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Abstract—In the past few years, with the high-speed 

popularization of computers and the widespread use of smart 

phones and mobile devices, the Internet has gradually become an 

indispensable part of people's daily lives. The Internet is 

constantly driving the process of digital society and providing 

people with more convenient and innovative applications. 

However, the internet industry also faces challenges such as 

runtime ambiguity, instability, large data volume, and difficulties 

in network situational awareness. In response to the above issues, 

this study combines the standard cuckoo algorithm with a fuzzy 

neural network to design a computer network situational 

awareness system. It uses principal component analysis to deduct 

the dimensions of the original data and then adds Gaussian noise 

to introduce appropriate randomness. The test proved that the 

improved model had a significant optimization effect on real 

network data, with an improvement of about 81.2% compared to 

the standard cuckoo algorithm. In the 220th iteration of the test 

set, the Loss function value was 0, which could accurately predict 

the network situation, with an accuracy rate of 98%. The designed 

system identification has higher recognition accuracy and less time 

consumption and has certain application potential in computer 

networks. 

Keywords—CSA; computer network; fuzzy logic; principal 

component analysis method; network operation; situation awareness 

I. INTRODUCTION 

Since the beginning of the 21st century, information 
technology has rapidly advanced, and the Internet has played an 
increasingly important role in social production and life. The 
average monthly traffic volume of the population has been 
increasing year by year [1]. The application of this technology 
is becoming increasingly diversified, giving rise to new 
industries such as 5G technology, the Internet of Things, edge 
computing, cloud computing, and data center optimization. 
This is constantly changing people's way of life and work, but 
it also brings new challenges and opportunities. It is widely 
acknowledged that the network runtime state exhibits several 
characteristics that present significant challenges to the 
development of the internet industry. These include ambiguity, 
instability, a considerable volume of data, and a lack of 
situational awareness within the network. In response to the 
above issues, experts and scholars in the field of the Internet 
have applied the cuckoo algorithm to computer network control 
systems. This algorithm is a heuristic optimization algorithm 
inspired by the reproductive behavior of cuckoo birds [2]. The 
algorithm realizes the optimization of the computer network 
control system by initializing the cuckoo group, generating new 
solutions, evaluating and selecting, updating and iterating, 
judging the convergence conditions, and analyzing the results 

[3]. However, the related research precision is not high, the 
generalization ability is low, the training time is long, and the 
rate of convergence is slow. In this study, the Principal 
Component Analysis (PCA) is first used to reduce the 
dimensions of the huge and changeable network data, and then 
Gaussian noise is introduced to lift the rate of convergence of 
the algorithm. Based on the standard Cuckoo Search Algorithm 
(CSA), a computer Network Situational Awareness Model 
(NSAM) is designed by integrating a Fuzzy Neural Network 
(FNN). The paper mainly consists of five sections. Section II 
summarizes the research status of scholars in the industry on 
the difficulties of Internet situational awareness. Section III 
establishes a computer NSAM that integrates CSA and fuzzy 
logic. Section IV conducts comparative experiments and 
efficiency verification on the optimization effect of the model. 
Section V is a summary of the research and an explanation of 
the direction for improvement. 

II. RELATED WORKS 

As a result of the growing use of mobile internet in a range 
of sectors, predictive models with enhanced network situational 
awareness capabilities are increasingly attracting interest from 
businesses and researchers. Liu C et al. introduced cloud 
control middleware to manage service requests to meet 
constraints, aiming at the problem that traditional cloud 
computing mode makes it difficult to provide real-time 
computing resources. They developed a conceptual computing 
framework built on cloud and mist combination, which has 
better performance in energy consumption and response time 
[4]. Abed Algoni B H et al. used a special type of opposition-
based learning ECS model to address the problem of CSA being 
prone to suboptimal situations. The experiment showed that 
ECS exhibited better performance than all tested variants [5]. 
Cheng P et al. proposed Particle Swarm Optimization (PSO) - 
CSA to predict local comfort and global comfort by artificially 
solving the problems of motion state and being unable to be 
directly used for model analysis. This model had a high 
prediction accuracy [6]. Eltamally A M et al. proposed PSO and 
CSA to capture global peaks in the P curve of Photovoltaic (PV) 
arrays, which have advantages in optimizing control parameters 
[7]. Fan J et al. designed a chaotic CSA image segmentation 
model to address the issue of difficulty in improving accuracy 
in noisy images. This model improved accuracy and reduced 
uncertainty [8]. Li J et al. designed a balanced learning 
differential CS extension algorithm to solve the problem of 
CSA easily falling into local optima, which lifted the 
algorithm's global search capacity and accuracy [9]. 

CSA has unique advantages in group optimization problems 
and provides a certain reference for Internet network situational 
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awareness. Chen S Y et al. designed a variable order fuzzy 
fractional proportional integral differential control system to 
address the issue of the inability of integral differential (PID) 
controllers to achieve high-precision control. This system could 
achieve better control response and anti-interference 
characteristics than Integer Order (IO) controllers [10]. 
Muhammad K et al. designed a television camera monitoring 
system based on fuzzy logic to continuously monitor the 
phenomenon of a large amount of data generated by television 
cameras every day. This model could handle data uncertainty in 
the real-world domain [11]. To solve the problem of 
autonomous decision-making of mobile robots to overcome 
obstacles, Ben Jabeur C et al. established a decision model 
based on an intelligent PID optimization neural network and 
fuzzy logic controller. The mobile robot applying this model 
could quickly execute tasks and adapt to constantly changing 
environmental conditions [12]. Costa R et al. designed a 
mountain flood prediction model based on classification and 
regression trees, deep learning neural networks, and fuzzy logic 
to identify slopes with a high probability of mountain flood 
outbreaks. The prediction accuracy exceeded 84% [13]. In 
response to the issue of insufficient drone controllers to cope 
with weather disturbances, Ulus Ş designed a drone control 
model by integrating classic PID and fuzzy logic controllers. 
This controller had better performance than other controllers 
[14]. Katsikis V N et al. designed a multi-objective evolutionary 
network framework to address the lack of flexibility in fuzzy 
logic neural networks, which has advantages in effectiveness 
and interpretability [15]. 

In summary, the application of fuzzy logic and CSA in 
computer network control systems has sufficient theoretical and 
practical foundations, but relevant research rarely combines the 
two to solve the problem of network situational awareness 
difficulties. Therefore, this study improves CSA and combines 
fuzzy logic to design NSAM to promote further development 
of the internet industry. 

III. OVERALL PLAN DESIGN FOR NETWORK OPERATIONAL 

SITUATION AWARENESS 

This chapter is mainly divided into five sections. The first 
section is divided into establishing an indicator model and 
NSAM, while the second section improves the CSA and 
integrates fuzzy logic. In the third section, the computer 
network control system based on fuzzy logic is established, and 
PCA is taken to decrease the dimension of the original data. 

A. Establishment of NOSA Model 

Network Operational Situation Awareness (NOSA) refers 
to the real-time monitoring, analysis, and identification of 
various activities, events, and resources in the network to obtain 
a comprehensive understanding of the network's operational 
status [16]. NOSA can help organizations or network 
administrators detect abnormal activities, attack attempts, or 
system failures promptly, and take corresponding measures to 
protect the security and stability of the network. Hence, this 
system needs to include the whole links from data to situation 
analysis to users. By the above requirements, this manuscript 
proposes the NOSA system, as exhibited in Fig. 1. 
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Fig. 1. Schematic diagram of network operation situational awareness system. 

Fig. 1 shows a system that includes four modules: data, data 
fusion, situation visualization, and business application. 
Specifically, the results of the data fusion module can direct the 
management operations of the business application module. 
After the business application module manages the network, it 
will transmit new analysis results to the data fusion module 
through it. This cyclic process enables the system to 

continuously optimize and improve to better meet user needs. 
With the guidance of the above NOSA system model, a network 
operation situation indicator system can be constructed. This 
research presents a network operation situation indicator 
system, which is constructed from the perspectives of network 
performance and network traffic. The system is designed to 
integrate the TCP/IP five-layer model, as illustrated in Fig. 2. 
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Fig. 2. Network operation situation indicator system. 

Fig. 2 shows the network traffic indicators, including IP 
throughput, link utilization, the size and proportion of traffic 
based on network protocols, and the size and proportion of 
traffic. The network protocol traffic mainly covers protocols 
such as TCP, UDP, ICMP, etc; Business traffic mainly includes 
protocols i.e. HTTP, FTP, and SMTP. The goal of this study is 
to reflect the operational situation of the network from a 
business perspective. Therefore, it is necessary to integrate 
multiple protocol layer indicators [17]. The transport layer 
protocol traffic data, namely TCP, UDP and ICMP, are added to 
the network traffic indicator. After establishing the network 
operation situation indicators, it is also essential to sort out the 
original data according to the relevant calculation formulas. 
Broadband utilization is an important performance indicator in 
a network, which represents the current load level and Resource 
Utilization Efficiency (RUE) of the network. This characteristic 
indicator is calculated by Eq. (1). 

T
L

B
      (1) 

In Eq. (1), T  is the average transmission rate of the 
network, while B  represents the maximum transmission rate 
of data packets in the network. In addition, this indicator system 
is one-way delay. Delay is used to represent the network 
Transmission delay. The calculation formula is Eq. (2). 

d
Delay

sum



     (2) 

In Eq. (2), d  means the delay of all data packets 

transmitted by the network, and sum  is the sum of the 

number of transmitted data packets. The quantity of data 
packets transmitted by the network per unit time is called the 

IP packet transmission rate, and its calculation formula is Eq. 

(3). IP

sum
V

t
     (3) 

In Eq. (3), sum  represents the total number of IP packets 

transmitted by the network, while t  represents the total 

transmission time. In this indicator system, the proportion of 
protocol traffic between the application layer and the network 
layer is introduced. This type of indicator is represented by 
acc , and its calculation formula is Eq. (4). 

_sum protocol
acc

sum
     (4) 

In Eq. (4), _sum protocol  represents the gross of protocol 

packets per unit time, and sum  represents the total number of 

IP packets during that period. 

B. Fuzzy Logic Model based on CSA Algorithm 

CSA heuristic swarm intelligence optimization algorithm 
simulates the process of cuckoo's foraging and nest protection 
to achieve global optimization. The basic idea of the algorithm 
is to represent the candidate solutions of the problem as nests 
of cuckoo birds, with each nest corresponding to a solution 
vector. Then, the quality of each nest is evaluated based on the 
fitness function of the problem. CSA has good global search 
ability and high parallelism. It is suitable for various 
optimization problems, especially continuous optimization 
problems. The performance of the algorithm is still affected by 
factors such as parameter settings, nest protection strategy, and 
nest elimination strategy, and needs to be adjusted and 
optimized according to specific problems. Fig. 3 shows the 
algorithm flowchart.
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Fig. 3. Flowchart of cuckoo algorithm. 

Fig. 3 is the CSA flowchart. Firstly, a set of feasible 
solutions is randomly produced as the initial population, and the 
optimal nest position is retained by adjusting the positions of 
the parents and parasitic birds. This step can use some heuristic 
methods, such as random walk or local search algorithms. Then, 
the position is updated by adjusting the position of the parent 
and parasitic birds. The next step is to eliminate solutions with 
lower fitness with a certain probability. Finally, to determine 
whether the termination condition is met, i.e. reaching the max-

iterations or finding a solution that meets the requirements. Step 
2 is repeated to 5 until the termination conditions are met. 
Although CSA has certain advantages and application value, 
there are also some shortcomings. For example, the rate of 
convergence is slow, the parameter selection is difficult, and the 
dependence on problem characteristics is strong. To solve the 
above problems, the idea of fuzzy logic is used to improve 
traditional CSA. The schematic diagram is shown in Fig. 4. 
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Fig. 4. Fuzzy mapping diagram. 

Fig. 4 is a fuzzy inference system, which mainly consists of 
four parts. The first part is a fuzzy generator, mainly responsible 
for converting the precise input values into fuzzy membership 
values, that is, mapping the input to the corresponding 
membership functions. The second part is the fuzzy rule library, 
which defines a set of fuzzy rules, each containing a series of 
prerequisites and a conclusion. The preconditions and 
conclusions are described by fuzzy sets. The third part is the 
inference engine, which uses the inference mechanism to 
calculate the fuzzy output according to the given rules and the 
fuzzy input. The final part is to convert the fuzzy output back 
to precise values through anti-fuzzification. Unlike traditional 
binary logic, which only has true and false values, fuzzy logic 
allows variables to have a continuous range of values, with 
fuzziness between 0 and 1. Assuming the input variable is 

1 2[ , ,..., ]T

nx x x x , each component is a fuzzy variable. Each 

fuzzy variable is segmented into n fuzzy sets, and the fuzzy set 
of each component in the input variable is Eq. (5). 

1 2( ) { , ,..., }, 1,2,3,...,k

i i i iT x A A A k n    (5) 

In Eq. (5), 
k

iA  is the k -th variable value of the i -th input 

component. The fuzzy outputs vector 
1 2[ , ,..., ]T

ny y y y  in 

this fuzzy model, if 
1x  is 

k

iA , the output fuzzy output vector 

is equation (6).
 

0 1 1 0i i i n

it r r nr ny p p x p x r k     
  (6) 

In Eq. (6), 
0

i

rp  represents the output of the i -th output 

vector under rule r . This fuzzy rule can be represented as an 
IF THEN statement, as shown in Eq. (7). 
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IF 
1x

k

iA ，THNE 

1 1 1

1 0 1 1

0 1 1

r r r nr n

i i i

ir r r nr n

y p p x p x

y p p x p x

    


         (7) 

In Eq. (7), 
1x  represents the k -th variable value of the i

-th input component. By using single point fuzzification to 
represent input variables, the applicability of each rule can be 
calculated, as shown in Eq. (8). 

1 2 1 2r k k nk k k nkT            (8) 

In Eq. (8), 
rT  represents the applicability of rule r . The 

output value of the fuzzy system is the weighted average of each 
rule, and its formula is Eq. (9). 

1 1
/

q r q r

i q iq qq q
y T y T

 

 
      (9) 

In Eq. (9), 
iy  is the i -th component of the output vector. 

Fuzzy logic is widely used in control systems, artificial 
intelligence, decision support systems, and other fields, 
especially suitable for problems with fuzziness and uncertainty. 
Through the reasoning and processing of fuzzy logic, 
incomplete information and fuzzy concepts in the real world 
can be better handled, improving the effectiveness of decision-
making and control. 

C. Computer Network Control System Based on Fuzzy Logic 

The large amount of data in computer network control 
systems has uncertainty and fuzziness, so it is necessary to 
apply fuzzy theory to solve these problems. In addition, 
network data also have the characteristics of being massive and 
multidimensional. Neural network is an effective method to 
deal with big data. When it is combined with fuzzy theory, it 
can solve NOSA problem in complex data environment. 
Therefore, an improved CAS algorithm, CSA-FNN, is designed 
by combining CAS and FNN, and its structure is Fig. 5. 

x1

x2

x3

xn

1k

1( )x

2 ( )x

3 ( )x

( )n x

Z1

Z2

Z3

Zn

y1

y2

y3

yn

Softmax()

Softmax()

Softmax()

Softmax()

 
Fig. 5. CSA fuzzy neural network. 

In Fig. 5, the first is the input layer, which completes the 
input of training data. The second is the rule mapping layer, 
which fuzzily divides each input component. The third is the 
rule fitness layer, where each node represents a fuzzy rule. The 
fourth is the normalization layer, which normalizes the fitness 
of each rule. The fifth is the anti-fuzzy layer, which completes 
the mapping from the fuzzy rule space to the output space 
through the Activation function. The last layer is the output 
layer, which outputs the network operational situation level. In 

the above CSA-FNN model, the network operational situation 
features include 10 indicators, that is, the input data is 10 
dimensions. The number of nodes in each layer increases 
exponential type with the number of nodes in the input layer, 
resulting in too many nodes. Therefore, it is necessary to reduce 
the dimensions of the original data. This study uses PCA to 
reduce and reconstruct the dimensions of the original data. Fig. 
6 is the process steps. 
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Fig. 6. CSA-FNN. 
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The first is to standardize the indicators. The dimensions of 
the original indicator data in computer networks are different, 
so it is necessary to normalize the indicator data and convert 
them into data under the same dimension. This article adopts 
the maximum-minimum normalization method, and its 
expression is shown in Eq. (10). 

11 12 1

21 11 2

1 2 m

1 2

( , ,..., )

m

m

n n nm

I I I

I I I
I I I I

I I I





 



  (10) 

In Eq. (10), I  represents the normalized network 
indicator data, and m  represents that each data has m  

indicators. 
mI  represents the m -th dimensional vector of the 

data, normalized as Eq. (11). 

'
jp p

jp

p

i I
i




      (11) 

In Eq. (11), 
pI  represents the average value of the p -th 

indicator. 
p  represents the mean square deviation of the p -

th indicator. The correlation coefficient of each indicator in I  
is calculated to obtain the correlation coefficient matrix, as 
shown in Eq. (12). 

11 12 1

21 11 2

1 2

1

m

mT

m m mm

R R R

R R R
A I I

m

R R R

 
 
 
 
 
 

   (12) 

In Eq. (12), ( , 1,2,..., )ijR i j m  represents the correlation 

coefficient between the i -th and j -th indicators. The 

eigenvalue of matrix A  and Orthogonalization is calculated, 
as shown in Eq. (13). 

1 2( , ,..., )ma a a a     (13) 

In Eq. (13), a  is the matrix obtained by Orthogonalization 

the characteristic matrix of matrix A . Then the contribution of 
each feature vector is calculated to the square difference, and 
the contribution calculation formula is Eq. (14). 

1

i

i m

k

k

a








    (14) 

In Eq. (14), ( 1,2,..., )ia i m  is the contribution rate of the 

mean square deviation of the i -th eigenvector. Finally, the data 

after feature extraction based on the formula are calculated. 
After the above 5 steps of processing, the dimension of the data 
is reduced to 4 dimensions, and the number of nodes is 
significantly reduced, solving the problem of massive and 
multidimensional network data. Therefore, the improved CSA 
algorithm based on fuzzy logic has been successfully applied to 
computer network control systems. 

IV. CSA-FNN MODEL PERFORMANCE TESTING 

This chapter mainly verifies the optimization effect of the 
model. The first section mainly compares and analyzes CSA-
FNN with other algorithms to verify the comparative 
advantages of the algorithm. Then, distinctive datasets are used 
to verify the generalization ability of the model. The second 
section mainly conducts simulation experiments to test the 
efficiency in practical environments. 

A. Comparative Analysis of Algorithms and Validation of 

Generalization Ability 

This study uses CSA combined with FNN to establish a 
computer network control system model, solving the problems 
caused by the uncertainty and fuzziness of computer network 
data. The original data dimension is reduced by PCA, which 
significantly reduces the number of nodes and complexity of 
the neural network [18]. To evaluate the optimization ability of 
fuzzy inference systems for computer network control systems, 
the experiment uses Python 3.8 on the Windows 10 platform 
and uses the Cooperative Association for Internet Data Analysis 
(CAIDA) dataset to perform 1000 iterations on the traditional 
CSA and CSA-FNN models, respectively. Fig. 7 shows the 
relationship between its training error and the iterations. 
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Fig. 7. Comparison of CSA and CSA-FNN algorithm errors. 
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Fig. 7 shows the comparison of the effects of CSA before 
and after improvement on the training dataset. Compared to the 
standard CSA model, the rate of error reduction in the first 200 
iterations of CSA-FNN is not significantly different. However, 
when the number of iterations reaches the range of [200, 400], 
the error of the FNN structure rapidly decreases and converges 
by the 400th iteration. The error of traditional CSA tends to 
converge after 700 iterations. Therefore, the CSA-FNN model 
proposed in the experiment has a faster convergence rate and a 
lower error in the final convergence. To eliminate the impact of 
dataset selection on experimental results and verify the 
generalization ability of the model, it is necessary to apply the 
Measurement and Analysis on the WIDE Internet (MAWI) 
dataset to train the above algorithms. Table I is the MAWI 
dataset parameter table. 

Table I shows that the MAWI dataset is a very large dataset, 
including a large amount of network traffic data. Therefore, 
appropriate preprocessing and sampling are required when 
using this dataset for analysis and research [19]. The MAWI 
dataset usually contains more complex network traffic patterns, 
while the CAIDA dataset focuses more on reflecting the traffic 
characteristics of the actual Internet. For these two datasets, 

researchers preprocess the data, including data cleaning and 
normalization, to reduce noise and eliminate dimensional 
differences between features. Afterwards, a comparison is made 
between CSA-FNN and Whale Optimization Algorithm 
(WOA), Ant Colony Optimization (ACO), PSO, and Artificial 
Fish Swarm Algorithm (AFSA) to observe their training 
performance on different datasets. The results are shown in Fig. 
8. 

TABLE I. BASIC PARAMETERS OF THE ACTION DATASET 

Parameter type Parameter scale 

Traffic data 735000 

Time stamp 6900min 

Source IP Address and Destination 

IP Address 
900 

Protocol 4 

Packet size 512bit 

Packet Marking 5 
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Fig. 8. Comparison of MAWI and CAIDA data set. 

Fig. 8 shows the trend curve of the accuracy of various 
algorithms in two datasets as a function of the amount of 
training rounds. From Fig. 8 (a), the CSA-FNN model performs 
best, with accuracy tending to converge after 300 iterations, 
while the other four models only converge after training 600 
times. In Fig. 8 (b), the accuracy of all algorithm models 
decreases when using the CAIDA dataset. However, the 
convergence of CSA-FNN accuracy does not change much, and 
it tends to converge after 400 iterations, ultimately converging 
to around 94%. The above results demonstrate that CSA-FNN 
has advantages over the other four algorithms, such as fast 
convergence, high accuracy, high stability, and strong 
generalization ability. 

B. NOSA Simulation Experiment 

The comparative analysis of algorithms has successfully 

verified the comparative advantages of CSA-FNN compared to 
other algorithm models, providing a solid theoretical 
foundation for its application in real computer network control 
systems. Although the superiority of the CSA has been verified, 
further simulation experiments are still necessary to evaluate 
the scalability, robustness, and stability of the algorithm. The 
experiment utilizes real traffic data from MAWILAB and 
obtains network traffic data through steps such as data cleaning 
and normalization [20]. Link utilization, IP packet rate, total 
number of IP packets, and TCP ratio are used as evaluation 
indicators. Link utilization refers to the degree to which 
network links are occupied by valid data. The IP packet rate and 
total number reflect the strength of network traffic. The TCP 
ratio represents the proportion of Transmission Control 
Protocol (TCP) packets to the total number of packets. Table II 
shows some data. 
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TABLE II. SOME NETWORK TRAFFIC DATA 

Serial Number Link Utilization IP Packet Rate 
Total Number of IP 

Packets 
TCP Proportion 

734 0.0113659 0.009562344 0.011231245 0.442123226 

735 0.0132411 0.009878563 0.016324534 0.442661626 

736 0.0114534 0.009758231 0.012313122 0.412336123 

737 0.0164553 0.009431312 0.011229807 0.412286126 

738 0.0174554 0.009341123 0.011123145 0.512326112 

739 0.0142432 0.009234133 0.011212343 0.123146126 

740 0.0111311 0.009124313 0.011224344 0.642666126 

741 0.0141233 0.009413444 0.011224523 0.412312313 

742 0.0143133 0.009512312 0.011253451 0.482626126 

743 0.0143566 0.009413123 0.011231312 0.144567435 

744 0.0163234 0.009434546 0.011212343 0.734341231 

745 0.0178621 0.009223431 0.011213217 0.423123126 

746 0.0115456 0.009254323 0.011221203 0.442231226 

747 0.0112567 0.009256723 0.011231207 0.431234112 
 

Normalizing the original data is helpful to eliminate the 
dimensional difference between features, improve the training 
effect and stability of the model, and improve the rate of 
convergence of the model. Then the normalized real network 
traffic data are used to verify the improved CSA-FNN structure. 
The simulation software used in the study is Pychar, and the 
simulation environment is Python 3.6. 1000 iterative training 
sessions are performed on CSA and CSA-FNN using the data 

shown in Table II. The link weights of the normalization layer 
and the anti-fuzzification layer are randomly generated by a 
Gaussian function to circumvent the issue of gradient 
disappearance or explosion due to an excessive data volume of 
the model. Furthermore, the introduction of randomness serves 
to enhance the stability of the model's learning and optimization 
process. The results are displayed in Fig. 9. 
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Fig. 9. Loss function curve of CSA and CSA-FNN. 

In Fig. 9, the data gradient after the normalization operation 
is significantly reduced, and the stability of the model is 
significantly improved compared with the MAWI dataset, and 
the rate of convergence is accelerated. From Fig. 9(a), the CSA 
training set curve converges after about 200 iterations, while the 
test set converges after about 400 iterations. From Fig. 9(b) that 
during the first 120 iterations of the training set of the CSA-
FNN model, the value of the Loss function rapidly decreases 

from 1.5 to 0.35, a decrease of about 76.7%. In the 220th 
iteration of the test set, the Loss function value is basically 0. 
Comparing the two figures, it can be found that CSA-FNN has 
increased by about 81.2% compared to CSA. Finally, Capsa 
software is used to capture real-time data traffic in the current 
local area network for analysis, intercepting network data traffic 
information for two consecutive hours. The experimental 
results are exhibited in Fig. 10. 
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Fig. 10. Map of changes in network operational situational awareness. 

Fig. 10 shows the changes in three types of NOSA. From 
the graph, the network bandwidth of the first type of network 
operation situation is mostly in a state of 40-60Mb/s, with 
occasional small fluctuations. This situation may be caused by 
accidental network changes. The second type of network 
operation situation is that the network is normal in the first 60 
minutes, and severe fluctuations begin to occur in the first 60 
minutes. The reason for this situation may be due to unstable 
factors in the local area network. The third type of network 

operation situation curve shows that the network is normal in 
the first 50 minutes, and then the network quality rapidly 
decreases. This situation may be due to the sudden addition of 
new tasks and drastic fluctuations in the network. Compared 
with the actual data, the network awareness model can 
accurately predict the network situation, with an accuracy rate 
of 98%. In addition, the study also records the changes in 
perception accuracy of the CSA-FNN model in different 
network environments, as shown in Fig. 11. 
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Fig. 11. Changes in perception accuracy under different network environments. 

Fig. 11 shows the temporal variation of perception accuracy 
of the CSA-FNN model in different types of network 
environments (LAN, MAN, WAN, and WLAN). In Fig. 11, 
with the increase of time, the accuracy of various network 
environments shows an upward trend, among which LAN and 
WLAN have higher accuracy, maintaining above 98% and 99% 
respectively, while MAN and WAN have relatively lower 
accuracy, but also exceeding 97%. This phenomenon may be 
due to the relatively simple network environment of LAN and 
WLAN, which are easy to predict and classify, while MAN and 
WAN, due to their complex network structure, may have more 
uncertain factors leading to slightly lower accuracy. In addition, 

the fluctuation of each line type in the figure is relatively large, 
which may be caused by the dynamic changes in the network 
environment and the irregularity of the data flow. Overall, the 
CSA-FNN model can maintain high accuracy in various 
network environments, demonstrating its good adaptability and 
robustness. Finally, to verify the effectiveness of the algorithm 
in practical applications, the WSSD system proposed in study 
[21], the WEA-SA NSAM proposed in study [22], and the 
OWS-WOA model proposed in study [23] are introduced to 
compare with the CSA-FNN. The implementation phase 
comprises the deployment of infrastructure, the implementation 
of security controls, and the execution of security processes. 
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These include the installation of network and security hardware, 
the configuration of network devices and firewalls, the 
deployment of intrusion detection systems and SIEM systems, 
and the execution of key security processes such as security 
auditing, data backup and recovery, patch management, etc. 
The experimental results are shown in Table III. 

TABLE III. COMPARISON BETWEEN CSA-FNN AND OTHER NETWORK 

SITUATIONAL AWARENESS SYSTEMS 

Experimental 

Group 

Detection 

Rate (%) 

False 

Alarm 

Rate (%) 

Response 

Time (ms) 

Computing 

Resource 

Consumption (%) 

CSA-FNN 94.2 2.5 35 12 

WSSD 91.8 3.1 40 14 

WEA-SA 93.0 2.8 38 13 

OWS-WOA 92.5 3.0 42 15 

According to the data in Table III, the CSA-FNN algorithm 
exhibits high performance in network situational awareness. 
Specifically, the detection rate of CSA-FNN reaches 94.2%, 
which is the highest among the four experimental groups, 
indicating that it can more accurately identify abnormal 
behaviors or threats in the network. Meanwhile, the false 
positive rate of CSA-FNN is 2.5%, which is also the lowest 
among the four experimental groups, indicating that it performs 
better in reducing unnecessary alarms and thus minimizing 
interference with normal network activity. In terms of response 
time, CSA-FNN is 35 milliseconds, faster than WSSD and 
WEA-SA, but slightly slower than OWS-WOA. However, a 
response time of 35 milliseconds is still very fast, which is 
already fast enough for real-time network situational awareness. 
In terms of computational resource consumption, CSA-FNN 
consumes 12% of resources, which is the lowest among all 
models, demonstrating its advantage in RUE. In contrast, 
OWS-WOA has the highest resource consumption, reaching 
15%. Overall, CSA-FNN performs well in the three key 
indicators of detection rate, false positive rate, and 
computational resource consumption, especially in terms of 
detection rate and resource consumption, indicating that CSA-
FNN is an efficient and accurate tool for network situational 
awareness. 

V. CONCLUSION 

To solve the problems of fuzziness, instability, large data 
volume, and difficulty in network situational awareness in 
network operation, this study designed a computer NSAM 
based on CSA and fuzzy logic fusion. The experiment used 
Python 3.8 on the Windows 10 platform and trained CSA and 
CSA-FNN using the CAIDA dataset. The results showed that 
the error of the proposed FNN structure rapidly decreased and 
converged at the 400th iteration. The error of the standard CSA 
only converged after 700 iterations, and the convergence rate 
increased by 75%. Then, the performance of CSA-FNN 
algorithm was evaluated through horizontal comparative 
experiments with algorithms such as WOA, ACO, PSO, AFSA, 
etc. The data showed that the accuracy of all algorithm models 
has decreased when using the CAIDA dataset. However, the 
accuracy convergence of the CSA-FNN model did not change 
much, and it tended to converge after 400 iterations, ultimately 
converging to around 94%. This proved that CSA-FNN had 

advantages over the other four algorithms such as fast 
convergence, high accuracy, high stability, and strong 
generalization ability. Finally, simulation experiments were 
conducted using MAWILAB: During the first 120 iterations of 
CSA-FNN, the testing accuracy improved with the 
improvement of training accuracy, and the speed was very 
significant. During this period, the value of Loss function 
decreased rapidly from 1.5 to 0.35, with a decrease of about 
76.7%. Therefore, this model has good practical application 
capabilities. However, the model still requires a considerable 
amount of training and a longer training time, which is also an 
area that can be further improved in future research. The 
performance of the proposed model is an important 
consideration when the network size and complexity increase. 
The scalability of the model is key to ensuring its effective 
operation in larger or more complex network environments. As 
the scale of the network expands, models may need to handle 
larger amounts of data. Therefore, optimizing the data 
processing flow and algorithm efficiency is necessary to 
maintain or improve the response speed and accuracy of the 
model. In addition, the system for monitoring and measuring 
network status needs to effectively utilize computing resources. 
In the future, the concept of RUE can be studied and 
implemented to ensure that the system is efficient in resource 
utilization, especially in situations where multiple resources are 
limited. 
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