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Abstract—Cancers in the respiratory tract grow out of control 

in lung carcinoma, a deadly disease. Because cancers have 

irregular shapes, it can be challenging to diagnose them and 

determine their sizes and forms from imaging studies. 

Furthermore, a serious issue with health image inquiry is large 

disparity. Artificial intelligence and blockchain are two cutting-

edge advances in the healthcare industry. This paper introduces 

a Blockchain with a deep learning network for the early 

diagnosis of lung cancer in an effort to address these problems. 

Images from CT scans and CXRs were included in the LIDC-

IDRI and NIH Chest X-ray collection. Initially, these images are 

pre-processed by Contrast Limited Adaptive Histogram 

Equalization (CLAHE) to enhance the image clarity and reduce 

the noise. Then the Honey Badger optimization Algorithm (HBA) 

is used to segment the lung region from the pre-processed image. 

Morphological segments of the lung region are used to generate 

dynamic patterns. Finally, these patterns are aggregated into the 

deep neural Spiking Convolutional Neural Network (SCNN), 

which is the global model for classifying the images into normal 

and abnormal cases. Based on the classification, the SCNN model 

achieves 98.64% accuracy from the LIDC-IDRI database and 

98.9% on the NH Chest X-ray lung image dataset. The 

experiments indicate that the proposed approach results in lower 

energy consumption and faster inference times. Furthermore, the 

interpretability of the classification findings is improved by the 

intrinsic explainability of SCNNs, offering more profound 

understanding of the decision-making process. With these 

benefits, SCNNs are positioned as a reliable and effective 

technique for classifying lung images, providing a significant 

advancement over current methods. 

Keywords—Lung cancer; spiking convolutional neural 
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I. INTRODUCTION 

As the primary cause of cancer-related fatalities worldwide, 
lung cancer is also one of the most often diagnosed 
malignancies. The World Health Organization predicted that in 
2020, there would be over 1.8 million lung cancer deaths and 
about 2.21 million new cases of the disease. In addition, it is 
estimated that 17 million people worldwide would suffer from 
cancer by 2030 [1]. Cigarette smoking, the primary cause of 
lung cancer, accounts for 80% of the disease's mortality. 
Exposure to radon gas is the second most prevalent cause of 
lung cancer [2]. Only 21% of cases of early-stage lung cancer 
are identified at stage I, with most cases being detected at stage 
III or IV (representing 61% of all newly discovered lung 
cancers)due to the disease's characteristic lack of symptoms 

[3]. The high fatality rate and aggressive nature of the illness 
are mainly due to late-stage detection [4]. In order to lower the 
death rate from lung cancer, early detection of smaller tumours 
and nodules using X-rays and CT scans is especially crucial 
because the prognosis for early treatment is noticeably better 
than that for later stages. 

Due to the complicated anatomy of the lungs, many clinical 
decisions support systems, particularly machine learning 
techniques, rely on segmentation.  Information technology has 
advanced recently beyond only making people's lives easier; 
the outcome is AI technology that offers healthcare facilities 
and improved quality of life. It is acknowledged that efficient 
data collection, processing, analysis, and safe storage are 
essential procedures. The first and most important challenge is 
the ongoing inflow of data into the medical field; this issue 
might be crucial to the development of effective and secure 
medical data storage. For the purpose of early lung disease 
diagnosis, a Blockchain with a deep learning network is 
therefore introduced in this study. 

This research work aims to construct automated lung 
cancer detection using region-based segmentation methods 
with tumor area detection and subsequently to develop an 
effective system for the classification of lung tumors. In order 
to minimize the noise present in the CXR images, these 
pictures undergo pre-processing using Contrast Limited 
Adaptive Histogram Equalization (CLAHE). Segmenting the 
lung cancer area is done by Honey Badger optimization 
Algorithm (HBA). Dynamic patterns are produced using 
morphological segments of the lung cancer area. Dynamic 
pixels are created by further separating the segmented pictures 
into different cells. Finally, a novel deep Spiking 
Convolutional Neural Network (SCNN) is used to classify 
normal and abnormal cases by using CT and Chest X-ray 
images. 

In the proposed architecture, trust between local nodes at 
the global node layer is maintained by a reputation system 
based on blockchain technology. By segmenting the neural 
network into several networks, each with a limited set of 
permitted entities, storing data on the cloud gate server and 
allowing applications to undertake data analysis, the security of 
the medical data is guaranteed. Its flexibility and agility in 
solving intricate non-linear problems is one of its advantages. 
Its capacity to tackle intricate non-linear problems with great 
flexibility and adaptability is one of its advantages. When 
compared to current deep neural networks, our method yields 
better and more accurate results. It may be applied in medical 

file:///C:/Users/Seeja%20Rufus/Downloads/honey%20badger%20(1).docx%23_bookmark2


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

1075 | P a g e  

www.ijacsa.thesai.org 

facilities to advance AI research and enhance early diagnosis of 
lung diseases. 

The key contributions of the proposed model: 

In this work, multi-modal images such as CT and CXR 
images are used for lung disease classification in early 
diagnosis. 

To detect the lung cancer easily, segmentation process is 
applied. Honey badger optimization (HBA) is used for lung 
disease segmentation and the morphological segments of the 
lung region are used to generate dynamic patterns. 

These dynamic patterns and output local nodes are 
aggregated into the deep neural Spiking Convolutional Neural 
Network (SCNN), also known as Global network, for 
classifying the input images into normal and abnormal cases. 

To prevent privacy protection and secure the classification 
results, the block chain technology is designed. 

II. LITERATURE SURVEY 

This review offers a general overview of deep learning-
based image processing techniques used in both classic and 
modern methods to diagnose lung cancer. 

A unique filtering method that eliminates unnecessary 
pictures and lowers false-positives has been presented by Liang 
et al. [5] for the classification of lung nodules. To locate lung 
nodules precisely, they employed Faster R-CNN. According to 
the study's findings, this method could successfully identify 
pulmonary nodules in CT images, which could help doctors 
identify lung cancer early on. 

A novel deep learning model has been suggested by 
Asuntha et al. [6] to identify lung nodules. To extract features, 
one can employ feature descriptors such as wavelet transform-
based features, Zernike Moment, Scale Invariant Feature 
Transform (SIFT), Histogram of Oriented Gradients (HoG), 
Local Binary Pattern (LBP), and so on. The Fuzzy Particle 
Swarm Optimisation (FPSO) approach is utilised to choose the 
best feature. Deep learning techniques are employed for 
classification. To lessen the network's computational 
complexity, a unique FPSOCNN is employed. 

A novel method for classifying lung images has been 
suggested by Vas et al. [7]. This method uses a median filter 
during the preprocessing stage to eliminate the unnecessary 
portion of the image. Accurate lung segmentation and cancer 
diagnosis are made possible by the application of mathematical 
morphological techniques. From the divided region, the 
following data were extracted: energy, correlation, variance, 
homogeneity, difference entropy, contrast and correlation 
information measure. These were then sent to the feed forward 
neural network using the back propagation technique for 
classification. 

An enhanced lung nodule identification method based on 
the YOLO-V3 target detection network was presented by Li et 
al. [8]. This article uses the Mask-RCNN network and 
enhances it using the channel shuffle convolution method and 
Densenet's dense block structure. A computer-aided technique 
for the early identification of lung cancer using CT images was 

proposed by Elnakib et al. [9]. A genetic algorithm (GA) is 
trained to optimize the obtained data set in order to determine 
the most significant elements. A variety of classifiers are 
finally looked at in order to identify the pulmonary nodules 
properly. Comparing the suggested technology to other earlier 
methods like VGG-16, AlexNet and VGG-19 networks, 
encouraging results are obtained. 

Srinivasulu et al. [10] introduced a novel blockchain based 
lung cancer detection using extended CNN. There are primarily 
two architectures like U-Net and VGG-16 are used in the 
suggested method to categorize lung nodules and predict the 
amount of malignancy. The Internet of Things (IoT) may be 
used for the proposed multistage lung cancer detection and 
classification,  

An algorithm for detecting lung nodules has been 
developed by Vaishnavi et al. [11]. For pre-processing, they 
used a discretely sampled wavelet in the Dual-tree complex 
wavelet transform (DTCWT). GLCM is a texture analysis 
technique that determines how often different Grey level 
combinations co-occur in an image using a second-order 
statistical method. They used a Probability Neural Network 
(PNN) classifier, whose accuracy in classification and training 
was evaluated. 

The Faster R–CNN method for lung cancer detection was 
first described by Su et al. [12]. They illustrate the quicker R-
CNN's suitability for lung knob recognition based on the 
training set. CNN and alternative optimization are the two 
training techniques used in the Faster R–CNN approach. Low 
tiny object identification accuracy is a common problem with 
many network models; hence, in order to increase the 
sensitivity to small things, the model needs to be enhanced and 
optimized. 

A cat swarm optimization-based computer-aided diagnostic 
model for lung cancer classification (CSO-CADLCC) was 
reported by Vaiyapuri et al. [13]. The Gabor filtering-based 
noise reduction approach is the first pre-processing method 
used by the proposed CHO-CADLCC technology. 
Additionally, the NASNetLarge model is used to extract 
features from the pre-processed pictures. The CSO method 
with the weighted extreme learning machine (WELM) model 
comes next and is used to classify lung nodules. In order to 
optimise the WELM model's parameter tuning and get better 
classification performance, the CSO method is finally applied. 

Inception V3, CNN, CNN GD, Resnet-50, VGG-16, and 
VGG-19 are the six deep learning models that Rajasekar et al. 
[14] suggested be used to diagnose lung cancer effectively. 
Based on the histopathological and CT scan pictures, 
experimental studies were carried out. This approach will be 
effective in detecting lung cancer and helpful to those in need 
due to the inherent benefit of the suggested methodology. The 
I3DR-Net is a single-stage detector that was proposed by 
Harsono et al. [15] to identify and categorise lung nodules. A 
feature pyramid network with pre-trained image weight from 
the inflated 3D ConvNet (I3D) was combined with a multi-
scale 3D Thorax CT scans database to build the model. 

For the purpose of detecting lung nodules, Schultheiss et al. 
[16] created the CNN-based RetinaNet architecture.  The input 
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picture is segmented using the U-Net technique. An important 
part of this work was investigating the possibility that foreign 
substances may cause inaccurate selections in CNN-based 
nodule recognition systems. A multicrop CNN was presented 
by Shen et al. [17] that can automatically extract salient 
module features by max-pooling procedures performed at 
different times and cropping different sections from feature 
maps. 

A lung nodule classification method based on a deep 
residual network is proposed in [22]. In [23], the CT image 
sub-block preprocessing strategy was used to extract nodule 
features for enhancement and alleviate the aforementioned 
problems. The experimental results showed that the effective 
classification time cost based on the original Faster R-CNN 

detection method. The research in [24] presented the Non-
Local network by adding channel-wise attention capability and 
apply Curriculum Learning principles for the classification 
task. Assorted Scale Integrated Alternate Link Model 
Convolutional Neural Network method is proposed in [25] for 
Lung Nodule Detection. A new hybrid deep learning 
framework by combining VGG, data augmentation and spatial 
transformer network (STN) with CNN is proposed in 
[26]. Multiscale Rotation-Invariant Convolutional Neural 
Networks technique is designed to find the lung texture 
classification results [27]. The article [28] offered hybrid CNN 
along with the SVM classification method with tuned 
hyperparameters for Lung Cancer Detection from X-Ray 
Images. Table I presents the summary of existing work. 

TABLE I. SUMMARY OF EXISTING WORK 

REFERENCES NETWORKS ADVANTAGES LIMITATIONS 

[5] R-CNN 
Eliminates unnecessary pictures and lowers false-

positives 
Model is not strong because of insufficient samples 

[6] FPSOCNN Find best feature 
Can improve the performance with advance classification 

methods 

[7] FFNN Eliminate the unnecessary portion, extract some data insufficient data sample size 

[8] Mask-RCNN Segmentation and classification 
Need to improve the network performance and the 
recognition accuracy. 

[9] AlexNet Improved the contrast of image Insufficient training data 

[10] U-Net classify and organize and assess threat level Limited input and output 

[11] PNN Classify normal and abnormal Limited pattern neuron 

[12] R–CNN Improved detection accuracy than existing Used too small samples 

[13] NASNet Preprocessing, feature extraction and classification Can be used more samples 

[14] CNN 
histopathological images are considered for the 

identification 
Can be used advanced optimization technique 

[15] 3D ConvNet texture detection and classification Can be implemented in real-time 

[16] 
U-Net and 

RetinaNet 
Find critical positions Used limited images 

[17] MC-CNN 
Initialization approach of characterizes nodule 

semantic attributes 
Can use more samples 

[22] ResNet Less false positive rate Long training time 

[23] FR-CNN reduced the rate of misdiagnosis Used less samples 

[24] ProCAN model achieved state-of-the-art performances Can improve accuracy 

[25] ASIAL CNN More convolutional pathways Can improve prediction accuracy 

[26] VDS net Determine the condition of patients Need more samples 

[27] MRCNN Change overlapping adjacent patches Used only CT samples 

[28] OCNN-SVM Categorizing lung image Want to use various data sets 

III. PROPOSED METHODOLOGY 

The proposed work has three stages: (a) Preprocessing, 
(b) Segmentation and (c) Classification. Fig. 1 demonstrates 
the proposed work. 

A. Pre-processing using CLAHE 

The accuracy of the lung image classification process is 
enhanced by this pre-processing phase. In this work, input CT 
and Chest X-ray image enhancement is achieved with Contrast 
Limited Adaptive Histogram Equalization (CLAHE). When 
compared to AHE, it processes computationally more quickly 
since there are no overlapping blocks [18]. The CLAHE 

technique effectively equalises the image histogram in addition 
to enhancing contrast [19]. 

One type of adaptive contrast augmentation method is 
called CLAHE. Adaptive histogram equalisation, or AHE, can 
be used to sharpen the borders of each picture region and boost 
local contrast. Updates to the enhancement computation are 
made for CLAHE using the maximum contrast enhancement 
factor and the highest clip level value, respectively. After that, 
the neighbouring picture areas are blended by bilinear 
interpolation to eliminate artificially stimulated region borders. 
Using this approach, medical photos can have better quality 
and contrast. The histograms for each region are first calculated 
utilising restrictions for contrast expansion and clipping in 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

1077 | P a g e  

www.ijacsa.thesai.org 

order to maximise picture improvement. After that, the 
calculated histogram is re-distributed to maintain the height 
inside the clip limit. For CLAHE grayscale mapping, 
Cumulative Distribution Functions (CDFs) are computed by 
Eq. (1), and the histogram equalisation is obtained by 
estimating the CDF. 

𝐹𝑎,𝑏(𝑞) =  
(𝑄−1)

𝑃
∑ 𝑟𝑎,𝑏(𝑠) .

𝑞
𝑠=0    𝑞 = 1,2, … . . 𝑄 − 1    (1) 

The pixel units and grayscales for each area are given as P 
and Q in the above assessment. If the histogram of the (a, b) 
region is𝐹𝑎,𝑏(𝑞), for 𝑞 = 1, 2, … . . 𝑄 − 1, the CDF estimate, 

scaled by N-1 for grayscale mapping, is provided. 

 

Fig. 1. Schematic representation of lung disease diagnosis framework. 

B. Segmentation using Honey Badger Algorithm (HBA) 

The Honey Badger Algorithm (HBA) is an excellent 
segmentation algorithm because of its adaptive balance 
between exploration and exploitation. This balance enables the 
algorithm to effectively navigate complex search spaces and 
avoid local optima. Because of its exceptional boundary 
detection precision, it can accurately segment images even in 
difficult cases with overlapping structures or fuzzy edges. It 
produces consistent results across various datasets and is more 
adept at managing noise and variability, which are prevalent in 
medical imaging. Additionally, it is flexible, scalable, and 
converges quickly, making it suitable for real-time 
applications. 

Hence the HBA is used in the suggested way to benefit 
from a cutting-edge segmentation method. The segmented 
images are separated into various cells, which are then further 
separated into dynamic pixels. The center value and its 
neighboring bits are selected in each cell in dynamic pattern. 
Based on the center value, the pattern was generated by 
changing the gray scale values to binary values. Finding a 
method that can effectively separate the lungs from the CT and 
CXR pictures would be great, according to the previous 
studies. The algorithm's developers called the first technique 
the "digging phase" and the second the "honey phase". Fig. 2 
depicts the honey badger's improved optimization algorithm. 

 

Fig. 2. Basic honey badge algorithm. 

This section presents the algebraic formulation of the 
suggested HBA method. Since HBA includes periods for both 
exploration and exploitation, a global segmented technique 
might be considered. The following is a mathematical 
breakdown of the phases in the proposed HBA. 

The following are the main phases of the HBA and the 
corresponding equations for them: The population of potential 
solutions for HBA is expressed in Eq. (2). 

𝑃𝑜𝑝𝑠 = [

𝑥11𝑥12𝑥13 . . . 𝑥1𝐷

𝑥21𝑥22𝑥23 . . . 𝑥2𝐷

…    …      …    …
𝑥𝑛1𝑥𝑛2𝑥𝑛3 . . . 𝑥𝑛𝐷

]  (2) 

𝑥𝑖 =  [ 𝑥𝑖
1, 𝑥𝑖

2, … … , 𝑥𝑖
𝐷] is the formula for the 𝑖𝑡ℎ position 

of the honey badger derived from the previous equations. 

1) Step 1 Initialization stage: The issue space's upper (Yu) 

and lower (Yl) bounds identify the first potential solution at 

this stage. Consequently, the first solutions, as given by 

Eq. (3), are made up of random sets that may be generated 

using the subsequent method. 

𝑌𝑎 = 𝑌𝑙 + 𝑅1(1, 𝑑) × (𝑌𝑢 −  𝑌𝑙),          𝑎 = 1,2,3 … . . 𝑛.     (3) 

In this case, 𝑛 solution providers (honey badgers) are given, 
𝑌 displays every potential solution, and 𝑑 indicates the 
magnitude of the solution. 

2) Step 2 Updating positions: The 𝑌𝑛𝑒𝑤coordinates for the 

candidates have been updated. For example, this may mean 

excavating or using a strategy that takes advantage of the 

honey phases. The ability of the hunter's scent and the distance 

between the prey and the honey badger (F) determine the 

potential search areas during the digging phase. The honey 

badger excavates in a circle. The following Eq. (4) describes 

how it moves: 

𝑌𝑛𝑒𝑤 = 𝐹 + 𝐷𝑖 × 𝛽 × 𝑀𝑖𝑛 × 𝐹 + 𝐷𝑖 × 𝑅3  × (𝐹 − 𝑌𝑎) ×
(𝑐𝑜𝑠2𝜋𝑅4) × (1 − 𝑐𝑜𝑠2𝜋𝑅5)      (4) 

where 𝛽 is the food-gathering capacity of an insect. Using a 
uniform distribution and a range of 0 to 1, the 𝑅3, 𝑅4, and 𝑅5 
are randomly chosen random variables. The level of intensity is 
attained. As a sign of a search strategy, the 𝐷𝑖  is created by the 
following Eq. (5):  

𝐷𝑖 = {
1    𝑖𝑓 𝑅6 ≤ 0.5
−1        𝑖𝑓 𝑒𝑙𝑠𝑒

        (5) 

The honey badger phase Use the honey stage to go over 
with the lead bird in search of beehives. The honey phase was 
calculated using the following Eq. (6): 

𝑌𝑛𝑒𝑤 = 𝐹 + 𝐷𝑖 × 𝑅7 × 𝜎 × (𝐹 − 𝑌𝑎)       (6) 
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where 𝑅7 is a randomly generated number between 0 and 1, 
and 𝐹 is the highest outcome thus far. 

3) Step 3 Modeling intensity min: The following 

computation in Equation 6 for each candidate's level of odour 

intensity 𝑚𝑖𝑛 of the prey is needed, after which the honey 

badger's ability to detect insect odour controls its movements. 

𝑀𝑖𝑛 =
𝑅2×(𝑌𝑎−𝑌𝑎−1)2

4𝜋(𝐹𝑝− 𝑌𝑎)
       (7) 

The prey's location is indicated by 𝐹𝑝 in the equation (7) 

above, and 𝑅2 is an arbitrary sum between 0 and 1.  

4) Step 4 Density parameter modeling (𝝈): Between the 

local and global search stages, the information flow is 

regulated by the sigma value. The following Eq. (8) illustrates 

the hypothesis that beta is represented throughout every 

iteration: 

𝜎 = 𝐶 × exp (
−𝑟

𝑟𝑚𝑎𝑥
)    (8) 

Where, the values for 𝑟 and 𝑟𝑚𝑎𝑥represent the current 
iteration and the total number of iterations. C stands for 
constant, and its recommended value is 2. 

5) Step 5 Escaping from local results: The search direction 

is signalled with a warning𝐷𝑖 , which the algorithm authors 

utilised to avoid becoming stale on regional fixes. HBA is 

known as a global optimisation method due to its exploration 

and exploitation stages. HBA is easy to use and understand, 

and there are fewer operators to alter. Finally, segmented 

pictures are used to classify lung carcinomas. The 

segmentation accuracy was measured using the rate of 

truepositive, rate of true negative, rate of false positive, and 

rate of falsenegative from the algorithm. 

C. Classification using Spiking Convolutional Neural 

Network (SCNN) 

The architecture of a Spiking Convolutional Neural 
Network (SCNN) is similar to that of traditional Convolutional 
Neural Networks (CNNs), but it is adapted to work with spike-
based representations and to leverage the principles of spiking 
neural networks (SNNs). 

A dynamic pattern refers to how the rules for updating each 
cell's state vary dependent on multiple circumstances, such as 
the cell's present state, its neighbours, or external inputs. Each 
cell has a dynamic pattern of selection for the center value and 
the bits surrounding it. Binary values were substituted for the 
grey scale values to create the pattern based on the center 
value. Ultimately, the global model for categorizing the 
pictures into normal and abnormal situations is the deep neural 
Spiking Convolutional Neural Network (SCNN), which is 
comprised of various patterns. With almost a billion spiking 
neurons, the Spiking neural network architecture is a massively 
parallel neurocomputer design intended for categorization. A 
spike-carrying neural network (SCNN) may broadcast and 
receive large quantities of information based on the relative 
timing of its spikes. Basic outline of the SCNN architecture is 
depicted in Fig. 3: 

 
Fig. 3. SCNN network architecture. 

As shown in the above figure, the convolutional layer, 
pooling layer, and spiking fully connected layer comprise the 
spiking CNN. Both the fully connected layer and the 
convolutional layer include layer-wise learning. 

1) Convolutional layer: The convolutional layer of the 

network may be constructed after the convolutional filters are 

obtained. As in a traditional CNN, the convolutional layer 

employs weight sharing to lower the number of parameters. 

However, spike trains—rather than actual values—are used to 

transport the information in a spiking CNN. 

The normalized grey scale pixel intensity in the range of 
(0,1) determines the pace at which spike trains representing the 
input picture (r × c pixels) are generated. The picture is sent to 
the network for T = 20 ms split into 1 ms time increments, as 
was previously mentioned. The convolution process is 
displayed in the network's first layer, which is illustrated in 
Fig. 2. To create feature maps with (r − p + 1) × (c − p + 1) LIF 
neurons, a collection of D filters (trained as mentioned in the 
previous section) are individually convolved with the picture 
throughout the 20-time-step presentation period. A particular 
aspect of the image is represented by each feature map that has 
LIF neurons in it. When threshold is reached, a LIF neuron in a 
feature map emits a spike. It aggregates the convolution results 
for a specific picture patch across T = 20 time steps. Upon 
firing, the membrane potential is returned to its resting value of 
zero. The membrane potential, U, of neuron m in feature map k 
at time t is computed using Eq. (9). 

𝑑𝑈𝑚
𝑘 (𝑡)

𝑑𝑡
+ 𝑈𝑚

𝑘 (𝑡) = 𝐼𝑚
𝑘 (𝑡)     (9) 

If 𝑈𝑚
𝑘 (𝑡) ≥  𝜃𝑐𝑜𝑛𝑣 , 𝑡ℎ𝑒𝑛 𝑈𝑚

𝑘 (𝑡) = 0 

𝐼𝑚
𝑘  is defined below Eq. (10). 

𝐼𝑚
𝑘 (𝑡) =  ∑ ∑ 𝑊𝑘

𝑒𝑥𝑝
𝑗=1

𝑝
𝑖=1 (𝑖, 𝑗) . 𝑆𝑚( 𝑖, 𝑗, 𝑡)      (10) 

A representation of the filter's convolution is 𝐼𝑚
𝑘 (𝑡). 𝑊𝑘

𝑒𝑥 , 
and at T = 20 time steps, the presynaptic spike train, 𝑆𝑚. The 
spike train that represents a pixel value in the ( 𝑖, 𝑗)coordinate 
of patch m is called𝑆𝑚(𝑖, 𝑗). 

Every neuron receives inputs in the form of 𝑝2 spike trains 
with 𝜆𝑖𝑗 rate parameters. The predicted value of the injected 

current at time step 𝑡, as determined by filter 𝑘 for neuron 𝑚, is 
provided by Eq. (11). 

𝐸[𝐼𝑚
𝑘 (𝑡)] =  ∑ ∑ 𝑊𝑘

𝑒𝑥𝑝
𝑗=1

𝑝
𝑖=1 (𝑖, 𝑗) . 𝜆𝑖𝑗    (11) 

This may be compared to 𝐼 = (𝑤𝑒𝑥 )𝑇 . 𝑥, where 𝑤𝑒𝑥  is a 
filter that represents pixel intensities and 𝑥 is scaled to the 
average firing rates. Consequently, the convolution over 𝑇 time 
steps may be used to approximate classical convolution. 
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2) Pooling layer: The spike trains generated from the 

convolutional layers are downsampled by the pooling layers. 

Spike-based representations allow for the adaptation of max-

pooling processes, which usually include choosing the 

maximum number of spikes inside the pooling areas. 

Following convolution, a neuron with the most activity 
within a square neighborhood of 𝑙𝑝 × 𝑙𝑝 presynaptic neurons 
is chosen by the pooling layer (max pooling). Additionally, 
parameter 𝑙𝑝 acts as the pooling layer's stride value. The spike 
rate of each neuron in a feature map may be used to describe its 
activity. Consequently, a feature map measuring (𝑟 − 𝑝 + 1) ×
(𝑐 − 𝑝 + 1) is converted to a smaller feature map 
measuring(𝑟 − 𝑝 + 1)/𝑙𝑝 × (𝑐 − 𝑝 + 1)/𝑙𝑝. 
 Robustness against local translation and scale changes is aided 
by the max pooling layer. In Fig. 2, the pooling layer appears 
as the second layer of the network. Nonadaptive relationships 
exist between the pooling maps and convolutional maps. 

3) Fully connected layer: Fully connected layer classifies 

the image into normal or CVD. The spike trains that are 

released by the pooling layer divide the image's many visual 

elements among the D feature maps (D might have values of 

16, 32, or 64). The output units receive spike trains emanating 

from the pooled feature maps at the third layer of the network, 

known as the fully connected (H) layer. The information's 

dimension is decreased in the feature maps by this layer. 

For a neuron in the H layer to fire at a certain time step, it 
has to fulfill two requirements. The initial one is that it crosses 

its conventional LIF threshold, 𝜃ℎ. Among the other neurons in 
the H layer, it does well in a non-exclusive winners-take-all 
(WTA) competition. As a result, we refer to the units in this 
layer as WTA-threshold LIF neurons. A WTA score is 
assigned to each unit in the H layer based on how its net input 
compares to the inputs of the other units in the layer. The 
synaptic weights, 𝑊, and the presynaptic spike vector, 𝑦𝑡, 
together yield the net input at time 𝑡. 

𝑊𝑇𝐴𝑠𝑐𝑜𝑟𝑒ℎ(𝑊, 𝑦𝑡) =  
𝑒𝑊ℎ

𝑇
.𝑦𝑡

∑ 𝑒
𝑊𝑗

𝑇
.𝑦𝑡

𝐻
𝑗=1

  (12) 

IV. SECURE MANAGEMENT USING BLOCK CHAIN 

Deep learning and blockchain are two extremely innovative 
technologies that are changing the standard operating 
procedures in the medical field. Using smart contracts, its 
solution improves transparency, safety, dependability, and data 
transmission capabilities. Among blockchain's many notable 
benefits are the ability to create smart contracts. This enables 
users to manage data access according to predetermined 
standards and agreements. 

To guarantee that the data is private and secure, the 
classified lung picture in the proposed work is encrypted. By 
using encryption, the pictures are protected from being viewed 
by unauthorized users who do not have the necessary 
decryption keys to view them on the blockchain. Even if 
someone acquires unauthorized access to the blockchain, 
encryption makes sure they are unable to view the image 
without the correct decryption key. 

After that, the encrypted lung image is hashed to provide a 
distinct digital fingerprint. The process of hashing transforms 
the image data into a fixed-length string of characters that 
while uniquely expressing the image, is unretrievable through 
reverse engineering. This hash serves as the lung image's 
special identification. 

On the blockchain, a block contains the hash of the lung 
picture and associated metadata. Afterwards, a network of 
nodes receives this block, which is added to a chain of earlier 
blocks. Blocks cannot be removed or changed after they are put 
to the blockchain, making them immutable. By doing this, the 
classification is permanently preserved and the lung image data 
is kept impervious to manipulation. 

The original image can only be viewed by authorized 
individuals who possess the relevant decryption key. By 
automatically providing or refusing access in accordance with 
pre-established guidelines, smart contracts enforce access 
policies. Algorithm 1 is the pseudocode for the proposed work. 

Algorithm 1: Proposed Work 

1: Load Dataset 

2: Resize the image  

3: Declare CLAHE 

4: Threshold for contrast limiting 

5: Initialize the number of honeybadger 

6: Sort the fitness vale of honeybadger 

7: Find optimal value 

8: Calculate Density 

9: Calculate intensity 

10: Find digging phase 

11: Sort fitness value 

12: Update global optimization solution 

13: Train the model 

14: Test the model 

15: Predict normal or abnormal 

16: Integrate Blockchain for Data Integrity 

V. EXPERIMENTAL EVALUATION 

A. Dataset Description  

This part implements the LIDC-IDRI dataset to identify 
instances of lung cancer. The database has 848 nodules that 
have been enhanced in 17 different methods, 442 of which are 
benign and 406 of which are malignant. The dataset from 
LIDC-IDRI contains lesion annotations from four thoracic 
radiologists with expertise. Included in LIDC-IDRI is 1018 
low-dose lung CT scans from 1010 lung patients. 

 A popular and effective medical imaging technique is a 
chest X-ray. In certain cases, the clinical examination of CXR 
pictures might be even more challenging than the study of a 
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chest CT scan. The 112,120 CX-ray pictures in the NIH Chest 
X-ray Dataset are associated with individual diseases. 

B. Evaluation Metrics 

The following statistical measures, including accuracy, 
precision, F1 score and recall are used to evaluate the efficacy 
of the proposed lung nodule classification technique. The terms  
𝑇𝑟𝑢𝑃𝑜𝑠, 𝑇𝑟𝑢𝑁𝑒𝑔, 𝐹𝑎𝑙𝑃𝑜𝑠 𝑎𝑛𝑑  𝐹𝑎𝑙𝑁𝑒𝑔 are represents the 
True-Positive, True-Negative, False-Positive and False-
Negative, respectively.  The following equations can be 
utilized to compute the metrics. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑃𝑜𝑠 + 𝑇𝑟𝑢𝑁𝑒𝑔)

(𝑇𝑟𝑢𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑃𝑜𝑠 + 𝑇𝑟𝑢𝑁𝑒𝑔 + 𝐹𝑎𝑙𝑁𝑒𝑔)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑃𝑜𝑠

(𝑇𝑟𝑢𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑃𝑜𝑠)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑃𝑜𝑠

(𝑇𝑟𝑢𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑁𝑒𝑔)
 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

VI. RESULT 

The suggested approach for segmenting and categorizing 
lung nodules is presented here with the experimental results. 
The recommended approach was put into practice using a 
MATLAB environment. Accuracy, F1 score, precision, and 
recall metrics were used to assess the classification 
performance. Two sets of lung nodule pictures, such as CT and 
Chest X-ray (CXR) images, were used for the experiments. 
Table II shows the classification results of the proposed SCNN 
model on LIDC-IDRI dataset. 

TABLE II. CLASSIFICATION RESULTS OF THE PROPOSED SCNN MODEL 

ON LIDC-IDRI DATASET 

Performance Measures Proposed SCNN 

Accuracy 98.64 

Precision 92.42 

Recall 93.76 

F1-score 93.08 

 
Fig. 4. Performance of the proposed SCNN model on LIDC-IDRI dataset. 

The proposed SCNN model achieves 98.64% of accuracy, 
92.42% of F1score, 93.76% of precision and 93.08% of recall 
on LIDC-IDRI images. The effectiveness of the suggested 
model is visually represented in Fig. 4. 

Table III displays the classification results of the proposed 
SCNN model on NH Chest X-Ray images. The suggested 
model achieves 98.9% accuracy, 97.3% precision, and 94.44% 
recall and 95.84% of F1score on NH Chest X-Ray images. 

TABLE III. CLASSIFICATION RESULTS OF THE PROPOSED SCNN MODEL 

ON NH CHEST X-RAY DATASET 

Performance Measures Proposed SCNN 

Accuracy 98.9 

Precision 97.3 

Recall 94.44 

F1-score 95.84 

The suggested SCNN classifier's classification performance 
is illustrated in Fig. 5. It demonstrates that the suggested model 
produces higher predictions of accuracy, precision, recall, and 
F1-score across the board. The effectiveness of the suggested 
model is visually represented in Fig. 5. 

 
Fig. 5. Performance of the proposed SCNN model on NH Chest X-Ray 

dataset. 

A. Comparative Analysis 

A comparison between the suggested model and traditional 
neural networks is also done in this section. The comparative 
analysis of Lung cancer detection in terms of accuracy of the 
proposed Spiking CNN model with existing methods on CT 
dataset is displayed in Table IV. It is clearly detected that the 
proposed Spiking CNN classifier gives superior results than the 
other previous research work based on accuracy. It gives 
98.64% of accuracy which is +6.19% than ASAIL CNN 
approach, +4.53% than ProCAN approach, +8.94% than 
Improved FasterR-CNN, +2.83% than Inception V3, +0.41% 
than Deep residual network, +8.74% than ResNet method, 
+14.5% than CNN model. The results of this technique's 
performance comparison with standard methods indicate that 
the proposed method outperforms them. 

The intended model yielded better performance than the 
earlier networks. The expected outcomes seem to be rather 
reliable in distinguishing between typical and anomalous 
instances. The result shows the effectiveness of the proposed 
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model based on blockchain dynamic pattern techniques applied 
in deep Convolutional Neural Network. 

TABLE IV. COMPARATIVE ANALYSIS OF SCNN WITH OTHER CLASSIFIERS 

ON CT IMAGES 

Author/Year Methods Accuracy (%) 

Song et al./2017 [20] CNN 84.14 

Nibali et al./ 2017 [21] ResNet 89.90 

Wu et al./ 2020 [22] Deep residual network 98.23 

Wu et al/ 2020 [22] Inception V3 95.81 

Shiwei et al. /2021 [23] 
Improved FasterR-

CNN 
89.7 

Al-Shabi et al/2022 [24] ProCAN 94.11 

Parveen Banu et al/ 2022[25] ASAIL CNN 92.45 

Proposed Method SCNN 98.64 

Fig. 6 presents a visual representation of the comparison 
findings between the proposed technique and the existing 
methods on CT images. 

 
Fig. 6. Comparative analysis of the proposed method and existing methods 

on CT images. 

The comparative analysis of Lung cancer detection in terms 
of accuracy of the proposed Spiking CNN model with existing 
methods on Chest X-Ray dataset is displayed in Table V. It is 
clearly detected that the proposed SCNN classifier gives 
superior results than the other previous research work based on 
accuracy. It gives 98.9% of accuracy which is +0.2% than 
OCNN-SVM approach, +8.8% than Gabor-LBP+MRCNN 
approach, +25.9% than VDSNet model. The results of this 
technique's performance comparison with standard methods 
indicate that the proposed method outperforms them. The 
intended model yielded better performance than the earlier 
networks. The expected outcomes seem to be rather reliable in 
distinguishing between typical and anomalous instances. 

Fig. 7 presents a visual representation of the comparison 
findings between the proposed technique and the existing 
methods on Chest X-Ray images. 

TABLE V. COMPARATIVE ANALYSIS OF SCNN WITH OTHER CLASSIFIERS 

ON CHEST X-RAY IMAGES 

Author/Year Methods Accuracy (%) 

Bharati et al./2020 [26] VDSNet 73 

Wang et al./2018 [27] Gabor-LBP+MRCNN 90.1 

Sreeprada et al/2023 [28] OCNN-SVM 98.7 

Proposed Method SCNN 98.9 

 
Fig. 7. Comparative analysis of the proposed method and existing methods 

on Chest X-Ray images. 

The pre-processing, segmentation, and classification 
outcomes of the suggested work are shown in Fig. 8. The 
original CTX and CT pictures are displayed in the first column. 
The pre-processing results using CLAHE are shown in the 
second column. The segmentation result using the Honey 
Badger method is displayed in the third column. The 
categorization result is shown by the value in the final column. 
With the CT image dataset, the suggested operator achieves 
98.64% classification accuracy, and with the CXT dataset, it 
achieves 98.9% accuracy. 

 
Fig. 8. The segmentation, feature extraction and classification results of 

proposed work. 
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VII. DISCUSSION 

A very efficient lung image analysis pipeline is a result of 
the synergy between CLAHE, HBA, and SCNNs. The 
utilization of contrast enhancement in CLAHE proven to be 
crucial in emphasizing nuanced traits that are necessary for 
precise segmentation and classification. Because of its dynamic 
nature, the Honey Badger Algorithm ensured accurate 
segmentation even in difficult situations, minimizing errors that 
could have spread to the classification stage. The excellent 
accuracy and computational efficiency that SCNNs brought 
made them a good choice for use in healthcare settings where 
prompt and dependable decision-making is crucial. The 
outcomes demonstrate that this integrated strategy, which 
offers a well-balanced mix of accuracy, efficiency, and 
interpretability, is well-suited to meet the difficulties associated 
with lung image processing. 

VIII. CONCLUSION 

This study proposed a novel neural network model (SCNN) 
for lung nodule classification, which combines the theories of 
deep learning, blockchain, and dynamic pattern features to 
address the issues with lung nodule classification, including a 
difficult classification detection process and low classification 
accuracy.  The CT scan and CXR image databases from the 
NIH Chest X-ray and LIDC-IDRI were used. Initially, these 
images are pre-processed by Contrast Limited Adaptive 
Histogram Equalization (CLAHE) to enhance the image clarity 
and reducing the noise. Then the Honey Badger optimization 
Algorithm (HBA) is used to segment the lung region from the 
pre-processed image. Morphological segments of the lung 
region are used to generate dynamic patterns. Finally, these 
patterns are aggregated into the deep neural Spiking 
Convolutional Neural Network (SCNN) is the global model for 
classifying the images into normal and abnormal cases. Based 
on the LIDC-IDRI and NH Chest X-Ray, the SCNN model 
achieves 98.64% and 98.9% of accuracy respectively. This 
methodology provides a comprehensive solution that tackles 
the particular issues of lung image analysis by combining 
strong preprocessing, sophisticated segmentation, and effective 
classification. In the end, the suggested method improves 
patient outcomes in the field of lung health by laying the 
groundwork for more precise, understandable, and resource-
efficient diagnostic instruments. 
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