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Abstract—Since the focus of Sanda teaching is to allow 

students to master martial arts techniques through 

confrontational exercises, Sanda teaching in colleges and 

universities commonly adopts contextualized teaching methods. 

However, this Sanda teaching method suffers from deficiencies 

such as poor teaching effectiveness and difficulty in reflecting the 

effectiveness of Sanda martial arts. In order to solve these 

problems and make up for the shortcomings of offline Sanda 

teaching, the study adopts the virtual reality technology and the 

fifth generation mobile communication technology to construct a 

Sanda-assisted teaching system for college students. In order to 

ascertain whether students complete the Sanda movement 

practice, the study has designed two models: a self-supervised 

model based on acceleration and angular velocity contrast 

learning and a multi-task semi-supervised model based on time-

frequency contrast learning. These models aim to improve the 

analytical function of the Sanda-assisted teaching system and 

address the analytical deficiencies of the existing human 

movement identification algorithms. The results indicated that 

the maximum accuracy of the research-designed self-supervised 

model was 95.76% and 95.89% on the training and test sets, 

respectively. The multi-task semi-supervised model designed in 

the study plateaued after nearly 22 and 24 iterations on the 

training and test sets, respectively. The average response time of 

the research-designed system was 59ms, and the throughput 

could reach a maximum of 77651bit/s. The model and the 

research-designed system both worked well, and they can lower 

the risk of student injuries while offering technological support 

for Sanda-assisted teaching and learning in higher education 

institutions. 

Keywords—VR technology; Sanda; teaching system; motion 

recognition; feature extraction 

I. INTRODUCTION 

Sanda, as an excellent traditional sport of the Chinese 
nation, contains valuable national spirit, reflects strong 
national traditional colors, and has strong vitality and epochal 
character. University Sanda teaching (UST) can promote the 
development of Sanda sport in the new era and make it glow 
with more beautiful colors [1-2]. Most colleges and 
institutions have embraced the contextual teaching style since 
it aligns with Sanda teaching's goal. However, this Sanda 
teaching method has shortcomings such as poor teaching 
effect and difficulty in reflecting the effectiveness of Sanda 
martial arts [3]. In order to solve this problem, constructing 
Sanda-assisted teaching system (SATS) becomes particularly 
important. Virtual reality (VR) has been progressively 
incorporated into the domains of education, healthcare, 
gaming, and entertainment with the advancement of computer 
technology [4]. Feng and other specialists created a model 

based on the combination of VR technology and Web 
application design to increase students' enthusiasm to learn. 
They then used the model's data to teach physical education 
(PET). The findings demonstrated how well VR and PET 
work together to increase students' excitement for athletics 
and interest in studying [5]. Gao and other researchers 
designed a medical system based on remote VR technology to 
address the problem of medical informatization. The system 
contained two major functional sections, namely, consultation 
management and system management. Among them, the 
consultation management section included all remote business 
consultation processes, and the system management version 
involved managing medical resources and user data. The 
findings demonstrated significant time and cost savings in the 
areas of remote VR technology adoption, safety, and 
rehabilitation-improvements of 85%, 92%, and 96%, 
respectively [6]. To help architecture students learn more 
effectively, researchers like Elgewely created a VR platform 
for architectural details based on VR technology and building 
information modeling. Additionally, the platform was 
validated in three main areas, namely pilot, system usability 
and immersion and learning gains. The results showed that 
students' learning progress increased by 30% after 
experiencing the VR environment [7]. Experts such as 
Almousa designed a VR-based virtual clinical simulation 
system with Oculus Quest headset in order to promote global 
academic collaboration. In addition, the system was able to 
connect and communicate in real time with an instructor 
control panel application. The results showed that this virtual 
clinical simulation system was able to provide realistic clinical 
training in a virtual space simulating a hospital environment 
and promote academic collaboration [8]. 

In SATS, the most important thing is to judge whether the 
student has completed the exercise or not, and this requires the 
use of human motion recognition (HMR) algorithm model. 
Common HMR methods include traditional machine learning, 
such as K-nearest neighbor classification algorithms, self 
supervised learning (SSL) methods, semi supervised learning, 
and wearable device based methods [9-10]. To solve the 
problem that the existing HMR-based algorithms cannot fully 
explore the spatio-temporal properties of motion, Yangzhi and 
other researchers designed a HMR algorithm based on a 
spatio-temporal attention graph convolutional network model 
that integrates spatial and temporal attention mechanisms. The 
comparison results show that the algorithm designed in the 
study has improved the accuracy of Top-1 and Top-5 by 5.0% 
and 4.5%, respectively [11]. To increase the precision of video 
HMR and the computational effectiveness of large-scale 
datasets, Gao and other specialists created a motion capture 
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multidimensional data model and deep learning framework 
based video image motion recognition. In addition, the study 
also used Gaussian mixture model and gradient histogram. 
The outcomes indicated that the average value (AV) of the 
classification accuracy of the method was 85.79% and the 
maximum running speed was 20 frames per second [12]. To 
improve the accuracy of the rehabilitation robot on HMR and 
to reduce the recognition time, Chen and other researchers 
designed an improved sparrow search algorithm based on 
multiple strategies. According to the results, this upgraded 
algorithm's recognition accuracy was 2.835% higher than that 
of the original classifier, which should make it easier for the 
rehabilitation robot to understand the intention behind a 
person's movements [13]. Ye and colleagues developed an 
enhanced time-slotted video down sampling technique based 
on Gaussian model and proposed a human interaction 
recognition algorithm based on parallel multi-feature fusion 
network to identify human actions. Convolutional kernels with 
various scales were employed in the study to extract features. 
The findings demonstrate that the approach can identify six 
interaction acts with an accuracy of 88.9% [14]. 

In summary, the current studies on VR-based systems and 
HMR are relatively rich and use a variety of methods. 
However, these studies also have certain shortcomings, such 
as not fully considering the complexity and specificity of 
human motion sensing signals, and still facing the problems of 
underutilization of human motion sensing data and difficulty 
in feature extraction. Therefore, in an attempt to compensate 
for the shortcomings of Offline Sanda teaching (OST), the 
study designed a SATS based on VR and 5th generation 
mobile communication technology (5G), constructed self-
supervised model with contrastive learning of acceleration and 
angular velocity (SSMCLAA) and semi-supervised multi-task 
model with time-frequency (TF) contrastive learning 
(SSMTFCL). The study aims to improve the speed and 
accuracy of HMR, accelerate the judgment of whether 
students complete Sanda exercises, reduce the probability of 

student injuries, and improve the effectiveness of UST. The 
innovativeness of the study is that it combines 5G technology 
and VR technology to alleviate the problem of insufficient 
data labeling, and realize the consistency of TF characteristics 
of data and the improvement of HMR speed and accuracy. 

There are five sections to the study overall. Section II is 
the design of the research methodology, which includes the 
construction of SATS based on 5G and VR technologies, the 
design of SSMCLAA model and SSMTFCL model. Section 
III is the performance validation of SATS, SSMCLAA model 
and SSMTFCL model. Discussion is given in Section IV. 
Section V is the conclusions, shortcomings and future 
prospects of the study. 

II. METHODS AND MATERIALS 

To address the problems of OST, the study designed SATS 
based on 5G and VR technologies, and designed the structure 
and functions of teaching system (TS). In order to realize the 
judgment of whether students complete the exercises in TS, 
the research adopts the HMR algorithm, and designs the 
corresponding recognition model for the problems existing in 
the current HMR, respectively. 

A. SATS Design Based on 5G and VR Technologies 

UST suffers from deficiencies such as poor teaching 
effectiveness, difficulty in reflecting the effectiveness of 
Sanda martial arts, and the frequency of accidental injuries or 
even serious permanent injuries to students. To compensate 
for the shortcomings of OST, the study adopted 5G and VR 
technologies. Since VR technology can simulate real-world 
situations in three dimensions, it has been included into 
college and university curricula. The majority of these 
institutions have started to create VR teaching laboratories 
[15]. 5G technology has ultra-high speed rate, which can 
quickly enjoy 360° panoramic VR and display more high-
definition VR images [16]. The structure of SATS is shown in 
Fig. 1. 
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Fig. 1. The structure of sanda-assisted teaching system.

In Fig. 1, the structure of SATS involves import page, start 
interface, ranking list, student input (initial use), select 
trainees (not first-time use), teaching mode interface, select 
learning content, learning and watching teaching videos, skip 
learning, practice and testing interface, choose the difficulty 
level for practice, judging whether the difficulty level is too 

high or too low level for practice, judging whether students 
have completed exercises, real time recording of student data, 
and exit program. SATS involves four main functions, which 
are action demonstration function, practice and test function, 
interaction function, and data analysis function. Among these, 
the action demonstration function requires 5G technology to 
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guarantee that students can view the video with clarity and 
fluidity without experiencing any latency. Both the practice 
and test function and the interaction function need to allow 

students to follow the instructions on the VR interface to 
practice and get feedback from the system. The composition 
of the interaction function is shown in Fig. 2. 
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Fig. 2. Composition of interactive functions.

In Fig. 2, the interaction function requires the use of 
different wearable devices, a data suit, data gloves and a 
helmet display, as well as a mechanical feedback device. The 
camera in the helmet display is able to recognize the 
movement of the student's hand. The data suit and data gloves 
are able to track the student's head, eyes, hands, legs and body, 
and the mechanical feedback device mainly involves haptic 
and kinesthetic senses. The data analysis function is to collect 
the data changed in the VR scene through the data collection 
device in the background, and analyze and diagnose these data 
to determine whether the students have completed the exercise 
or not. In the parts that follow, the study's design will be 
thoroughly examined for the purpose of diagnosing these 
results. 

B. Construction of the SSMCLAA Model 

To make a judgment on whether a student has completed 
the exercise or not, the study uses the HMR algorithm. The 
human movement time series data collected using wearable 
sensing devices has a complex multidimensional spatial 
structure. To address the problems of complexity and 
variability of the collected data and the difficulty of feature 
extraction, the study designed the SSMCLAA model. SSL 
utilizes the input data itself as a supervisory signal and is 
beneficial for almost all types of downstream tasks [17]. 
Wearable sensing devices integrate various types of miniature 
sensing elements, such as accelerometers, gyroscopes, etc., 
which are capable of monitoring and tracking human activities 
in real time and continuously [18]. Therefore, the 
multidimensional time series data samples used in the study 
are composed of 3D acceleration data and 3D angular velocity 
data. The SSMCLAA model adopts the SSL framework, and 
its specific structure is shown in Fig. 3. 
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Fig. 3. The specific structure of the SSMCLAA model.
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In Fig. 3, the SSL framework contains two main parts, 
which are pre-training and downstream tasks. Among them, 
the pre-training part contains unlabeled data (ULD), feature 
extraction module (FEM), and agent task, where FEM is 
divided into feature extractor (FE) + eigenvector. In order to 
carry out the agent task in the pre-training part, the study 
adopts the contrast learning technique. This technique is a 
common way to improve the model representation. The 
downstream task part contains labeled data (LD), FE trained in 
the pre-training part, eigenvector, classifier and supervised 

loss. Since the FE in the pre-training part only learns the 
feature representation of the data, the downstream task part 
needs to connect the FE trained in the pre-training part with 
the classifier, and then supervise the training with a small 
amount of LD to achieve action classification. In order to fully 
extract the acceleration and angular velocity features of the 
students when learning Sanda, the study constructs two 
independent FEs at the feature extraction module, and both of 
them use the deep residual network structure. In Fig. 4, the 
FEs' structure is displayed.
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Fig. 4. The structure of a feature extractor.

In Fig. 4, the first step of the FE is the input sensing signal, 
i.e., the acceleration or angular velocity of the student while 
performing Sanda learning. The second step is a one-
dimensional convolution and maximum pooling operation; 
after which it goes through six residual blocks. The 
combination of these six residual blocks together forms a deep 
residual network. The residual block is mainly composed of 
three consecutive one-dimensional convolutional layers and an 
activation function ReLU, and then the output and input of the 
convolution operation are directly added to solve the problem 
of gradient vanishing during the training process of deep 
neural networks, and to enable deep neural networks to learn 
deeper feature representations. The third step is the output 
eigenvector. The residual block mainly contains three 1D 
convolutional layers and ReLU activation function. The 
purpose of contrast learning pre-training is to enhance the FE 
representation. The commonly used formulaic definition of 
contrast learning is shown in Eq. (1) [19]. 
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 
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In Eq. (1), 
1f  and 

2f  represent different FEs, respectively. 

i  and j  are both ordinal numbers, and N  is the total 

features. 
iw  and 

jw  represent different random samples, 
1z  

and 
2z  are the projected heads of the upper and lower 

branches (ULB), respectively.  1 1iz w  and  2 2iz w  represent 

the features of the ULB of 
iw , respectively, and both are set 

as positive samples.  1 1jz w  and  2 2jz w  are the features of 

the ULB of 
jw , respectively, and are set as negative samples. 

s  is the metric. The structure of the contrast learning pre-

training is shown in Fig. 5. 
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Fig. 5. Comparative learning pre training structure.
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In Fig. 5, the contrast learning pre-training structure is 
mainly divided into the upper and lower halves. Among them, 
the upper half is the acceleration contrast learning process and 
the lower half is the angular velocity contrast learning process. 
In order to facilitate the subsequent unsupervised contrast 
learning, the study enhances both raw data. The study adds a 
projection network and obtains a new projection eigenvector 
in an effort to enhance the impact of FE even more. The 

acceleration contrast learning loss 
bL  is shown in Eq. (2). 

  
  ( )

exp , ' /
log

exp , /

b b

i i

b b b
i I i hh H i

sim z z
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sim z z
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

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

  
 (2) 

In Eq. (2), I  represents the set of acceleration data after 

data augmentation, and ( )H i  denotes the subscripts of the rest 

of the sample data except for the serial number i .   is the 

parameter, b

iz  and 'biz  are the corresponding projected 

eigenvector before and after the acceleration data 

enhancement, respectively. b

hz  is the projected eigenvector 

corresponding to the acceleration data other than the serial 

number i .  , 'b b

i isim z z  is the cosine similarity, which is 

solved as shown in Eq. (3) [20]. 
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The expression for ( )H i  is shown in Eq. (4). 

   \H i I i
   (4) 

The angular velocity comparison learning loss 
gL  is 

shown in Eq. (5). 
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In Eq. (5), g

iz  and 'giz  are the projected eigenvectors 

corresponding to the angular velocity data before and after 

enhancement, respectively. g

hz  is the projected eigenvector 

corresponding to the angular velocity data other than the 

ordinal number i . The hybrid contrast loss function (LF) 
bgL  

is shown in Eq. (6). 
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In Eq. (6), bg

iz  and 'bg

iz  represent the hybrid eigenvector 

corresponding to the data before and after data enhancement, 

respectively. bg

hz  is the hybrid eigenvector corresponding to 

the data other than the ordinal number i . The solution of bg

iz  

and 'bg

iz  is shown in Eq. (7). 

'

' '
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  


     (7) 

The total LF 
sumL  for the pre-training phase of contrast 

learning is shown in Eq. (8). 

sum b g bgL L L L  
   (8) 

In Eq. (8),   represents the parameter. The downstream 

task of the SSMCLAA model is to classify students' Sanda 
practice movements. In the downstream task, a simple two-
layer linear mapping network and activation function are used 
for the classifier structure, and the cross-entropy loss function 

(CELF) 
outL  is used for the LF, as shown in Eq. (9) [21]. 

 
1,

1 ˆlog
d

i

T

out it it

ti w G

L k k
m 

  
  (9) 

In Eq. (9), 
itk  and ˆ

itk  represent the actual and predicted 

distribution probabilities, respectively. m  is the size of the 

randomly selected data subset dG . t  and T  are the action 

category ordinal number and total number. 

C. Construction of the SSMTFCL Model 

To make a judgment on whether a student has completed 
the Sanda exercise, research designed the HMR model of 
SSMCLAA to solve the problems of complex and variable 
collected data and the difficulty of feature extraction. 
However, the SSMCLAA model is unable to learn the 
common feature space structure of LD and ULD at the same 
time. In addition, human motion sensing signals are not only 
fluctuating and periodic, but also have multimodal 
characteristics such as time and frequency-domains (FDs) 
[22]. However, the current HMR only considers unilateral 
information in the time or frequency domain during feature 
extraction, ignoring the consistent relationship between time 
and frequency of human action sensing data, as well as the 
study of multi-task framework [23-24]. Based on these 
problems, in order to better judge whether students complete 
the Sanda exercise, the study also designed the SSMTFCL 
model and arranged it together with the SSMCLAA model in 
SATS to judge whether students complete the Sanda exercise. 
Fig. 6 depicts the SSMTFCL model's structure.
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Fig. 6. The structure of SSMTFCL model.

In Fig. 6, the first step of the SSMTFCL model is to input 
the time series, and the second step is to obtain the FD 

information 'ix  and the time-domain (TD) information 
ix . 

The third step is to input 'ix  and 
ix  into the FD FE 

FV  and 

the TD FE 
QV  respectively. The fourth step is to output the 

corresponding FD eigenvector 'iy  and the TD eigenvector 
iy . 

The fifth step is to carry out the three tasks in the respective 
modules, i.e., classification task (CT), supervised contrast 
learning task and unsupervised contrast learning task, and 

output the CELF 
ceL , supervised contrast learning LF 

yjdL  

and unsupervised contrast learning LF 
wjdL . In the CT, in 

order to maximize the consistency between the frequency 
domain and the TD of the samples, the study directly 
compares the TD projection vectors and the FD projection 
vectors of the data. To obtain the FD information, the study 
used Fourier transform. The Fourier transform has the 
advantage of good frequency localization and clearly shows 
the frequency components contained in the signal [25-26]. The 
process of Fourier transform is shown in Eq. (10) [27]. 

   
1

2

i tF f t e dt


 
   (10) 

In Eq. (10),  f t  represents a non-periodic function and 

 F   is the representation of the  f t  function in the FD. 

i te   is a complex exponential function and   represents the 

angular frequency. The CELF 
ceL  for the CT is the same as 

the CELF 
outL  used in the downstream task of the SSMCLAA 

model, with only a slight difference in the values taken. The 

expression of 
ceL  is shown in Eq. (11). 
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       (11) 

To capture deeper TF information, the study constructed 
two independent FEs to extract the human action eigenvector 
from TD information and FD information, respectively. The 
TF feature extraction module is shown in Fig. 7.
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Fig. 7. Time-frequency feature extraction module.

In Fig. 7, the TF feature extraction module mainly consists 
of a TD signal FE and a FD signal FE. Both signal FEs 
involve one-dimensional convolution, maximum pooling, six 
residual block structure and eigenvector output. Both labeled 
and ULD are subjected to the same feature extraction method, 
and their respective obtained TF eigenvectors are used in 
subsequent multi-task learning modules. The supervised 
comparison learning task and the unsupervised comparison 
learning task in the SSMTFCL model are mainly used to mine 
the internal features of ULD and LD, and the supervised 
comparison learning task takes into account the data labeling 
information when calculating the loss. The unsupervised 

comparison LF 
wjdL  is shown in Eq. (12). 
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  (12) 

In Eq. (12), R  is the set of TD eigenvector and FD 

eigenvector, and v

iu  and 'viu  denote the TD projection vectors 

and FD projection vectors of ULD, respectively. v

hu  is the TD 

projection vector corresponding to the ULD other than the 
ordinal number i . Minimization of unsupervised contrast loss 

can improve the model's representational ability. The study 
uses an unsupervised contrast learning task to learn the 
features of ULD, and also uses supervised contrast learning to 
perform deep mining of the deep structural features of LD. 
The study trains two contrast learning tasks in parallel to learn 

the feature space on the full data. The LF 
yjdL  for supervised 

contrast is shown in Eq. (13). 
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   (13) 

In Eq. (13),  K i  represents the set of sample data of the 

same category as sample 
ix . 

iu  and 'iu  represent the TD 

projection vector and FD projection vector of the LD, 

respectively. 
hu  is the TD projection vector corresponding to 

the LD other than the serial number i . 
iu  and 'iu  are solved 

as shown in Eq. (14). 

 

 ' '

i c i

i c i

u G y

u G y

 


    (14) 

In Eq. (14), 
cG  represents the LD projection network. In 

order to allow the feature encoder to learn the intrinsic 
structure of the LD more deeply, the study minimizes the 
supervised comparison loss as well. In order to achieve overall 
consistency of data features, the study adopts a multi-task 
learning framework. The study co-trained the three tasks of 
the model so that they jointly participate in the optimization of 
the TF feature encoder. Eq. (15) displays the SSMTFCL 
model's total LF. 

SSMTFCL ce yjd wjdL L L L   
  (15) 

In Eq. (15), both   and   are scaling parameters. 

III. RESULTS 

To validate the performance of the research design SATS 
and the corresponding student action recognition classification 
model, the study sets up the experimental environment, 
experimental parameters and experimental dataset. In addition, 
the study also describes the comparison model and 
comparison system. The model comparison mainly involves 
accuracy, error and time consumption, while the system 
comparison mainly involves memory occupation, throughput 
and response time. 
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A. SSMCLAA Model Performance Validation 

To validate the performance of the SSMCLAA model, the 
study uses the UCI-HAR dataset [28]. Since the length of the 
time series data is not uniform, the study uses a sliding 
window mechanism to segment the raw data, and the number 
of samples after processing is 6400. The study divides the 
dataset into a training set and a test set with a division ratio of 
7: 3. The ratio of LD to ULD in the training set is 1: 9. The   

parameter of the SSMCLAA model is set to 1, and the 
learning rates for the pre-training and downstream task phases 
are 1e-5 and 1e-3, respectively. Other SSL methods selected 

for comparison in the study are semi-supervised time model 
(SemiTime), self-supervised of human activity recognition 
(SelfHAR) and simple framework for contrastive learning of 
representations (SimCLR). The operating system used for the 
experiments is Windows 11 (64-bit), and the processor is Intel 
Core i5-12600 K with a maximum RWI of 4.9 GHz, a 
maximum accelerated power consumption of 130 W, and a 
maximum RAM of 128 GB. Fig. 8 compares the accuracy of 
the various models in the training and test sets.
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Fig. 8. Comparison of accuracy between different models on training and testing sets.

In Fig. 8(a), the maximum value (MaxV) of the accuracy 
of the research design SSMCLAA model is 95.76% and the 
minimum value (MinV) is 93.81% on the training set. The 
MaxVs of accuracy of SemiTime model, SelfHAR model and 
SimCLR model are 80.50%, 87.42% and 93.03%, 
respectively, and the MainVs are 77.64%, 83.89% and 
90.71%, respectively. The accuracy of SSMCLAA model is 
significantly higher than the comparison models. In Fig. 8(b), 
on the test set, the MaxV of accuracy is appeared on 
SSMCLAA model with a value of 95.89%. The MainV of 

accuracy is appeared on SemiTime model with a value of 
76.75%. The mean values of accuracy for SelfHAR model and 
SimCLR model are 86.13% and 91.24% respectively. The 
SelfHAR and SimCLR models outperformed the SemiTime 
model. In summary, the research design SSMCLAA model 
has a higher action recognition accuracy and is able to better 
recognize and classify students' Sanda actions in order to 
determine whether the students have completed Sanda training 
or not. Comparison of mean absolute error (MAE) and mean 
squared error (MSE) of different models are shown in Table I. 

TABLE I. COMPARISON OF MAE AND MSE OF DIFFERENT MODELS 

Model 

MAE MSE 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

SemiTime 1.21 1.37 1.19 1.32 1.28 1.31 1.29 1.38 1.42 1.46 

SelfHAR 1.03 0.97 1.13 0.95 1.05 1.16 1.21 1.25 1.09 1.18 

SimCLR 0.95 1.06 0.98 1.01 0.94 1.07 1.12 1.05 0.99 1.14 

SSMCLAA 0.74 0.62 0.67 0.58 0.69 0.64 0.51 0.68 0.73 0.66 

In Table I, the maximum and MainVs of MAE for the 
SSMCLAA model of the research design are 0.74 and 0.58, 
respectively. As a whole, the MAE values of the SSMCLAA 
model are significantly lower than those of the comparison 
models. The MaxVs of MAE for SemiTime model, SelfHAR 
model and SimCLR model are 1.37, 1.13 and 1.06, 
respectively, and the MainVs are 1.19, 0.97 and 0.94, 
respectively. In addition, the MainV of MSE occurs on the 
SSMCLAA model with a value of 0.51. The MaxV occurs on 
the SemiTime model with a value of 1.29. The mean values of 

MSE for the SemiTime model, SelfHAR model, SimCLR 
model and SSMCLAA model are 1.372, 1.178, 1.074 and 
0.644, respectively. In summary, the values of MAE and MSE 
for the research-designed SSMCLAA model are significantly 
smaller than those of the comparison models, which suggests 
that the SSMCLAA model has a smaller classification error. 
This suggests that the SSMCLAA model can determine 
whether or not students have finished the Sanda training with 
a lower classification error. The time-consuming comparison 
of different models is shown in Fig. 9.
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Fig. 9. Comparison of time consumption of different models.

In Fig. 9(a), on the training set, the time-consuming mean 
of the research design SSMCLAA model is 242 ms, and the 
time-consuming mean of the comparison models SemiTime, 
SelfHAR, and SimCLR are 670 ms, 543 ms, and 521 ms, 
respectively. The time-consuming mean of the SSMCLAA 
model is less than that of the comparison models, which are 
328 ms, 201 ms, and 179 ms. The SSMCLAA model has a 
greater advantage in time. In Fig. 9(b), on the test set, the 
time-consuming AV of the SSMCLAA model is 337 ms, 
which is significantly lower than that of the comparison 
model. In conclusion, the research designed SSMCLAA 
model has less time consuming and can make a judgment on 
whether the students complete the Sanda training in a shorter 
period of time and reduce the waiting time of the students. 

B. SSMTFCL Model Performance Validation 

The dataset used in the study, the method the dataset is 
partitioned, and the experimental setup are all consistent with 
the SSMCLAA model performance validation, which is 
necessary to validate the SSMTFCL model's performance. 
The values of   and   in the LF of the SSMTFCL model are 

both 1.0, and the iterations of the model is 300. In addition, 
four classical semi-supervised algorithm models are selected 
for comparative validation of the research models, the double-
Πmodel (Π-model), the MeanTeacher model, the multi task 
learning model (MTL), and the MixMatch model that 
combines Mixup and Fixmatch. Comparison of LF curves for 
different models is shown in Fig. 10.
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Fig. 10. Comparison of LF curves for different models.

In Fig. 10(a), on the training set, the research design 
SSMTFCL model plateaus after almost 22 iterations, while the 
Π-model, MeanTeacher, MTL, and MixMatch models plateau 
after 57, 52, 48, and 43 iterations, respectively. The MainVs 
of loss values for the five models are 0.17, 0.33, 0.25, 0.23, 
and 0.21, respectively. In Fig. 10(b), on the test set, the MainV 
of loss values for the SSMTFCL model is 0.15, and the 
MainVs of loss values for the comparison models Π-model, 

MeanTeacher, MTL, and MixMatch are 0.36, 0.27, 0.24, and 
0.22, respectively. The five models leveled off after nearly 24, 
59, 54, 47, and 45 iterations, respectively. In summary, the 
research designed SSMTFCL model converges faster and has 
better performance with smaller loss values. A comparison of 
the accuracy and receiver operation characteristic, (ROC) 
curves for the different models is shown in Fig. 11.
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Fig. 11. Comparison of accuracy and ROC curves of different models.

In Fig. 11(a), the MaxV of accuracy of the research design 
SSMTFCL model is 97.58%, the MainV is 94.21%, and the 
AV is 96.64%. The mean values of accuracy for the 
comparison models Π-model, MeanTeacher, MTL and 
MixMatch are 86.17%, 89.42%, 87.55% and 90.73% 
respectively. The accuracy of SSMTFCL model is 
significantly higher than the comparison model. In Fig. 11(b), 
the area under the ROC curve of the research design 
SSMTFCL model is the largest with a value of 0.945. It is 
followed by the MixMatch and MeanTeacher models with 
values of 0.899 and 0.857, respectively. The smallest are the 

MTL and Π-model models with values of 0.821 and 0.798, 
respectively. In summary, the research design SSMTFCL 
model has higher accuracy and better performance. To verify 
the effectiveness of the three tasks in the SSMTFCL model, 

the study conducted ablation experiments. 
ceL  is the LF for 

the CT, and 
yjdL  and 

wjdL  are the LFs for the supervised 

comparison learning task and the unsupervised comparison 
learning task, respectively. Fig. 12 displays the ablation 
experiment's outcomes.
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Fig. 12. Results of SSMTFCL model ablation experiment.

In Fig. 12(a), the accuracy mean of the model using only 
the CT is 94.84%, which is 1.8% lower than the accuracy 
mean of the full SSMTFCL model of 96.64%. The average 
accuracy of the model using the CT and the supervised 
comparative learning task is 95.84%, while the average 
accuracy of the model using the CT and the unsupervised 
comparative learning task is 95.45%. In Fig. 12(b), the MSE 
mean values of the model using only the CT, the model using 
the CT and the supervised contrast learning task, and the 
model using the CT and the unsupervised contrast learning 
task are 0.85, 0.71, and 0.68, respectively. The MSE mean 
value of the full SSMTFCL model is 0.54. In conclusion, the 
multi-task learning framework used in the study is effective. 

C. SATS Performance Validation 

To validate the performance of the research design SATS 
based on 5G and VR technologies, the study selected other 
TSs for comparison. Among them, there are psychological 
virtual simulation experiment TS designed by experts such as 
D. Chen, PET aid network system designed by scholars such 
as Li, and piano playing TS designed by researchers such as 
Liu [29-31]. In addition, the experimental environment 
configurations used for system performance validation are 
consistent with those used for SSMCLAA model performance 
validation. A comparison of the central processing unit (CPU) 
utilization and memory occupancy of the different systems is 
shown in Fig. 13.
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Fig. 13. Comparison of CPU utilization and memory usage rate in different systems.

In Fig. 13(a), the average CPU utilization of the research 
design SATS is 27.8%, and the average CPU utilization of the 
psychological virtual simulation experiment TS, the PET aid 
network system, and the piano playing TS are 37.8%, 42.8%, 
and 39.7%, respectively. The CPU utilization of the research 
design SATS is significantly smaller than the comparison 
system. In Fig. 13(b), in terms of memory occupancy, the AV 

of memory occupancy of the research design system is 38%, 
and the AVs of memory occupancy of the other three 
comparison models are 43%, 57%, and 52%, which are 5%, 
19%, and 14% higher than those of the research design 
system, respectively. In conclusion, the research design SATS 
has better performance. The response time and throughput 
comparisons of the different systems are shown in Table II. 

TABLE II. COMPARISON OF RESPONSE TIME AND THROUGHPUT OF DIFFERENT SYSTEMS 

System 

Response Time/ms Throughput/(bit/s) 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

Designed by D. Chen, 

et.al 
136 143 132 158 132 63142 64498 65506 68504 63187 

Designed by H. Li, et.al 145 162 157 140 142 60988 60543 61279 63885 64771 

Designed by M. Liu, 
et.al 

121 137 128 136 134 64312 67329 68634 66032 61062 

Manuscript 63 57 61 55 59 74521 76282 75113 76895 77651 

In Table II, in terms of response time, the AV of the 
research design system is 59 ms, and the AVs of the 
psychological virtual simulation experiment TS, the PET aid 
network system, and the piano playing TS are 140.2 ms, 149.2 
ms, and 131.2 ms, respectively. The response time of the 
research design system is significantly lower than the 
comparison system. In addition, the throughput of the research 
design system can reach a maximum of 77651 bit/s and a 
minimum of 74521 bit/s. The MaxVs of the throughput of the 
psychological virtual simulation experiment TS, the PET aid 
network system, and the piano playing TS are 68504 bit/s, 
64771 bit/s, and 68634 bit/s, respectively, and the MainVs are 
63142 bit/s, 60543 bit/s and 61062 bit/s. In conclusion, the 
research design SATS has shorter response time, larger system 
throughput and better performance. 

IV. DISCUSSION 

In response to the shortcomings of offline Sanda teaching, 
this paper designs the SSMCLAA model and SSMTFCL 
model, and based on this, constructs a Sanda auxiliary 
teaching system that integrates 5G and VR technology. The 
results showed that the average memory usage of the Sanda 
assisted teaching system designed in the paper was 38%, 

which was 5%, 19%, and 14% lower than the average memory 
usage of the other three compared systems, respectively. The 
average response time is 59ms, which is 81.2ms, 90.2ms, and 
72.2ms lower than the average response time of the other three 
compared systems, respectively. The paper design of a Sanda 
auxiliary teaching system can improve the effectiveness of 
Sanda teaching. Liu X et al. designed a decision support 
system to evaluate the functionality of 5G networks and 
artificial intelligence in higher education context teaching 
research in order to achieve teaching objectives. The results 
show that 5G networks and artificial intelligence algorithms 
can enhance the effectiveness of situational teaching in higher 
education [32]. This result is similar to the research findings. 

V. CONCLUSION 

To make up for the shortcomings of OST, the study 
constructs SATS based on 5G and VR technologies, and 
constructs SSMCLAA model and SSMTFCL model. The 
results revealed that the maximum accuracy of SSMCLAA 
model was 95.76% on the training set. The MaxVs of 
accuracy of the comparison models SemiTime, SelfHAR and 
SimCLR were 80.50%, 87.42% and 93.03%, which were 
15.26%, 8.34% and 2.73% lower than the MaxVs of accuracy 
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of the SSMCLAA model, respectively. The MainVs of MAE 
and MSE for the SSMCLAA model were 0.58 and 0.51, 
respectively, and the mean values of time consumed for the 
training and test sets were 242ms and 337ms, respectively. 
The SSMCLAA model performed relatively well. On the 
training set, the SSMTFCL, Π-model, MeanTeacher, MTL, 
and MixMatch models plateaued after almost 22, 57, 52, 48, 
and 43 iterations, respectively, with minimum loss values of 
0.17, 0.33, 0.25, 0.23, and 0.21, respectively. The AVs of 
accuracy for the five models were 96.64%, 86.17%, 89.42%, 
87.55% and 90.73%. The SSMTFCL model performs better. 
The AV of CPU utilization for the research design SATS was 
27.8%, the AV of memory occupancy was 38%, the AV of 
response time was 59 ms, and the maximum and MainVs of 
throughput were 77,651 bit/s and 74,521 bit/s, respectively. 

The research design SATS has good performance. The 
study also has some shortcomings. One, the test of SATS on 
students in terms of Sanda is limited to the technical level, and 
future research can include a theoretical question-answering 
session to enhance students' theoretical knowledge base and 
further avoid students' injuries. Secondly, the helmet used in 
the study and other types of sensing devices can cause 
discomfort to some students after prolonged use, and future 
research can do in-depth exploration on the comfort of 
wearable devices. Thirdly, the Sanda auxiliary teaching 
system still lacks human-machine training, game mode, and 
competition mode. Future research can compensate for this 
module to further enrich the Sanda auxiliary teaching system. 
Fourthly, for the data collected by different data collection 
devices, future research can simply annotate their location 
information to improve the recognition efficiency of students' 
Sanda movements. Fifthly, some students are prone to 
multiple compound movements due to non-standard 
movements during Sanda practice, which increases the 
difficulty of judging Sanda movements. Future research can 
further improve and optimize the model for recognizing 
composite actions. 
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