Liu*, Chaoyang Lei, Gen Yin

Hunan Post and Telecommunication College, Changsha 410015, Hunan, China

Abstract—Cloud computing has revolutionized how Software

as a Service (SaaS) suppliers deliver applications by leasing

shareable resources from Infrastructure as a Service (IaaS)

suppliers. However, meeting users' Quality of Service (QoS)

parameters while maximizing profits from the cloud

infrastructure presents a significant challenge. This study

addresses this challenge by proposing an Enhanced Harris Hawks

Optimization (EHHO) algorithm for cloud task scheduling,

specifically designed to satisfy Service Level Agreements (SLAs),

meet users QoS requirements, and enhance resource utilization

efficiency. Drawing inspiration from Harris's falcon hunting

habits in nature, the basic HHO algorithm has shown promise in

finding optimal solutions to specific problems. However, it often

suffers from convergence to local optima, impairing solution

quality. To mitigate this issue, our study enhances the HHO

algorithm by introducing an exploration factor that optimizes

parameters and improves its exploration capabilities. The

proposed EHHO algorithm is assessed against established

optimization algorithms, including Genetic Algorithm (GA), Ant

Colony Optimization (ACO), and Particle Swarm Optimization

(PSO). The results demonstrate that our method significantly

improves the makespan for GA, ACO, and PSO by 19.2%, 17.1%,

and 20.4%, respectively, while also achieving improvements of

17.1%, 17.3%, and 17.2% for BigDataBench workloads.

Furthermore, our EHHO algorithm exhibits a substantial

reduction in SLA violations compared to PSO, ACO, and GA,

achieving improvements of 55.2%, 41.4%, and 33.6%,

respectively, for general workloads, and 61.9%, 23.1%, and

52.7%, respectively, for BigDataBench workloads.

Keywords—Cloud computing; scheduling; optimization; SLA;

SaaS

I. INTRODUCTION

Cloud computing represents an approach that facilitates
migrating or deploying users' current physical infrastructure into
a cloud-based environment. Users can access a wide array of
services within this paradigm, including network, storage,
computing, and memory, per their on-demand requirements [1],
[2]. Virtualization technology plays a crucial role in
provisioning a virtual infrastructure for users within a cloud
environment. Service Level Agreement (SLA) serves as the
contractual agreement between users and cloud providers,
outlining the terms of service subscription [3]. Based on the
established SLA, the cloud provider provisions the necessary
services to meet users' needs. A distinguishing feature of the
cloud computing environment is its inherent scalability,
enabling services to be dynamically scaled up or down as
required [4]. Resource pooling is a significant attribute within
the cloud computing paradigm, wherein resources are shared
and assigned to users under their specific demands. The cloud

provider employs an automated approach to allocate virtual
resources to users in compliance with the established SLA and
the pay-per-usage policy [5]. A well-designed scheduling
scheme is essential to facilitate resource allocation, enabling the
automatic distribution of virtual resources to users. Furthermore,
establishing a relationship between user requests and virtual
machines (VMs) becomes crucial for efficient resource
allocation. Given the diverse user base in the cloud computing
environment, the implementation of an optimal task-scheduling
mechanism becomes imperative. Additionally, a reliable and
scalable resource provisioning mechanism is necessary to
allocate resources to a large number of users automatically [6].

In the cloud computing environment, user requests are
diverse in terms of sizes and types, including streaming data,
video, images, text, etc. These requests can originate from
different heterogeneous resources [7]. Therefore, a robust task-
scheduling algorithm is required to schedule these
heterogeneous, variable, and dynamic users’ requests onto
suitable VMs. Effective task scheduling is crucial to prevent
Quality of Service (QoS) degradation and ensure compliance
with SLA parameters that establish trust between users and
cloud providers. A well-designed task scheduling algorithm
should maximize QoS while maintaining SLA requirements,
thus enhancing trust between users and cloud providers[8]. In
recent years, several research works have focused on task
scheduling in the cloud computing domain, utilizing
metaheuristic approaches. These metaheuristic optimization
algorithms are employed because task scheduling is a complex
problem categorized as NP-hard. Using metaheuristic
algorithms helps find near-optimal or feasible solutions for
scheduling tasks to appropriate VMs in the cloud computing
environment. By leveraging metaheuristic optimization
algorithms, researchers aim to address the challenges posed by
the NP-hard nature of task scheduling in cloud computing,
ultimately improving the efficiency and effectiveness of
resource allocation and meeting user requirements.

This paper proposes an innovative approach based on the
Enhanced Harris Hawks Optimization (EHHO) algorithm. The
EHHO algorithm draws inspiration from the hunting behavior
of Harris's falcons in nature, which has shown remarkable
abilities in finding optimal solutions for specific problems. By
utilizing the EHHO algorithm, we aim to achieve improved task
scheduling performance, enhanced resource utilization, and
better compliance with SLAs and users' QoS requirements. The
primary objective of this study is to investigate the efficacy of
the EHHO algorithm in cloud task scheduling and assess its
performance compared to existing optimization algorithms. We
conduct extensive simulations and evaluations, considering both

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

789 | P a g e

www.ijacsa.thesai.org

general workloads and specific BigDataBench workloads, to
comprehensively analyze the performance of the proposed
algorithm. The remainder of this paper is organized as follows:
Section II provides an overview of related work in cloud task
scheduling and optimization algorithms. Section III presents the
methodology and details of the Enhanced Harris Hawks
Optimization algorithm, including the enhancements made to
mitigate convergence issues. Section IV describes the
experimental setup and evaluation metrics used to assess the
performance of the EHHO algorithm. Section V presents the
results and analysis of the simulations. Finally, Section VI
summarizes the findings, discusses their implications, and
outlines future research directions.

II. RELATED WORK

The paper in [9] proposed a novel algorithm called Interval
Multi-objective Cloud Task Scheduling Optimization (I-
MCTSO) to effectively address uncertainty in cloud task
scheduling. They transformed ambiguous variables into
precisely defined interval parameters, considering factors such
as makespan, task completion rate, load balancing, and
scheduling cost. To implement the I-MCTSO approach, the
researchers devised a new Interval Multi-objective Evolutionary
approach (InMaOEA). They integrated a distinct interval
credibility approach to enhance convergence performance and
augmented population diversity by incorporating overlap and
hyper-volume assessments alongside the interval congestion
distance method. Empirical simulations were conducted to
evaluate the performance of the InMaOEA algorithm against
existing algorithms. The results provided compelling evidence
supporting the high effectiveness and superiority of the
proposed approach. The methodologies furnish a framework
that provides decision-makers with robust guidelines for
allocating cloud job scheduling, enabling well-informed
decisions. These advancements represent a significant
progression in cloud computing resource management and
potentially elevate operational efficiency and effectiveness.

This study [10] proposed an innovative enhancement to the
initialization process of the PSO algorithm by integrating
heuristic techniques. They incorporated the Minimum
Completion Time (MCT) and Longest Job to Fastest Processor
(LJFP) algorithms into the initialization phase of the PSO
algorithm, aiming to improve its overall efficiency. The
researchers comprehensively evaluated the formulated MCT-
PSO and LJFP-PSO algorithms, considering several crucial
metrics. These metrics included the minimization of makespan,
reduction in overall energy consumption, mitigation of
imbalance, and decrease in total execution time. These metrics
served as pivotal benchmarks to assess the effectiveness of the
proposed algorithms in the context of task scheduling. Through
extensive simulations, the researchers presented evidence
demonstrating the notable superiority and efficacy of the
suggested MCT-PSO and LJFP-PSO approaches compared to
traditional PSO methods and other contemporary task-
scheduling algorithms. These findings underscored the potential
of these enhancements to significantly improve the optimization
capabilities of task scheduling methods based on the PSO
algorithm. Consequently, this research contributes significantly
to advancing the efficient and effective management of cloud
computing resources.

In research [11], it introduced a task scheduling method
called Chemical Reaction PSO. This method offers a hybrid
approach that efficiently allocates multiple independent tasks
among a collection of VMs in cloud computing environments.
The proposed method combines the advantages of traditional
chemical reaction optimization and particle swarm optimization,
creating a unique synergy that leads to an optimal sequence for
task scheduling. This sequence considers both task demand and
deadline considerations, thereby improving outcomes across
various parameters such as cost, energy consumption, and
makespan. To evaluate the effectiveness of the proposed
algorithm, extensive simulation experiments were conducted
using the CloudSim toolbox. The experimental results
highlighted the benefits of the Chemical Reaction PSO
algorithm. The average execution time was rigorously assessed
by comparing studies involving different quantities of VMs and
jobs. The results demonstrated substantial improvements in
execution duration, ranging from 1% to 6%, with specific
instances showing even more significant improvements
exceeding 10%. The makespan results also exhibited
noteworthy gains, ranging from 5% to 12%, while the overall
cost factor demonstrated enhancements of 2% to 10%.
Furthermore, there was a significant increase in the rate of
energy consumption, ranging from 1% to 9%.

The paper in [12] developed the Enhanced Sunflower
Optimization (ESFO) algorithm as an innovative methodology
to enhance the effectiveness of existing job scheduling
techniques. The ESFO algorithm aims to achieve optimal
scheduling within polynomial time complexity. The proposed
ESFO approach underwent comprehensive scrutiny and was
subjected to a battery of task scheduling benchmarks to evaluate
its strengths and limitations. Simulation studies were conducted
to assess the performance of the ESFO algorithm compared to
existing algorithms. The outcomes of these studies demonstrated
the superior performance of the ESFO algorithm. It exhibited
significant proficiency in optimizing task scheduling outcomes,
particularly in critical parameters such as energy usage and
makespan. The algorithm's robust performance across these
parameters highlighted its effectiveness in improving resource
allocation and system efficiency.

The authors in [4] introduced the Enhanced Marine Predator
Algorithm (EMPA) as a means to enhance scheduling
efficiency. The proposed methodology consists of several
crucial stages, including formulating a task scheduling model
that considers both makespan and resource utilization. Each
element within the algorithm represents a potential solution for
task scheduling, aiming to identify the most favorable
scheduling solution. To improve its performance, the EMPA
algorithm integrates various components derived from the
Whale Optimization Algorithm (WOA), incorporating operator
functions, nonlinear inertia weight coefficients, and the golden
sine function. To evaluate its effectiveness, the EMPA algorithm
undergoes extensive comparative assessments against
established optimization algorithms, such as WOA, PSO, SCA,
and GWO, across diverse settings considering different
workloads in the GoCJ and synthetic datasets. The empirical
evaluation conducted in this study highlights the advantages of
the EMPA algorithm, demonstrating notable strengths in
resource utilization, degree of imbalance, and makespan. These

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

790 | P a g e

www.ijacsa.thesai.org

findings provide empirical evidence supporting the efficacy of
the Enhanced Marine Predator Algorithm in optimizing task
scheduling outcomes. As a result, these results contribute
significantly to the field of scheduling approaches and can
potentially enhance resource management in various
applications.

The paper in [13] proposed a multi-objective scheduling
algorithm called MSITGO, which aims to optimize three
conflicting objectives: idle resource costs, energy consumption,
and batch task completion time. Drawing inspiration from
Invasive Tumor Growth Optimization (ITGO), the MSITGO
algorithm incorporates tumor cell growth modeling principles
and integrates Pareto optimum and packing problem models.
This integration enables a comprehensive and efficient
exploration of potential solutions, expanding the range of ideas
and accelerating the consensus-building process. Moreover, the
MSITGO framework encompasses the entire task-processing
operation by dividing it into two distinct stages: machine
assignment and timeslot allocation. This refined framework
enhances job scheduling efficiency and mitigates improper
allocations. To validate its practical application, MSITGO
undergoes empirical validation using real cluster data obtained
from Alibaba. The experimental results demonstrate the
superiority of MSITGO over existing techniques in addressing
the multi-objective task scheduling problem. The framework
exhibits its ability to provide more efficient solutions,
highlighting its potential to make significant contributions to
optimizing task scheduling across various applications.

III. PROBLEM STATEMENT AND SYSTEM MODEL

In this section, we define the problem statement and
introduce the proposed architecture for task scheduling. The
problem at hand revolves around the mapping of a set of n tasks,
represented as tn = {t1, t2, ..., tn}, onto the m VMs vmm = {vm1,
vm2, ..., vmm}, exist within the Hk hosts Hk = {H1, H2, ..., Hk},
which are situated within the Dn datacenters Dn = {D1, D2, ...,
Dn}. During this mapping process, the priorities of both VMs
and tasks are taken into account. The primary objectives of this
mapping are to minimize the makespan and prevent SLA
violations.

Fig. 1 provides a visual representation of the proposed
system architecture. The process begins with simultaneous user
queries being submitted to the cloud administration dashboard
and broker, which act as users' agents. The task manager then
validates these requests, which considers the specified SLA
requirements. If the requests meet the criteria and are deemed
valid, they are placed in a waiting queue and subsequently
forwarded to the task scheduler. Within this architecture, the
task manager is crucial in calculating the priorities of diverse and
heterogeneous tasks. These priorities are determined based on
factors such as task size, run-time capacity, and the preferences
of the VMs.

Additionally, the VM priorities are determined by
considering the unit cost of electricity associated with each VM.
After determining the priorities of tasks and VMs, they are
placed in a waiting line. The task scheduler then assigns the
highest-priority task to the highest-priority VM. The scheduler
tries to reduce the makespan and prevent SLA breaches by
categorizing the requests based on these priorities. The task

scheduler plays a crucial role in efficiently mapping tasks to
VMs while considering their priorities. It takes into account the
optimization objectives of minimizing the makespan and
ensuring compliance with SLAs. By intelligently assigning tasks
to VMs based on their priorities, the scheduler aims to achieve
an optimal task scheduling assignment, leading to improved
system performance and user satisfaction.

Fig. 1. System architecture.

To evaluate the priorities of tasks, the workload on all VMs
is calculated using Eq. (1), where lom represents the workload
on m VMs residing in the set of Hk hosts. Consequently, the
total workload on hosts is calculated using Eq. (2).

𝑙𝑜𝑣𝑚𝑚
= ∑ 𝑙𝑜𝑚 (1)

𝑙𝑜𝐻𝑘
=

𝑙𝑜𝑣𝑚𝑚

∑ 𝐻𝑘
 (2)

To determine whether user requests or tasks can be
processed on a specific VM, the processing capacity of a VM
needs to be defined. This is indicated by Eq. (3), where prono
represents the number of processing elements and proMIPS
stands for the processing capacity based on the number of
instructions processed per second.

𝑝𝑟𝑜𝑐𝑎𝑣𝑚
= 𝑝𝑟𝑜𝑀𝐼𝑃𝑆 × 𝑝𝑟𝑜𝑛𝑜 (3)

For the task scheduler to map tasks to specific VMs, it
requires knowledge of the task size, which is calculated using
Eq. (4). Subsequently, the priorities of all tasks are calculated
using Eq. (5), while the priorities of VMs, based on unit
electricity cost, are determined using Eq. (6).

𝑡𝑘
𝑙𝑒𝑛 = 𝑡𝑝𝑟𝑘

× 𝑡𝑀𝐼𝑃𝑆 (4)

𝑡𝑝𝑟𝑘
=

𝑡𝑘
𝑙𝑒𝑛

𝑝𝑟𝑜𝑘𝑣𝑚

 (5)

𝑣𝑚𝑝𝑟𝑛
=

𝑒𝑙𝑒𝑐𝑜𝑠𝑡ℎ𝑖𝑔ℎ

𝑒𝑙𝑒𝑐𝑜𝑠𝑡𝑑𝑖

 (6)

The primary goals of this research endeavor encompass the
proper mapping of tasks to virtual resources, with a focus on
minimizing the makespan and avoiding any violations of service
level agreements (SLAs). To evaluate the makespan, Eq. (7) is
employed as the metric. Subsequently, the determination of SLA
violations becomes the next objective. SLA violations are
influenced by two key factors: the active time of a host and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

791 | P a g e

www.ijacsa.thesai.org

performance degradation. These factors are quantified using Eq.
(8) and (9), respectively. By utilizing these equations, the
calculation of SLA violations can be performed, as expressed in
Eq. (10).

𝑚𝑠𝑘 = 𝑒𝑘 + 𝑎𝑣𝑎𝑛 (7)

𝐴𝑇𝐻𝑖
=

1

𝑝
∑

𝑣𝑖𝑜 𝑡𝑖𝑚𝑒𝐻𝑖

𝐴𝑇𝐻𝑖

𝑝
𝑠=1 (8)

𝑝𝑒𝑑𝑔 =
1

𝑛
∑

𝑝𝑒𝑑𝑔
𝑝

𝑡𝑜𝑣𝑚
𝑝

𝑛
𝑎=1 (9)

𝑆𝐿𝐴𝑣𝑖𝑜 = 𝑝𝑒𝑑𝑔 × 𝐴𝑇𝐻𝑖
 (10)

IV. ENHANCED HHO FOR TASK SCHEDULING

The HHO algorithm draws inspiration from the cooperative
hunting and pursuit behaviors observed in Harris’s hawks,
specifically their strategic hunting tactics like "surprise
pounces" or "the seven kills"[14]. In cooperative attacks,
multiple hawks collaborate to pursue a rabbit that has revealed
itself, aiming to catch the prey swiftly. However, the hunt might
include repeated rapid dives near the prey, depending on the
prey's reactions and its potential to escape. Harris’s hawks
display various hunting strategies based on the changing
circumstances and the prey's escape patterns. Tactics are often
altered if the lead hawk fails to pursue the prey, allowing another
team member to continue the chase, often used to confuse
escaping rabbits. Notably, the rabbit is unable to regain its
defensive skills when a new hawk initiates the chase, and it
cannot escape the attacking team as the most experienced hawk
captures and shares the exhausted rabbit.

The different phases of the HHO are depicted in Fig. 2,
illustrating how hawks trace, encircle, and ultimately attack their
prey. The mathematical model mirrors these hunting behaviors,
encompassing three phases: exploration, transition between
exploration and exploitation, and exploitation. Throughout each
phase, Harris’s hawks represent potential solutions, and the
target prey represents the optimal solution. Hawks use two
exploration techniques to locate the prey. In one, they select a
location based on other hawks' positions and the prey's location.
In the second strategy, hawks perch randomly on tall trees. Eq.
(11) simulates these methods with equal probabilities using
random numbers.

Fig. 2. HHO steps.

𝑥(𝑡 + 1) =

{
𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 𝑥1|𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 2𝑟2𝑥(𝑡)|, 𝑞 ≥ 0.5

𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.5

 (11)

Eq. (12) calculates the average hawk population position.
The algorithm switches from exploration to exploitation based
on the rabbit's energy, as expressed in Eq. (13). When the
rabbit's escaping energy |𝐸|⩾1, hawks explore more areas;
otherwise, exploitation begins. Eq. (14) - Eq. (17) determine
whether hawks perform a soft or hard siege based on the rabbit's
energy and escape success. A soft siege involves repeated dives,
simulating the rabbit's successful escape, while a hard siege is
calculated differently.

𝑥𝑚𝑒𝑎𝑛(𝑡) =
1

𝑁
∑ 𝑥𝑖(𝑡)𝑁

𝑖=1 (12)

𝐸 = 2𝐸0(1 −
𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
) (13)

𝑥(𝑡 + 1) = 𝛥𝑥(𝑡) − 𝐸|𝐽.𝑥𝑟𝑎𝑏𝑏𝑖𝑡 (𝑡) − 𝑥(𝑡)| (14)

𝛥𝑥(𝑡) = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡) (15)

𝐽 = 2(1 − 𝑟𝑎𝑛𝑑𝑜𝑚) (16)

𝑥(𝑡 + 1) = 𝑥(𝑡) − 𝐸|𝛥𝑥(𝑡)| (17)

Eq. (18) - Eq. (21) governs the soft-siege rapid dives,
utilizing Lévy flights to mimic the prey's behaviour. Eq. (18) and
(19) calculate the hawks' actions during the dive, while Eq. (20)
and Eq. (21) reflect the final soft-siege rapid dives and the
parameters k and z during a hard siege, respectively.

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)| (18)

𝑧 = 𝑘 + 𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟. 𝐿(𝑑𝑖𝑚) (19)

𝑥(𝑡 + 1) = {
𝑘, 𝑖𝑓𝑓(𝑘) < 𝑓(𝑥(𝑡))
𝑧, 𝑖𝑓𝑓(𝑧) < 𝑓(𝑥(𝑡))

 (20)

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡)| (21)

In the exploration phase of the HHO algorithm, the
calculations pertaining to positions, specified in Eq. (11) and Eq.
(12), are influenced by random values r1 and r3 within the range
of (0, 1). While this stochastic approach fosters randomness in
each step during the global search, it lacks the necessary
variability. During this phase, the original HHO algorithm
operates under the assumption that hawks, with their keen eyes,
can generally track and detect prey; however, there are moments
when prey is elusive and might not be detected easily,
sometimes even after several hours. In light of these
observations, it seems plausible to consider adjusting these
parameters to render them more adaptable.

We propose to conceptualize r1 and r3 as indicative of the
step length, where larger values imply swifter movement for the
hawks, and conversely, smaller values correspond to slower
movement. There exist two scenarios for a hawk to find prey:
one scenario involves immediate detection, while the other
involves a prolonged search. In the former, it is essential to
account for the variability in step length, whereas, in the latter
scenario, the overall variability of the step length should
diminish. As time progresses, the likelihood of a hawk finding

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

792 | P a g e

www.ijacsa.thesai.org

prey increases; therefore, initially, hawks should explore a wider
range with larger steps, gradually transitioning to a more
methodical search in later iterations. Thus, we propose an update
to r1 and r3 using an exploration factor represented by Eq. (17).
Consequently, the modified Eq. (11) is updated as follows Eq.
(18):

𝑒𝑓 = (𝑏 × 𝑟𝑎𝑛𝑑 −
𝑏

2
) × 𝑐𝑜𝑠(

𝜋

2
× (

𝑡

𝑇
)2) (22)

𝑋(𝑡 + 1) =

{
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑒𝑓|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|, 𝑞 ≥ 0.5

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑒𝑓(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.5
 (23)

Here, the value of b is set to 2 based on favorable results
from experimental tests. The term (b ∗ rand − b/2) introduces
randomness in the step length by generating random numbers
within the interval of (−b/2, b/2). In essence, the exploration
factor initially widens the step length range from (0, 1) to (−b/2,
b/2) to support expansive exploration. As the number of
iterations increases, it gradually shifts the exploration process
from a broad range to a more constrained one. Ultimately, this
approach maintains the essential randomness in the step length
while adapting it dynamically over the course of iterations.

The choice of parameters in EHHO algorithm is critical for
optimizing its performance in task scheduling within cloud
environments. The parameter b is set to 2 based on favorable
outcomes from preliminary experimental tests, which suggests
that this value effectively balances the exploration and
exploitation phases of the algorithm. The exploration factor (ef),
introduced in Eq. (22), modifies the step length of hawk
movements, thereby enhancing the algorithm's ability to search
for optimal solutions dynamically. The term (b×rand−b/2) adds
randomness within the interval (−b/2, b/2), initially broadening
the step length to support wide-ranging exploration and then
gradually narrowing it to facilitate a more focused search as
iterations progress. This adaptation ensures the algorithm
maintains its stochastic nature while becoming more methodical
over time. The experimental design rationale involves
simulating the EHHO algorithm against established
optimization algorithms like GA, ACO, and PSO, across
varying workloads to evaluate its efficacy. The validation
process entails comparing key performance metrics, such as
makespan and SLA violations, demonstrating significant
improvements in both general and BigDataBench workloads.

V. EXPERIMENTAL RESULTS

This section discusses the configuration settings for
simulation and presents the simulation results. The simulation
was conducted using the CloudSim toolkit, which provides an
accurate environment for simulating the cloud paradigm. The
simulation environment utilized in this study was implemented
on a machine with an Intel Core i5 processor and 8 GB of RAM.
Table I shows configuration settings for simulation. Table III
outlines the specific standard configuration settings utilized in
the simulation.

Table II presents the computation of SLA violations for
different algorithms, including PSO, ACO, GA, and our

proposed algorithm (EHHO), considering varying task
quantities.

TABLE I. CONFIGURATION SETTINGS FOR SIMULATION

Parameter Value

Datacenter count 5

Operating system Linux

Virtual machine monitor Xen

VM bandwidth 5 Mbps

VM memory 1024 MB

VM count 20

Network bandwidth 1000Mbps

Host storage capacity 5 TB

Host memory 16 GB

Task length 780,000

Task count 100-1000

TABLE II. SLA VIOLATIONS FOR RANDOMLY GENERATED WORKLOADS

Task count GA ACO PSO EHHO

100 15 12 17 7

500 12 18 25 9

1000 21 22 28 18

The selection of GA, ACO, and PSO for comparison against
our proposed EHHO algorithm is rooted in the distinct strengths
and prevalent application of these algorithms in the field of
optimization and task scheduling. Each of these algorithms
represents a different heuristic approach to solving complex
optimization problems, making them ideal benchmarks for
assessing the performance of EHHO. The Genetic Algorithm
(GA) is an evolutionary algorithm that simulates the process of
natural selection. It operates through mechanisms inspired by
biological evolution, such as selection, crossover, and mutation.
GA's robustness in exploring large search spaces and finding
near-optimal solutions is well-documented, making it a common
choice for various scheduling and optimization tasks. By
comparing EHHO to GA, we can evaluate how well our
algorithm performs in terms of scalability and efficiency,
especially in complex environments where traditional methods
might struggle.

The ACO and PSO were chosen due to their distinct nature
and widespread use in optimization problems. ACO is inspired
by the foraging behavior of ants and is particularly effective in
finding optimal paths and solutions through a collaborative
approach. Its performance in scheduling tasks is noteworthy,
making it a suitable candidate for comparison. PSO, on the other
hand, simulates the social behavior of birds flocking or fish
schooling. It is known for its simplicity and fast convergence
rates, making it a popular choice for various optimization
problems, including resource scheduling and allocation. By
including ACO and PSO in our comparative analysis, we cover
a broad spectrum of heuristic optimization techniques. This
allows us to comprehensively assess the efficiency, scalability,
and robustness of EHHO in minimizing SLA violations and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

793 | P a g e

www.ijacsa.thesai.org

makespan across different workload scenarios, thereby
highlighting its potential advantages and areas of improvement
in real-world applications.

When subjected to randomly generated workloads, the SLA
violations recorded for the PSO algorithm were 17%, 25%, and
28%, respectively. For ACO, the corresponding SLA violations
are 12%, 18%, and 22%. GA yields SLA violations of 15%,
12%, and 21%, while EHHO results in SLA violations of 7%,
9%, and 18%. In Table III, we present the assessment of SLA
violations incurred by different algorithms across varying task
quantities. These evaluations were conducted using the
BigDataBench workload as the basis for generating tasks. For
PSO, the SLA violations are 18%, 21%, and 29%. ACO yields
SLA violations of 10%, 12%, and 18%. GA generates SLA
violations of 18%, 21%, and 29%. EHHO results in SLA
violations of 9%, 11%, and 13%. It is evident that EHHO
significantly reduces SLA violations over other algorithms. By
considering the priority of VMs and tasks, our algorithm
efficiently schedules the tasks, resulting in a minimized
makespan.

TABLE III. SLA VIOLATIONS FOR BIGDATABENCH WORKLOADS

Task count GA ACO PSO EHHO

100 18 10 18 9

500 21 12 21 11

1000 29 18 29 13

Fig. 3. Visual representation of SLA violations for randomly generated

workloads.

Fig. 4. Visual representation of SLA violations for bigdata bench workloads.

Table IV presents the calculated makespan values for
different algorithms for three task quantities. In the case of
randomly generated workloads, the makespan values obtained
for PSO were 1289, 1678, and 1989, respectively, for the three
task quantities 100, 500, and 1000. For ACO, the corresponding
makespans are 1156, 1563, and 2146. GA yields makespans of
1543, 1475, and 1934, while the proposed algorithm results in
makespans of 976, 1281, and 1814. Table V presents the
calculated makespan values for different algorithms using the
BigDataBench workload, considering task quantities of 100,
500, and 1000. For PSO, the makespans are 1367, 1747, and
2045. ACO yields makespans of 1243, 1643, and 2387. GA
generates makespans of 1437, 1532, and 2243, while the
proposed algorithm results in makespans of 1087, 1407, and
1882. Fig. 3, 4, 5 and 6 show visual representation for different
workloads.

TABLE IV. MAKESPAN FOR RANDOMLY GENERATED WORKLOADS

Task count GA ACO PSO EHHO

100 1543 1156 1289 976

500 1475 1563 1678 1281

1000 1934 2146 1989 1814

TABLE V. MAKESPAN FOR BIGDATABENCH WORKLOADS

Task count GA ACO PSO EHHO

100 1437 1243 1367 1087

500 1532 1643 1747 1407

1000 2243 2387 2045 1882

Fig. 5. Visual representation of makespan for randomly generated

workloads.

Fig. 6. Visual representation of makespan for bigdatabench workloads.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

794 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION

The EHHO algorithm has shown significant improvements
over traditional algorithms like GA, ACO, and PSO in
optimizing makespan and reducing SLA violations, which
suggests it has a strong foundation for handling larger and more
complex workloads. The inherent design of the EHHO, which
draws from the cooperative hunting strategies of Harris's hawks,
allows it to dynamically adjust its exploration and exploitation
phases. This dynamic adjustment is crucial for scalability
because it enables the algorithm to maintain efficiency as the
number of tasks and VMs scales up. The exploration factor
introduced in the EHHO enhances its capability to search a
wider solution space initially and then focus on more promising
areas, which is beneficial when dealing with large-scale
environments.

Cloud computing environments are highly dynamic, with
workloads and resource availability fluctuating rapidly. The
adaptability of the EHHO algorithm in such conditions is
supported by its enhanced exploration mechanism, which allows
for a more flexible search process. The algorithm can adjust its
step lengths and exploration range based on the iteration
progress and current solution quality, helping it adapt to sudden
changes in workload patterns and resource distribution.

The scalability of the proposed EHHO algorithm is a critical
factor for its practical application in diverse cloud computing
environments, characterized by varying loads and resource
distribution patterns. Scalability in this context refers to the
algorithm's ability to maintain or improve its performance as the
size of the cloud environment increases and as it adapts to
changing conditions.

Moreover, the use of random values in the EHHO's
exploration phase fosters a level of stochasticity that can be
beneficial in diverse environments. This randomness ensures
that the algorithm does not become overly dependent on specific
patterns and can handle unexpected changes more effectively.
While the EHHO algorithm has demonstrated improved
performance metrics, its scalability also depends on managing
computational overhead. The algorithm's complexity,
particularly in large-scale environments, could potentially
introduce significant computational costs. To mitigate this, the
EHHO can be parallelized and optimized to run on distributed
cloud infrastructure, leveraging the parallel processing
capabilities of modern cloud systems. This parallelization can
distribute the computational load, ensuring that the algorithm
remains efficient even as the scale of the environment increases.

For addressing real-world scenarios challenges,
implementing the EHHO algorithm for cloud task scheduling in
real-world scenarios presents several potential challenges. One
of the primary challenges is the dynamic and unpredictable
nature of cloud environments. Cloud infrastructures often
experience varying workloads and resource availability, making
it difficult to maintain consistent performance and SLA
adherence. The EHHO algorithm, although optimized for
exploration and preventing convergence to local optima, may
still need continuous adjustments and fine-tuning to handle these
dynamic changes effectively. Additionally, integrating the
EHHO algorithm with existing cloud management platforms
can be complex, requiring significant modifications to

accommodate its unique optimization processes. This
integration process must ensure minimal disruption to ongoing
services and avoid introducing new inefficiencies.

Another challenge is the potential computational overhead
introduced by the EHHO algorithm. While EHHO aims to
optimize resource utilization and task scheduling, the algorithm
itself can be computationally intensive, especially when
handling large-scale cloud environments with numerous tasks
and VMs. This computational demand can offset some of the
performance gains achieved through optimized scheduling.
Moreover, real-world applications often involve multi-tenant
environments where multiple users and applications compete for
resources. Ensuring fairness and effective resource allocation
while using EHHO to maximize efficiency can be challenging.
The algorithm must be designed to respect priority levels,
application-specific QoS requirements, and user-specific SLAs,
which can add layers of complexity to its implementation.

To address these challenges, several adaptations and
enhancements can be incorporated into the EHHO algorithm.
Firstly, implementing a feedback mechanism that continuously
monitors the cloud environment and dynamically adjusts the
EHHO parameters can help maintain optimal performance
despite changes in workload patterns and resource availability.
This adaptive approach can involve machine learning techniques
that predict workload trends and preemptively adjust the EHHO
algorithm's exploration and exploitation balance.

Secondly, to mitigate the computational overhead, the
EHHO algorithm can be parallelized and optimized to run
efficiently on distributed systems. Leveraging the inherent
parallelism in cloud infrastructures can distribute the
computational load of the EHHO algorithm, ensuring that it
scales effectively with the size of the cloud environment.
Additionally, introducing a hybrid approach that combines
EHHO with other less computationally intensive algorithms can
help balance the trade-offs between optimization quality and
computational efficiency. For instance, using simpler heuristic
methods for initial task scheduling and applying EHHO for fine-
tuning can achieve a balance between performance and
overhead.

Lastly, ensuring fairness and effective resource allocation in
multi-tenant environments requires incorporating priority-based
and QoS-aware scheduling policies into the EHHO algorithm.
This can involve designing custom fitness functions that account
for user-specific SLAs and QoS requirements, ensuring that the
algorithm not only optimizes for overall resource utilization but
also respects individual application needs. Regular audits and
evaluations of the algorithm's performance in meeting SLAs and
QoS parameters can help in making necessary adjustments and
improvements, ensuring that EHHO remains effective in real-
world cloud environments.

VII. CONCLUSION

The scheduling of tasks in cloud computing environments
presents substantial issues for both cloud providers and
customers. In the absence of an efficient scheduler, the diverse
and heterogeneous workload can result in prolonged makespan
and violations of SLAs, thereby compromising the overall QoS.
To tackle these challenges, this study presented a novel task-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

795 | P a g e

www.ijacsa.thesai.org

scheduling algorithm that incorporates the priority of VMs and
tasks to achieve optimal task-to-resource mapping. Our
scheduling strategy builds upon the existing HHO algorithm,
incorporating enhancements to improve its effectiveness. To
evaluate and validate our proposed algorithm, we conducted
comprehensive simulations and experiments using the
CloudSim framework. The efficacy of the suggested algorithm
is evaluated in comparison to established methodologies such as
PSO, ACO, and GA. Initially, we used randomly generated
workloads in the simulation, and later, we utilized a real-time
dataset called BigDataBench. The results of our evaluation
provide compelling evidence that our proposed algorithm
surpasses the previous methods by optimizing SLA violations
and makespan.

Despite these promising results, our study has some
limitations. Firstly, the algorithm's performance has been tested
primarily within simulated environments, which may not fully
capture the complexities and variabilities of real-world cloud
infrastructures. The computational overhead introduced by the
enhanced HHO algorithm also needs further analysis to ensure
scalability and efficiency in large-scale cloud deployments.
Additionally, the algorithm currently focuses on optimizing
makespan and SLA violations but does not explicitly address
other crucial factors such as energy consumption, cost
efficiency, and fairness in resource allocation among multiple
tenants. Future research should aim to address these limitations
by conducting real-world implementation and testing, exploring
hybrid optimization techniques to balance computational
efficiency, and integrating additional optimization objectives
such as energy and cost savings. Expanding the algorithm's
adaptability to diverse and evolving cloud environments will
also be essential for its broader applicability and robustness.

ACKNOWLEDGMENT

This work was supported by Research on the promotion path
of the core competitiveness of professional groups under the
background of industry education integration (Subject No.:
xjk19bzy017).

REFERENCES

[1] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, “Single‐objective service composition methods in cloud

manufacturing systems: Recent techniques, classification, and future
trends,” Concurr Comput, vol. 34, no. 5, p. e6698, 2022.

[2] B. Pourghebleh, A. Aghaei Anvigh, A. R. Ramtin, and B. Mohammadi,
“The importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments,” Cluster
Comput, vol. 24, no. 3, pp. 2673–2696, 2021.

[3] V. Hayyolalam, B. Pourghebleh, A. A. Pourhaji Kazem, and A. Ghaffari,
“Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques,” The
International Journal of Advanced Manufacturing Technology, vol. 105,
pp. 471–498, 2019.

[4] R. Gong, D. Li, L. Hong, and N. Xie, “Task scheduling in cloud
computing environment based on enhanced marine predator algorithm,”
Cluster Comput, pp. 1–15, 2023.

[5] K. Saidi and D. Bardou, “Task scheduling and VM placement to resource
allocation in cloud computing: challenges and opportunities,” Cluster
Comput, vol. 26, no. 5, pp. 3069–3087, 2023.

[6] B. Kruekaew and W. Kimpan, “Multi-objective task scheduling
optimization for load balancing in cloud computing environment using
hybrid artificial bee colony algorithm with reinforcement learning,” IEEE
Access, vol. 10, pp. 17803–17818, 2022.

[7] S. Mangalampalli, G. R. Karri, and G. N. Satish, “Efficient workflow
scheduling algorithm in cloud computing using whale optimization,”
Procedia Comput Sci, vol. 218, pp. 1936–1945, 2023.

[8] P. Pirozmand, H. Jalalinejad, A. A. R. Hosseinabadi, S. Mirkamali, and
Y. Li, “An improved particle swarm optimization algorithm for task
scheduling in cloud computing,” J Ambient Intell Humaniz Comput, vol.
14, no. 4, pp. 4313–4327, 2023.

[9] Z. Zhang, M. Zhao, H. Wang, Z. Cui, and W. Zhang, “An efficient interval
many-objective evolutionary algorithm for cloud task scheduling problem
under uncertainty,” Inf Sci (N Y), vol. 583, pp. 56–72, 2022.

[10] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initialization of
PSO task scheduling algorithm in cloud computing,” Journal of King
Saud University-Computer and Information Sciences, vol. 34, no. 6, pp.
2370–2382, 2022.

[11] K. Dubey and S. C. Sharma, “A novel multi-objective CR-PSO task
scheduling algorithm with deadline constraint in cloud computing,”
Sustainable Computing: Informatics and Systems, vol. 32, p. 100605,
2021.

[12] H. Emami, “Cloud task scheduling using enhanced sunflower
optimization algorithm,” Ict Express, vol. 8, no. 1, pp. 97–100, 2022.

[13] Q. Hu, X. Wu, and S. Dong, “A two-stage multi-objective task scheduling
framework based on invasive tumor growth optimization algorithm for
cloud computing,” J Grid Comput, vol. 21, no. 2, p. 31, 2023.

[14] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
“Harris hawks’ optimization: Algorithm and applications,” Future
generation computer systems, vol. 97, pp. 849–872, 2019.

