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Abstract—The secure sharing and privacy protection of 

medical data have become pain points for medical data 

management platforms. Therefore, a secure sharing electronic 

health record privacy protection method based on blockchain is 

proposed in the study, aiming to improve data security privacy 

and ensure absolute ownership of patients' medical data. 

Attribute encryption and blockchain computing are utilized to 

construct a data secure sharing model, and zero-knowledge proof 

and ElGamal encryption algorithms are introduced to further 

improve the construction of data privacy protection methods. 

Experimental verification showed that the data secure sharing 

method proposed in the study has more advantages in terms of 

production key size and time cost. Compared with other public 

recognition mechanisms, zero-knowledge proof reduced the 

average time cost of generating keys by 54.36%. The proposed 

data privacy protection method had an average increase of 

7.73% in protection effectiveness compared to other methods. 

The results indicate that the data secure sharing and privacy 

protection methods proposed in the study can improve the 

overall performance and security of the system while fully 

ensuring the absolute ownership of patients' data. This method 

has positive application value in the privacy protection of medical 

data. 

Keywords—Blockchain; secure sharing; electronic health 

records; privacy protection; zero-knowledge proof; attribute 

encryption 

I. INTRODUCTION 

With the continuous improvement of the national 
economic level, the process of medical intelligence and 
wireless technology is gradually improving. However, limited 
medical resources, uneven distribution of medical levels, and 
heterogeneity of system data based on different medical 
systems have led to the phenomenon of isolated medical data 
[1-2]. Meanwhile, the optimization and advancement of 
Internet of Things technology have led to threats to the 
privacy and security of data information. Issues such as hacker 
attacks, data information leakage, and patient privacy 
protection urgently need to be addressed [3]. Blockchain 
technology has achieved decentralization through distributed 
consensus, data encryption, economic incentives, and other 
methods, improving data privacy protection. It has been 
widely applied in research on data privacy protection in the 
Internet of Things. However, the current privacy protection 
methods for electronic health records still need further 
development and optimization. Based on this, a secure shared 
electronic health record privacy protection method is proposed 
on the basis of blockchain, aiming to improve the protection 
performance of medical data and enhance patients' sharing 

rights over their medical data. By putting patients at the center, 
we ensure the privacy and security of user Electronic Health 
Record (EHR) data while safeguarding patients' absolute 
rights to their own medical data. At the same time, zero 
knowledge proof (ZKP) was introduced in combination with 
ElGamal encryption algorithm to explore EHR data privacy 
protection. 

The overall structure of the research includes six sections: 
Section I summarizes the research achievements and 
shortcomings of blockchain and medical data privacy 
protection at home and abroad; Section II studies and designs 
a privacy protection method for secure shared electronic 
health records based on blockchain technology; Section III 
conducted experiments and analysis on the proposed privacy 
protection method for secure shared electronic health records; 
Section IV summarizes the experimental results. Discussion 
and conclusion are given in Section V and Section VI 
respectively. 

II. RELATED WORKS 

With the continuous application and development of big 
data technology, how to effectively share medical data 
information and protect privacy has become a new focus in the 
current research field. Ortega Calvo and others proposed an 
artificial intelligence modern data platform to address the 
limitation of healthcare data management systems being 
unable to utilize the generated data. Based on big data, 
artificial intelligence management, and efficient data 
processing, different components were utilized to regulate data 
collection and heterogeneous data was analyzed. By 
constructing a security and data governance layer, the privacy 
and integrity of the system database were maintained [4]. 
Kumar et al. raised a secure and efficient data sharing 
framework based on blockchain and deep learning to address 
the issues of unreliable connection security and privacy in 
real-time monitoring of patients in public networks. By 
utilizing consensus mechanisms based on smart contracts to 
register and verify communication entities, and using stacked 
sparse mutation autoencoders for key verification, privacy 
protection for real-time transmission of healthcare data was 
improved [5]. Shuaib et al. proposed a medical data sharing 
system based on licensed blockchain technology (BCT) to 
address the limitation of BCT relying on centralized databases. 
By integrating BCT, threshold signatures for decentralized file 
systems, and using the Istanbul Byzantine consensus 
algorithm as key verification, the performance and security of 
the system were improved [6]. To improve privacy protection 
during medical data sharing, Liu et al. proposed combining 
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federated learning with neural architecture search and 
developed a multi-objective convolutional interval type 2 
fuzzy rough model based on neural architecture search. By 
combining convolutional neural networks with fuzzy rough 
sets, the interpretability of deep neural networks was 
effectively improved [7]. 

The development of BCT provides security and privacy 
protection for data transmission in the era of intelligent 
informatization [8]. To improve the resistance of 
e-government systems to malicious attacks, Elisa et al. 
proposed a decentralized peer-to-peer e-government system 
framework using BCT. By utilizing BCT to verify and store 
existing and new data, the information security and privacy of 
the system were enhanced [9]. Sharma et al. raised a 
distributed application that protects privacy in response to 
various security attacks on traditional healthcare solutions. By 
utilizing BCT to create and maintain healthcare integers, the 
security, privacy, and transparency of healthcare platforms 
were improved [10]. Awotunde et al. raised a network 
architecture based on blockchain, which combines a hybrid 
convolutional neural network and kernel principal component 
analysis, to protect the system from potential threats and 
ensure network traffic security. By extracting features through 
kernel principal component analysis and then using 
convolutional neural networks for classification and detection, 
the security, privacy, and maintainability of IoT smart cities 
were improved [11]. To address the data security and 
management issues between IoT edge nodes and massive 
heterogeneous devices, Zhonghua et al. proposed an IoT 
access control model combining BCT. By proving the 
workload of traditional consensus algorithms, the Proof of 
Work (PoW) mechanism was optimized to provide 
decentralized, fine-grained, and dynamic access control 
management for IoT environments [12]. Due to the difficulty 
in ensuring security and privacy in data management, 
information verification, and dissemination, Patil established a 
medical record security system based on BCT. By utilizing 

BCT to improve the access of medical data management 
systems to monitoring drugs, hospital assets, etc., the service 
efficiency of medical service systems was improved [13]. 

Based on the above, relevant experts and scholars have 
explored various aspects of privacy protection of medical data 
and the application of BCT, and have achieved good results. 
However, current medical data systems still have a high 
dependence on third-party service providers, and patients 
cannot have absolute ownership of their own medical data. 
Therefore, the study innovatively proposes a secure sharing 
Electronic Health Record (EHR) privacy protection method 
based on patient-centered blockchain, aiming to ensure the 
privacy and security of user EHR data while safeguarding the 
absolute right of patients to their own medical data. In 
addition, to improve the privacy and security of the system, 
Zero Knowledge Proof (ZKP) is introduced. The combination 
of ZKP and ElGamal encryption algorithm has been explored 
for EHR data privacy protection. 

III. METHODS AND MATERIALS 

The study first designed an EHR Security Sharing (EHRSS) 
based on BCT. On this basis, the study further introduced ZKP 
based on blockchain for EHR Privacy Protection (EHRPP) 
method design. 

A. Design of Secure Sharing Method Based on Blockchain 

The processing and sharing of EHR data are mainly 
achieved by commonly used data sharing management 
platforms in medical systems, but during the platform sharing 
process, users need to upload the data to cloud storage 
themselves [14-15]. However, the security of this operation is 
extremely low, and it overly relies on third-party service 
providers, making it difficult for users to guarantee their 
absolute ownership of the uploaded data. Therefore, this study 
proposed an EHRSS method based on BCT. The specific 
architecture is shown in Fig. 1. 
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Fig. 1. Blockchain-based EHRSS model architecture. 
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In Fig. 1, the EHRSS model proposed in the study is 
mainly composed of the proprietary Inter Planetary File 
System (IPFS), blockchain, patients, and data users. Among 
them, the IPFS interstellar file system is responsible for 
storing the patient's EHR, and the blockchain is responsible 
for storing the public information and user operation records 
generated in the entire EHRSS model, while also considering 
the communication channel between patients and data users. 

The patient mainly refers to the owner of EHR, who creates 
and deploys smart contracts in the EHRSS model. The data 
users mainly refer to doctors, nurses, hospital administrators, 
and medical institutions. When the attributes of the data user 
comply with the strategy embedded in the ciphertext, the data 
sharing right is obtained based on the decryption address and 
key information. The execution process of the EHRSS model 
is denoted in Fig. 2. 
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Fig. 2. Blockchain-based EHRSS model flowchart. 

As shown in Fig. 2, The EHRSS model first determines the 
system's security parameters, attribute sets, random parameters, 
etc., and generates common parameters and the system's 
master key. The generation process is shown in Eq. (1). 
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In Eq. (1), Pk  represents a common parameter. Msk  

represents the system master key. N  represents the product 

of two prime numbers multiplied. g  represents the generator. 

b  and c  represent random numbers. 
i  and 

ih  represent 

calculations related to attribute revocation. 
id  and 

iD  

represent attribute related calculations. t  represents the 

calculation related to the identity of the data user. e  

represents bilinear mapping. I  represents a set of attributes. 
Y  represents the random private key of the data user. Based 
on the generated public parameters and system master key, the 
data user inputs their unique Identity Document (ID) and the 
corresponding attribute set, in order to obtain the exclusive 
attribute key for the data user. The specific calculation method 
is shown in Eq. (2). 
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In Eq. (2),
,1iK , 

,2iK , and 
,3iK  represent the attribute 

private key information of the data user. 
IDt  represents the 

identity ID of the data user. On this basis, the patient encrypts 
the EHR using their symmetric key, uploads it to the IPFS 
system, obtains the corresponding storage hash value, and 

stores the ciphertext in a shared contract. Among them, the 
EHR expression is shown in Eq. (3). 

( )ipfsM key hash     (3) 

In Eq. (3), M  represents HER data. 
ipfshash  represents 

the hash value of the storage address in the IPFS system. key  

represents symmetric key information. The ciphertext 
expression is shown in Eq. (4). 
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In Eq. (4), CT  represents ciphertext information. x  and 

y  represent rows and columns.  x  represents attributes. 

l  represents the length of the access address. C  represents 

encryption. Meanwhile, the data user decrypts the ciphertext 
information based on their own attribute private key. When 
the data user meets the set orientation strategy and is not 
included in the attribute revocation list, they can obtain the 
storage information and decryption key of patient EHR data in 
IPFS. The identity discrimination calculation method for data 
users is shown in Eq. (5). 
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In Eq. (5), 
,1xF  and 

,2xF  represent the conditions that 

satisfy the data user being accessed. The expression for EHR 
data obtained by data users is shown in Eq. (6). 
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In Eq. (6), 
xu  represents the recovery coefficient. In 

addition, in the EHRSS model, patients have the right to 
specify the users of their private data and perform fine-grained 
revocation of attribute sets, without updating the private key 
information of other data users associated with the ciphertext. 
Taking revoking a certain identification ID as an example, the 
patient needs to add the data user's ID to the revocation list 
corresponding to the attribute, and re encrypt and upload the 
electronic health record data to the IPFS system, replacing the 
access policy set in the shared contract. 

B. Design of Privacy Protection Methods Based on 

Blockchain 

In the process of EHR data sharing, relying solely on the 
security of the IPFS system and blockchain cannot fully 
guarantee the privacy of patient EHR data. Therefore, based 
on the proposed EHRSS model, further research was 
conducted on the privacy protection of EHR using ZKP and 
ElGamal encryption algorithms on the basis of BCT. ZKP can 
prove to other verifiers that a proposition is true without 
disclosing any actual information of the verifier [16-17]. 
Therefore, the proof process of ZKP in the proposed EHRPP 
method is shown in Fig. 3. 
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Fig. 3. ZKP's proof process in EHRPP. 

In Fig. 3, data users use Zero-Knowledge Succinct 
Non-Interactive Argument of Knowledge (ZK-SNARKs) list 
the ZKP of patient EHR data required for their research, and 
publish the correlation results and hash values generated based 
on digital circuits into smart contracts. Secondly, patients 
make a preliminary judgment on whether they meet their 
expectations based on the data keywords disclosed by medical 
institutions. If so, continue to validate the patient's data to 
ensure that it meets the needs of the data user. The patient 
randomly selects a numerical value and combines it with 
information such as ID, timestamp, and EHR data to generate 
a digital signature. The specific expression is shown in Eq. 
(7). 

1( , ( , , , ))z p pq AuthSign x H ID M k   (7) 

In Eq. (6), 
zq  represents digital signature. (*)AuthSign  

represents authorized signature. 
px  represents the patient's 

private key. 
pID  represents the patient's identification 

information ID.   represents timestamp. k  represents a 

random number. 
1H  represents a hash function that can 

resist collisions. At the same time, patients establish 
corresponding digital circuits based on smart contracts, and 
combine random values to obtain the EHR dataset, additional 
data, and common parameters of the system. The specific 
expression is shown in Eq. (8). 
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In Eq. (8), M   represents the HER dataset obtained by 

selecting a random number k . 
nm  represents HER data. V  

represents the digital circuit constructed by the patient. R  
represents the result set. H  represents the hash value. r  
represents the output result. Based on the above parameters, it 
inputs and calculates the result set and hash value of EHR to 
prove the authenticity and availability of the obtained EHR 
data. After inputting system security parameters and digital 
circuits, it can obtain the key pair information of ZKP. The 
specific expression is shown in Eq. (9). 

(1 , ) ( , )V VZKPkeygen V Pk Uk    (9) 

In Eq. (9), (*)ZKPkeygen  represents the ZK-SNARKs 

algorithm. 
VPk  represents the key for listing ZKP. 

VUk  

represents the key for verifying ZKP.   represents system 

security parameters. Input the patient's EHR data, digital 
signature, and the key generated by ZKP, as well as the 
obtained result set and hash value, and then output ZKP. The 
specific expression formula is shown in Eq. (10). 

( , , , , )z VProve M q Pk R H     (10) 

In Eq. (10), (*)Prove  represents the output of patient 
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related information.   represents ZKP. After the patient 

submits the ZKP, the EHR data of the patient is determined 
based on the smart contract to determine whether it meets the 
needs of the data user. The specific expression is shown in Eq. 
(11). 

( , , , , , ) ( / )V z pVerify Uk q y R H true false   (11) 

In Eq. (11), 
py  represents the patient's public key. ZKP 

verifies the digital signature of EHR data using the patient's 
public key, and determines the ZKP, result set, hash value, 
ZKP generated by the data user, result set, and hash value. 
When all the above results meet the verification requirements, 
ZKP will output "true" to EHRPP, otherwise it will output 
"false". Therefore, the EHRPP model architecture based on 
the proposed ZKP is shown in Fig. 4. 

IPFS system

Patient 

Shared contractBlockchain 

Doctor Medical organization

1. Treatment

2. Uploading 

metadata

3. Upload 

encrypted 

EHR data

4. Publishing 
data 

requirements

5. Submission 
of ZKP

6. Passing of 
validation

7. Encrypted 
transmission address 
and decryption key

8. Download and 
decrypt medical data

9. Validation 
data

 

Fig. 4. Blockchain-based EHRPP model architecture. 

From Fig. 4, the EHRPP model proposed in the study 
differs from the EHRSS model in that it divides data users into 
doctors and medical institutions. This is because the study 
considers that on the basis of secure sharing of patient EHR 
data, medical institutions need to use EHR data for research or 
analysis to promote the recovery of medical diseases. 
Therefore, the study split the data users in the EHRPP model. 
Among them, doctors mainly generate EHR data for patients 
and are responsible for uploading patient metadata to 

blockchain for recording. Before using EHR data, medical 
institutions need to prove and define ZKP, and write the 
required keywords into smart contracts. Therefore, the process 
of the EHRPP model proposed in the study is shown in Fig. 5. 

From Fig. 5, the EHRPP model first sets security 
parameters and parameters such as large prime numbers, meta 
groups, cyclic groups, priority over representation, hash 
functions, etc., to generate common parameters and system 
master keys. The specific expression is denoted in Eq. (12). 
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Fig. 5. Blockchain-based EHRPP model flowchart. 
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1 1 2( , , , , , )pPk p g G Z H H    (12) 

In Eq. (12), p  represents large prime numbers. 
1G  

represents a cyclic group of order p . 
pZ  represents a finite 

field. 
2H  represents an reversible hash function. The system 

conducts qualification review for patients, doctors, and 
medical institutions with requirements, and creates 
corresponding key pairs for them. The three obtain their 
respective public key calculation formulas as shown in Eq. 
(13). 
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In Eq. (13), 
dy  and 

ry  respectively represent the public 

keys of doctors and medical institutions. 
dx  and 

rx  

respectively represent the private keys of doctors and medical 
institutions. The patient encrypts EHR data using a symmetric 
key and uploads the ciphertext to the IPFS system to obtain 
the corresponding storage hash value. Meanwhile, doctors 
upload patient metadata to blockchain for recording and 
storage. Medical institutions provide ZKP certification based 
on the patient EHR data they need. After the ZKP verification 
is passed, the medical institution sends an application to the 
patient to obtain EHR data information. The patient randomly 
outputs the shared data and synchronously stores it in the 
system. The specific expression is shown in Eq. (14). 
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In Eq. (14), 
1s , 

2s , and 
3s  represent the results obtained 

by calculating the application information of medical 

institutions. key  represents the symmetric key of the 

medical institution. Medical institutions obtain IPFS 
information and symmetric keys for stored HER data based on 
the key. At this point, the system checks the medical 
institution based on the hash value and identification ID, as 
shown in Eq. (15). 
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In Eq. (15), 
sk  and sk   represent the application 

information calculated by the patient and medical institution, 
respectively. The system compares the examination values of 
medical institutions with the medical institution information 

stored by patients in the system. When the two are equal, it 
indicates that the transaction is legal. At this point, medical 
institutions can obtain encrypted EHR data by downloading 
based on hash values. Conversely, the system determines that 
the medical institution is a malicious user and punishes them. 
After downloading EHR data, medical institutions can use 
symmetric keys to decrypt the data and obtain the original 
EHR data. At the same time, it compares the hash value of 
EHR data with the metadata of blockchain records to 
determine whether the data is EHR data required by medical 
institutions. 

IV. RESULTS 

To verify the effectiveness of the EHR data security 
sharing and privacy protection methods proposed on the basis 
of blockchain, the study first analyzed the properties and 
encryption efficiency of the EHRSS method during the 
encryption and upload stages. Secondly, performance 
validation and analysis were conducted on the proposed 
EHRPP method. 

A. Verification and Analysis of Security Sharing Methods 

Based on Blockchain 

To effectively validate the effectiveness of the EHRSS 
method, simulation experiments were conducted on the Java 
Pairing Based Cryptography (JPBC) library in the Java 
language. It assumed that the cyclic group and generator are 
both 1024 bits, the ID length is 64 bits, the account length is 
160 bits, and the IPFS address length is 256 bits. In EHRSS, it 
interacted with blockchain during initialization, registration 
application, encryption, and upload stages. Therefore, the 
study first analyzed the changes in storage size, computational 
cost, and number of attributes in three stages, as shown in Fig. 
6. 

Fig. 6(a) showcases the relationship between the storage 
phases of the EHRSS model in three stages and the amount of 
attributes when the revocation list has 10 data users. As the 
amount of attributes increases, the storage overhead for the 
three stages of model initialization, application for registration, 
and encryption upload all increased. Based on the calculation 
cost of the three stages in Fig. 6(b), as the amount of attributes 
changes, the calculation cost of the initialization stage first 
increased and then decreased with the increase of the number 
of attributes, but the overall change is relatively small. The 
computational cost during the registration application stage 
remained generally stable as the amount of attributes increased. 
However, the computational cost of EHRSS encryption and 
uploading was not affected by the amount of attributes for 
different user numbers. This indicated that users can expand 
the attributes in the EHR data sharing project as needed, and 
the computational efficiency will not be reduced by the 
increase in the number of attributes. On this basis, the study 
further analyzed the impact of different sizes of EHR data on 
IPFS system upload and download, encryption and decryption, 
as shown in Fig. 7. 
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Fig. 6. Relationship between the three phases of EHRSS and changes in the number of attributes. 
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Fig. 7. Impact of different sizes of EHR data on uploading and downloading, encryption and decryption in IPFS systems. 

From Fig. 7 (a), as the EHR data increased, the upload and 
download time overhead of the IPFS system also increased. 
When the EHR data size was 100MB, the upload time cost in 
the IPFS system was 1.17s, and the download time cost for h 
was 0.36s. Based on Fig. 7 (b), the proposed security sharing 
method had lower encryption and decryption time costs for 
EHRSS under different EHR data sizes, and had ideal 
efficiency in processing large-scale EHR data. Therefore, the 
study further compared the performance of medical data 
security sharing methods proposed by other scholars with 
EHRSS. The EHR data size was set to 2GB, and the specific 
comparison results are denoted in Table Ⅰ. 

TABLE I.  PERFORMANCE COMPARISON OF DIFFERENT 

SECURITY-SHARING METHODS 

Methods of secure 

data sharing 

Encryption 

overhead (s) 

Generated 

key size (kb) 

Decryption 

overhead (s) 

Reference [6] 45.23 124.24 40.35 

Reference [7] 42.54 150.00 34.62 

Reference [18] 35.46 128.00 29.88 

Reference [19] 22.43 89.75 15.87 

EHRSS 19.23 54.32 6.63 

From Table Ⅰ, the EHRSS method proposed in the study 
required significantly less encryption and decryption time 
compared to other methods. The encryption time required for 
EHRSS was reduced by an average of 47.20% compared to 
other methods, while the decryption time was reduced by an 

average of 78.03%. This indicated that the introduction of 
attribute revocation lists on the basis of blockchain has 
improved the encryption and decryption efficiency of data 
security sharing. By comparing the key sizes generated by 
different algorithms, the proposed method reduced them by 
56.28%, 63.79%, 57.56%, and 39.48%, respectively, 
compared to other methods. This indicated that the algorithm 
raised in the study not only improves the granularity of 
attribute revocation, but also enhances the convenience of 
ciphertext applications. Compared to other methods, EHRSS 
has superior computational efficiency and practicality. 

B. Verification and Analysis of Privacy Protection Methods 

based on Blockchain 

To further demonstrate the privacy and security of EHRPP 
in protecting patient EHR data, this study verified and 
analyzed the performance of the ZK-SNARKs algorithm in 
the EHRPP method, the required time for verifying keys, 
generating proofs, and the time cost for verifying proofs. The 
research set the security parameter to 128 bits, ZKP was 
defined by the libSNARK code library, and each experiment 
was repeated 10 times. The average of each indicator was 
taken for the experimental results. Meanwhile, the Practical 
Byzantine Fault Tolerance (PBFT) mechanism, Proof of Stake 
(PoS) mechanism, and PoW mechanism were introduced and 
compared with ZKP. The required storage sizes for the four 
mechanisms under different EHR data scales are shown in Fig. 
8. 
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Fig. 8. Comparison of key generation and verification storage size under different proof mechanisms. 

From Fig. 8(a), as the EHR data parameters increased, the 
storage size required for all four proof methods also increased. 
Compared to other methods, ZKP required smaller storage. 
Combining the four proof methods in Fig. 8(b), ZKP reduced 
the storage requirements for keys by an average of 5.18%, 
13.14%, 19.45%, 24.00%, and 30.05% compared to the other 
three methods when the medical data parameters were 100, 
300, 500, 700, and 900, respectively. The size of ZKP and PoS 
proof keys remained basically unchanged, while PoW's proof 
key size increased as the number of parameters increased, 
although the proof size was less than ZKP when the parameter 

was 100. This indicated that the proof process of ZKP is more 
stable. By comparing the verification key sizes of the four 
methods in Fig. 8(c), when the parameter was 900, the 
verification key size of ZKP was 31.80kb, which was 4.70% 
less than the other three methods. This indicated that the 
EHRPP based on the ZKP proposed in the study has superior 
performance in protecting patient privacy, balancing the 
security sharing and privacy protection issues of EHR data. 
Meanwhile, the study further compared the time overhead for 
generating keys, proving keys, and verifying keys using four 
methods, as shown in Fig. 9. 
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Fig. 9. Comparison of the time overhead required for key generation and verification under different authentication mechanisms. 
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As shown in Fig. 9(a), the time overhead of generating 
keys for ZKP under different EHR data parameters showed no 
significant change, with an average time cost of 16.29 seconds. 
Compared with the other three methods, the average time 
overhead decreased by 3.93%, 7.39%, and 1.51%, respectively. 
From the comparison of the time cost required to prove the 
key using the four methods in Fig. 9(b), ZKP was least 
affected by the size of data parameters. The other three 
algorithms showed an upward trend with the increase of 
parameter size. This may be because during the key proof 
process, the storage capacity of the three algorithms for 
proving keys is relatively large, which requires more time for 
proof. Fig. 9(c) shows the time overhead for four algorithms to 
verify whether the key information is the data required by 
medical institutions. When the parameter quantity of EHR 
data was 900, the time overhead of ZKP was reduced by an 
average of 4.84% compared to the other three algorithms. The 
above verification indicates that the EHRPP proposed based 
on ZKP has superiority in overall performance. In addition, 
the study further compared the privacy protection effects of 
Study [18], study [19], EHRSS and EHRPP 4 methods on 
EHR data security sharing are shown in Fig. 10. 

Fig. 10 (a), (b), (c), and (d) show the EHR data sharing 
protection effect of study [18], study [19], EHRSS, and 
EHRPP four schemes, respectively. The protection effect of 
study [18], study [19], EHRSS, and EHRPP was about 91%, 
84%, 84%, and 93%, respectively. This may be because the 
method proposed in study [18] achieved data protection 
through secret sharing algorithms, which has less dependence 
on the IPFS system, while study [19], although storing data in 
an off chain database based on IPFS, still relied on the 
authorization verification of the Ethereum blockchain. 
However, overall, the EHRPP method raised in the study has 
better security than the other two methods. Compared with 
EHRSS, after introducing ZKP, its privacy protection effect 
on EHR data was significantly improved. The performance 
comparison results of EHRPP with study [18] and study [19] 
in EHR data with 500 input parameters are denoted in Table 
Ⅱ. 

From Table Ⅱ, the size of the proof key generated by 
EHRPP was only 15.2MB, and the time overhead for 
generating the proof key was16.3s. Compared with the key 
sizes generated in studies [18] and study [19], EHRPP had an 
average reduction of 84.52%. This indicated that the EHRPP 
method proposed in the study had a faster speed in generating 
proof key pairs, while comparing the time overhead for 
verifying keys with the three methods, the time overhead 
required in study [18] was lower. This may be because both 
EHRPP and study [19] were IPFS systems, while study [18] 
defined a group secret sharing algorithm architecture. 
However, overall comparison shows that EHRPP still has 
significant advantages in overall performance and security 
privacy. 
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Fig. 10. Comparison of the effectiveness of cross-chain data protection. 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT METHODS 

Method Key generation process (s) Proof key (s) Authentication key (s) 
Proof key size 

(MB) 
Authentication key size (KB) 

EHRPP 16.3 19.5 0.32 15.2 16.2 

Reference [18] 15.9 21.2 0.04 165.4 16.2 

Reference [19] 21.5 24.6 0.45 31.0 16.2 

V. DISCUSSION 

The study proposes a blockchain based EHR secure 
sharing and privacy protection method aimed at improving the 
security and privacy protection of medical data, ensuring that 
patients have absolute ownership of their medical data. 
Through experimental verification, the proposed method has 
significant advantages in generating key size and time cost. 
Compared with existing recognized mechanisms, ZKP reduces 
the average key generation time cost by 54.36%. In addition, 
this method has an average improvement of 7.73% in data 
protection effectiveness compared to other methods. This is 
consistent with the results obtained by Konkin A et al. in their 
study of ZKP [20]. By combining attribute encryption and 
blockchain computing to construct a data security sharing 

model, as well as introducing zero knowledge proof and 
ElGamal encryption algorithm, the research has successfully 
improved the construction of data privacy protection. The 
proposed method shows high efficiency in generating key size 
and time cost. Especially, compared with studies [18] and [19], 
the reduction in key generation time of ZKP indicates its 
potential advantages in handling large-scale data. Through 
smart contracts and attribute based encryption, patients can 
have more precise control over access and sharing of their 
EHR data, ensuring their absolute rights to their data. It can be 
considered that the introduction of ZKP and ElGamal 
algorithms on the basis of existing blockchain technology is 
an innovative attempt to improve the security and privacy of 
data sharing. Compared with other proposed data sharing 
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frameworks, the research method shows lower time overhead 
and smaller key size in key generation, proof generation, and 
verification. 

VI. CONCLUSION 

To improve the security sharing and privacy protection 
performance of medical data systems, research explored 
security sharing EHR data privacy protection methods based 
on blockchain. Firstly, an EHRSS method based on BCT was 
proposed to improve the security of EHR data through 
attribute encryption algorithms. Secondly, the EHRPP model 
was constructed by introducing ZKP and ElGamal encryption 
algorithms. Experimental verification showed that compared 
to the other four methods, the key sizes generated by EHRSS 
decreased by 56.28%, 63.79%, 57.56%, and 39.48%, 
respectively. When the parameter was 900, the verification 
key size of ZKP was 31.80kb, which is 4.70% less than the 
other three methods. The data protection effect of EHRPP 
obtained by introducing ZKP on the basis of EHRSS increased 
by 10.71% compared to EHRSS. Compared to other methods, 
the key generated by EHRPP was only 15.2MB, and the time 
overhead for generating the proof key was 16.3s, resulting in 
an average reduction of 84.52% in key size. The outcomes 
indicated that the EHR data security sharing and privacy 
protection method proposed in the study can improve the 
overall performance and security of the system, and has 
positive application significance in medical data security and 
privacy protection. However, the study only conducted 
theoretical exploration and experimental analysis of security 
sharing and privacy protection methods. In the future, it will 
consider further optimizing ZKP technology, compressing its 
scale and generation time, and improving the security of data 
privacy protection. 
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