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Abstract—Multimodal sentiment analysis seeks to determine
the sentiment polarity of targets by integrating diverse data
types, including text, visual, and audio modalities. However,
during the process of multimodal data fusion, existing methods
often fail to adequately analyze the sentimental relationships
between different modalities and overlook the varying contri-
butions of different modalities to sentiment analysis results.
To address this issue, we propose a Text Guided Mixture-of-
Experts (TGMoE) Model for Multimodal Sentiment Analysis.
Based on the varying contributions of different modalities to
sentiment analysis, this model introduces a text guided cross-
modal attention mechanism that fuses text separately with visual
and audio modalities, leveraging attention to capture interactions
between these modalities and effectively enrich the text modality
with supplementary information from the visual and audio data.
Additionally, by employing a sparsely gated mixture of expert
layers, the TGMoE model constructs multiple expert networks
to simultaneously learn sentiment information, enhancing the
nonlinear representation capability of multimodal features. This
approach makes multimodal features more distinguishable con-
cerning sentiment, thereby improving the accuracy of sentiment
polarity judgments. The experimental results on the publicly
available multimodal sentiment analysis datasets CMU-MOSI
and CMU-MOSEI show that the TGMoE model outperforms
most existing multimodal sentiment analysis models and can
effectively improve the performance of sentiment analysis.

Keywords—Multimodal fusion; sentiment analysis; cross modal;
mixture of experts

I. INTRODUCTION

With the rapid growth of text data such as social media
and online comments, sentiment analysis has become an
increasingly important research field. The goal of sentiment
analysis tasks is to classify the sentiment information contained
in raw data into different sentiment polarities such as positive,
negative, or neutral. However, in many practical scenarios,
sentiment data often not only contains textual information
but also includes multimodal data such as images, videos,
audio, etc. Compared to unimodal data lacking diversity, these
multimodal data can provide more information for sentiment
analysis, and the complementarity of this information can
enhance the accuracy of sentiment analysis.

Existing multimodal sentiment analysis methods include
Tensor-based fusion [1], which directly connects feature ten-
sors from different modalities for analysis. However, this
method generates very large feature tensors, requiring a lot
of storage space and computational resources, and does not
consider the interaction of information between different
modalities. To address these issues, researchers have devel-
oped other deep learning-based fusion methods. Huddar et

al. [2] proposed multi-level feature optimization, extracting
feature tensors from multiple modalities and using LSTM to
extract contextual information between adjacent utterances at
multiple levels. However, this method did not examine the
correlation of different modal information with the sentiment
analysis results, making it unable to fully understand the
target sentiment comprehensively and accurately. Tsai et al.
[3] proposed a multimodal routing method that dynamically
adjusts the relative weights between input samples and output
representations by exploring the correlation between modalities
and identifying the relative importance of single-modal and
cross-modal features.

However, although previous approaches have made
progress in multimodal fusion, they often fail to adequately
account for the varying contributions of different modalities
to sentiment information, overlooking the importance of sen-
timental information from different modalities. In the field of
sentiment analysis, while audio and visual modalities indeed
contain crucial sentimental information, the distribution of sen-
timent information across modalities is unevenly distributed.
Neglecting the differences in contributions of different modal-
ities to sentiment analysis may result in multimodal fusion
representations lacking crucial sentiment information from key
modalities, thus reducing the accuracy of sentiment analysis
[4].

To address the above issues, this paper proposes a text
guided mixture-of-experts model for multimodal sentiment
analysis. The model aims to better capture the differences
in sentiment information between different modalities, obtain-
ing more targeted sentiment features. TGMoE leverages pre-
trained models for feature extraction from three modalities. It
integrates visual and audio modality information into the text
modality through a text guided cross-modal fusion mechanism
to obtain multimodal fusion features. Subsequently, for the
sentiment prediction task, multiple highly specialized experts
are simultaneously trained by a trainable gating network to
selectively handle sentiment features. This approach delves
deeper into uncovering potential connections among modal
data, thereby enhancing the accuracy of sentiment prediction
in the model.The contributions of TGMoE model can be
summarized as follows:

• Proposing a text guided cross-modal Transformer net-
work that integrates sentiment information from visual
and audio modalities into the text modality through a
text guided attention mechanism.

• TGMoE uses a sparsely gated mixture-of-experts
mechanism to selectively process multi-modal fusion
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features, enhancing the model’s ability to learn and
represent complex emotional information.

• Extensive experimental results on two benchmark
datasets demonstrate that the proposed TGMoE out-
performs several existing methods in multimodal sen-
timent analysis tasks.

II. RELATED WORK

With the advent of the information age, we have access to
a large amount of multimodal data (videos, audio, and text),
providing a more abundant source of features for sentiment
analysis tasks. Accurate and rapid analysis of human emotions
can offer better services for daily work and life. Multimodal
sentiment analysis aims to understand the sentiment of the tar-
get in video data (including text, audio, and visual modalities),
uncovering deep sentimental information in each modality to
reduce bias in single-modal sentimental information. Learning
how to capture interaction information within and between
modalities and effectively integrate multimodal information is
a key challenge faced by multimodal sentiment analysis tasks
[5].

To address this issue, researchers have proposed various
multimodal fusion methods for modeling. With the advance-
ment of deep learning, model-based fusion has received more
attention. Zadeh et al. [1] introduced the Tensor Fusion
Network, which computes the Cartesian product of three
modalities and concatenates the resulting tensor along a certain
dimension. The concatenated tensor is then fed into a deep
neural network for sentiment classification. Building on this,
Liu et al. [6] decomposed the weights of the fusion tensor
into a set of low-rank factors to improve efficiency, making
the computational complexity linearly related to the number
of modalities. Hou et al. [7] recursively integrated local corre-
lations into global correlations through multilinear fusion. Mai
et al. [8] adopted a divide-and-conquer approach by partition-
ing multimodal features into blocks, applying tensor fusion
to each block to capture local interaction information, and
then combining local information to obtain global multimodal
interaction information.

Model-based fusion methods can effectively preserve sen-
timental information within modalities but struggle to consider
contextual relationships between modalities. Graph neural net-
works, due to their excellent structural learning capabilities,
are widely applied in multimodal sentiment analysis tasks.
Yang et al. [9] proposed a modal-temporal attention graph for
unaligned multimodal data, where each sub-feature of each
modality in the sequential data is treated as a node. They
construct modality-type edges between different modalities and
temporal-type edges within the same modality. By applying
a pruning algorithm, they fuse and align asynchronous dis-
tributed multimodal sequential data. Hu et al. [10] constructed
a fully connected heterogeneous graph for conversational data,
considering each modality of each utterance as a node. They
connect each node to nodes representing the same utterance but
from different modalities and to nodes representing the same
modality from the same conversation. Different aggregation
mechanisms for various types of edges are designed to learn
multimodal dynamics in the graph network.

To further explore sentimental information within and
across modalities, researchers have started integrating attention
mechanisms into multimodal sentiment analysis. For example,
Wang et al. [11] proposed a recurrent attentional variable
embedding network that combines attention mechanisms to
investigate facial and speech features. They learn displacement
information generated during the vocabulary representation
process for multimodal representation. Building upon this,
Rahman et al. [12] incorporated multimodal representations
into Transformer models, using visual and audio features to
learn representation shifts and apply them to text modality
for sentiment analysis. While these methods have partially
addressed the issue of insufficient fusion between modalities,
they often treat each modality equally, overlooking the varying
contributions of different modalities to the final sentiment
analysis results.

Therefore, this paper addresses the issue of disparate
contributions between different modalities by enhancing the
role of the text modality in sentiment analysis. It utilizes a
mixture of experts to further extract sentiment information
from multimodal features, enhancing nonlinear representation
capabilities and obtaining more abstract fusion features of
sentiment information.

III. METHOD

A. Overall Model Architecture

Multimodal sentiment analysis employs three modalities
- audio (Xa), visual (Xv), and text (Xt) - from the same
video segment to determine the sentiment polarity of the
target. The proposed TGMoE model also aims to effectively
integrate information from the three modalities to enhance the
effectiveness of sentiment analysis. Fig. 1 illustrates the overall
architecture of the TGMoE model. The model framework
consists of three parts: the feature extraction module, the text
guided cross-modal feature fusion module, and the sparsely
gated mixture of experts module.

Feature Extraction Module: For each modality, appropriate
pre-trained models are used to gain incipient modality features.

Text Guided Cross-Modal Feature Fusion Module: Utiliz-
ing cross-modal attention to capture the interaction information
between audio, visual, and text features, the module adds
this information to the text features. This encourages the
text features to incorporate information from other modalities,
providing high-quality fused features for sentiment prediction.

Sparsely Gated Mixture-of-Experts Module: Training mul-
tiple experts to handle multimodal features with different
sentimental biases, to deeply explore the potential connections
between data and improve the accuracy of sentiment predic-
tion.

B. Feature Extraction Module

To better extract features of single modality data, different
feature extraction methods are adopted for different modalities.
For the text modality, the language pre-trained model SimCSE
[13] is utilized as the feature extractor for text discourse. The
hidden state output from the last layer is taken as the feature
vector for the text modality.

www.ijacsa.thesai.org 1228 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

Sparsely Gated  MoE Layer

Expert 1

Expert 2

Expert 3

Expert n-1

Expert n

...

Gateing

Network

G(x)i

CATv→t

CATa→t

Conv1DConv1D

Conv1DConv1D

Conv1DConv1D

They were already 

resolved

Facet

SimCSE

COVAREP

Multimodal Sentiment Analysis

Crossmodal

Transformer

(V→T)

Feature Extraction Text Guided Cross-modal 

Feature Fusion
MLP for Regression

Input Hidden Output

MLP for Regression

Input Hidden Output

MLP for Regression

Input Hidden Output

Prediction

Sparsely Gated  MoE Layer

Expert 1

Expert 2

Expert 3

Expert n-1

Expert n

...

Gateing

Network

G(x)i

CATv→t

CATa→t

Conv1D

Conv1D

Conv1D

They were already 

resolved

Facet

SimCSE

COVAREP

Multimodal Sentiment Analysis

Crossmodal

Transformer

(V→T)

Feature Extraction Text Guided Cross-modal 

Feature Fusion
MLP for Regression

Input Hidden Output

Prediction

Fig. 1. The overall structure of the TGMoE model.

X ′
t = SimCSE(Xt; θt) ∈ Rst×dt (1)

Where X ′
t represents the result of text modality feature

extraction and θt is the SimCSE model’s parameter. st means
the sequence length and dt is the feature dimension of text
modalities.

For the audio modality, audio features are extracted using
the COVEREP [14] acoustic framework. These features in-
clude pitch, volume, Mel-Frequency Cepstral Coefficients, and
more, denoted as Xa. For the visual modality, visual features
are extracted using Facet. These features include facial action
units, facial landmarks, head pose, and other features, denoted
as Xv . The features for audio and visual modalities can be
obtained through the CMU-Multimodal SDK.

To achieve better fusion in the upcoming work, 1D tempo-
ral convolution is used to unify the feature dimensions of the
three modalities while ensuring that each element of the input
sequence has sufficient awareness of its neighboring elements.
The features of the three modalities are fed into a 1D temporal
convolutional layer:

fm = Conv1D(X ′
m, km) ∈ Rsm×dm ,m ∈ {t, v, a} (2)

where km is the size of the convolutional kernel. fm is
output of 1D temporal convolutional layer.

C. Text Guided Cross-Modal Feature Fusion Module

In the traditional Transformer model, changing the posi-
tions of the input sequence does not alter the final output. To
enable the model to capture the sequential information of the
input sequence, positional embeddings (PE) are added to the
representation of each modality based on the practice outlined
in Transformer [15]:

Hm = fm + PEm ∈ Rsm×dm ,m ∈ {t, v, a} (3)

where PEm means the PE of each modal, Hm represents
the feature vector after each modal adds PE.

The text modality is the most basic and intuitive form of
reflecting the speaker’s sentiment, containing more sentiment-
related information compared to video and audio modalities.
Therefore, based on the idea of MulT [16], this paper presents
a text guided cross-modal fusion module, which utilizes cross-
modal attention mechanisms to calculate the attention weights
between the text modality and the audio-visual modalities.
This promotes the reception of information from the other
two modalities by the text modality, potentially integrating
emotion-related features from the audio and visual modalities
into the text features for better encoding of emotional informa-
tion across all three modalities. Additionally, considering the
characteristics of the sentiment analysis task, the dominant role
of the text modality in the feature fusion process is reinforced
to incorporate emotional information from different modalities.
The text-guided cross-modal feature fusion is illustrated in Fig.
2. Each cross-modal Transformer consists of L layers of cross-
modal attention.

CATv→t = Softmax(
WQHt ×WT

KHv√
dk

)WV Hv (4)

CATv→t = LN(CATv→t) (5)

Where CATv→t indicates the visual modality transmis-
sion of information to the text modality. Softmax(·)represents
a normalized exponential function, it can compress a K-
dimensional vector z containing arbitrary real numbers into
another K-dimensional vector σ(z) such that the range of
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Fig. 2. Text guided cross-modal feature fusion module.

each element is between (0,1), and the sum of all elements
is 1. The attention mechanism uses numbers between 0 and
1 to represent the importance of different data blocks. Where
Q = WQHt,K = WT

KHv, V = WV Hv .

As each layer of the network can capture different abstract
levels of input data, we stack L layers of cross-modal Trans-
formers to learn hierarchical sentimental information within
the features. Subsequently, cross-modal attention is further
computed between the audio modality and the text modality, as
exemplified by (A → T ) in Fig. 2. The two fusion results are
then concatenated with the text features and passed through
self-attention blocks to capture the interactive information
between the text features and the fusion features. Finally,
the fusion features are combined with the features from the
three modalities through convolutional layers to generate the
ultimate fused feature representation. Adapting from the low-
level features is beneficial for the model to retain the original
information of each modality.

Zm = Ht + CATv→t + CATa→t (6)

Gm = Self-Attention(Zm) (7)

Fm = [Gm, Ha, Hv, Ht] (8)

During the text guided cross-modal feature fusion process,
the text modes constantly update their sequences through
external information from multi-head cross-modal attention.
By taking advantage of the fact that the text contains more
sentiment-related information [17], the sentimental informa-
tion of the text features is strengthened, and the sentimental
information of the vision and audio modes is fully integrated
into the text modes to obtain multi-modal features containing
more sentimental information.

D. Sparsely Gated Mixture-of-Experts Module

During the process of text guided cross-modal feature
fusion, sentiment may be expressed differently across different
modalities. For example, in the sentence ”You look beautiful
today,” the sentiment conveyed in the text modality is positive,
but if accompanied by a pouting expression, the sentiment
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Fig. 3. Sparsely gated mixture-of-experts layer.

in the visual modality becomes negative. There are certain
differences in the distribution of sentiment across different
samples of data, so sentimental information in multi-modal
features can be enhanced through a feed-forward network
(FFN). However, for traditional deep learning models, acti-
vating the entire model for each sample when the training
data is large can lead to significant spatial and time costs.
To address this issue, the TGMoE model introduces a neural
network component: the mixture of experts (MoE). By using
gating mechanisms, the number of experts involved in the work
can be effectively controlled, thus compressing the model’s
computational costs.

MoE is a special type of feed-forward network. In this
structure, each model unit is referred to as an expert, and
there is a gating network to select a combination of experts,
combining the weight of each model as the final output. The
difference from training data individually in traditional FFNs
is that the mixture of experts’ networks can enhance the
non-linear representation capability of multi-modal features
by allowing multiple experts to learn simultaneously. This
enhances the distinctiveness of multi-modal features in terms
of sentiments, thereby improving the classification accuracy of
data samples.

The MoE layer in the TGMoE model consists of several
experts and a trainable gating network. Each expert is an
independent FFN that learns similar or different features from
each other. The gating network learns parameters to select a
sparse combination of numerous experts to process each input.
The output of the gating network is a sparse n-dimensional
vector, which is used to weigh the selected combination of
experts. Each expert has the same architecture but distinct
parameters. The structure of the MoE layer is illustrated in
Fig. 3.

For a given input x, we define G(x) as the output of the
gating network; Ei(x) is the output of the i-th expert network.
Therefore, the output of the Sparsely Gated Mixture-of-Experts
module is:

y =

n∑
i=1

G(x)iEi(x) (9)

When G(x)i = 0, the model does not need to compute

Ei(x). Therefore, although the model includes numerous neu-
ral networks, only a small number of neural networks will be
utilized for each sample, significantly reducing computational
complexity and time cost.

Sparsely Gated Network: The input x is multiplied by a
trainable weight matrix Wg , then the initial architecture of the
gating network is completed by applying the Softmax function.

G(x) = Softmax(x ·Wg) (10)

x represents the input of sparsely gated network, and Wg

represents a randomly generated matrix. Constructed in this
way, the gating network outputs a non-sparse vector. Therefore,
to ensure the sparsity of the gated output, the top k values of
the gated output are retained. In addition, adjustable Gaussian
noise is introduced to ensure that each neural network receives
roughly the same amount of training data. The amount of noise
for each gate is controlled by another adjustable parameter
matrix Wnoise.

KeepTopK(vi, k) =

{
vi, vi ∈ TopK(k)

−∞, vi /∈ TopK(k)
(11)

H(x) = x ·Wg + LN(x ·Wnoise) (12)

G(x) = Softmax(KeepTopK(H(x), k)) (13)

where LN(·) represents data standardization, vi ∈ TopK(k)
means that vi belongs to the top K elements.

The MoE layer is placed after the text guided cross-
modal feature fusion module. After passing through the text
guided cross-modal fusion module layer, each multimodal
fusion feature will invoke the MoE once, thereby selecting
different combinations of experts to enhance the sentimental
information in the multimodal representation. For the multi-
modal feature F ′

m, multiple expert networks are simultaneously
trained through the MoE layer to deeply explore the potential
connections between data, as described below:

z =

n∑
i=1

Softmax(KeepTopK((Fm ·Wg

+ LN(Fm ·Wnoise)), k))Ei(Fm)

(14)

E. Model Prediction and Loss Function

The vector z output from the MoE layer is fed into a
Multilayer Perceptron (MLP) for sentiment prediction. The
MLP consists of three linear layers. The TGMoE model uses
MAE as the basis for computing the loss function for the entire
task.

Y ′
m = MLP(Zm; θm),m ∈ {t, v, a} (15)

Lossm =
1

N

N∑
i=1

(|predi − yi|) (16)
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where N represents the number of training samples, and y
represents the true labels of the multimodal data.

IV. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Metrics

1) Datasets: This paper evaluates the performance of the
TGMoE model using two publicly available datasets.

The CMU-MOSI dataset [18] is a commonly used dataset
in the field of multimodal sentiment analysis. This dataset
consists of 93 videos from YouTube where the reviews of
movies are discussed. The dataset is divided into 2,199 sub-
jective discourse-level video segments. Each segment has a
real-valued sentiment score in the range of [-3, +3] to express
the intensity of the sentiment polarity of the characters.

The CMU-MOSEI dataset [19] is an extension of the
CMU-MOSI dataset, with a larger number of utterances, more
diverse samples, speakers, and topics. This dataset contains
23,453 video segments with sentiment-labeled tags from 5,000
videos. Each video segment in the MOSI and MOSEI datasets
contains a sentiment score in the range of [-3, 3], where a
higher value indicates a stronger positive sentiment polarity.

2) Evaluation metrics: When considering sentiment anal-
ysis on the CMU-MOSI and CMU-MOSEI datasets as a
regression task, the predictive performance of the models is
measured using Mean Absolute Error (MAE) and Pearson
correlation (Corr). When viewed as a classification task, eval-
uation methods include seven-class accuracy (Acc-7), binary
accuracy (Acc-2), and F1 score. Here, Acc-7 represents the
accuracy of predicting values falling into seven intervals within
[-3, +3], while Acc-2 and F1 represent the accuracy and F1
score of the binary classification task, respectively.

B. Experimental Settings

We developed the TGMoE model in the PyTorch frame-
work, using Mean Absolute Error (MAE) as the loss func-
tion, Adam as the optimizer, and PyCharm as the integrated
development environment. All experiments in this study were
conducted on an RTX 4090 GPU, and multiple validations and
analyses were performed to obtain the best set of hyperparam-
eters.

We set the batch size to 32, epochs to 50, learning rate to
1e-3, and sequence length to 50 for all three modalities. The
text feature dimension is 768, the visual feature dimension is
35, the audio feature dimension is 74, the dropout rate is 0.1,
and the number of heads in multi-head attention is set to 5.
The number of stacked layers in the attention layer is set to 5.

C. Baselines

To assess the relative performance of the TGMoE model,
we will compare it with the following baseline models.

TFN [1]: Tensor fusion network decomposes unimodal
vectors into tensors through the Cartesian product, then fuses
the outer product of tensors to learn interactions within and
between modes.

LMF [6]: Efficient low-rank multimodal fusion decom-
poses stacked high-order tensors into many low-rank factors,

then efficiently fuses them based on these low-rank factors to
improve efficiency.

MFM [20]: Multimodal representation learning factors
link a multi-modal discriminative network with a generative
network possessing intermediate modality-specific factors to
facilitate the reconstruction of the fusion process and optimize
the discriminative loss.

MulT [16]: Multimodal Transformer constructs a Trans-
former between modalities through attention mechanisms, in-
tegrating multimodal information and optimizing the fusion
process.

MAG-BERT [12]: The multimodal adaptive gate designs
an alignment gate for integrating visual and audio information
and integrates it into a standard BERT model.

MISA [21]: The modality invariance and specificity of
multimodal sentiment analysis project features into two sepa-
rate independent spaces with specific constraints, taking into
account the invariance and specificity of modalities, and then
complete fusion on the features of both spaces.

BIMHA [22]: Enhancing bimodal information for arbitrary
pairs of modalities using a multi-head attention mechanism,
utilizing tensor fusion to capture interactions between modal-
ities, effectively integrating information carried by different
modalities, and improving sentiment prediction.

SELF-MM [23]: Self-supervised multi-task learning as-
signs a single-modal training task with self-generated labels
to each modality, aiming to learn the consistency between
modalities and the specificity within each modality.

CubeMLP [24]: By mixing relevant modality features on
three axes using three independent MLP units and flattening
the mixed multimodal features for task prediction.

TETFN[4]: By utilizing visual features extracted by the
Vision Transformer, combined with audio features, learning
text-oriented cross-modal mappings in pairs, in order to obtain
efficient multimodal representations for emotion prediction.

D. Results

1) Comparison experiment with the baseline model: Tables
I and II provide the experimental results of various models on
the CMU-MOSI and CMU-MOSEI datasets. For Acc-2 and
F1 values, there are two sets of evaluation results: on the left,
positive and neutral sentiment samples are considered positive
examples, and negative samples are considered negative ex-
amples to calculate accuracy. On the right, positive sentiment
samples are considered positive examples, and negative sam-
ples are considered negative examples to calculate accuracy.
Similarly, F1 values are calculated accordingly to obtain the
corresponding F1 scores.

It can be seen that the proposed TGMoE model achieved
the best performance on both datasets. On the CMU-
MOSEI dataset, the Acc-2 and F1 scores were improved
by 1.11%/0.33% and 1.4%/0.59%, respectively compared to
previous methods. On the CMU-MOSI dataset, Acc-7, Acc-2
(left), and F1 scores (left) were improved by 0.1%, 1.32%,
and 1.4% compared to previous methods. This indicates that
the TGMoE model can adequately integrate different modali-
ties of sentimental information, enhance non-textual modality
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sentimental information to contribute more to textual modality
sentiment representation in sentiment analysis, and effectively
balance the semantic gap between different modalities.

TABLE I. EXPERIMENTAL RESULTS OF THE TGMOE MODEL AND
BASELINE MODELS ON THE CMU-MOSI DATASET

Model MAE Corr Acc-7 Acc-2 F1
TFN 0.901 0.698 34.90 -/80.80 -/80.70

LMF 0.917 0.695 33.20 -/82.50 -/82.40

MFM 0.877 0.706 35.40 -/81.70 -/81.60

MulT 0.861 0.711 - 81.50/84.10 80.60/83.90

MAG-BERT 0.727 0.781 43.62 82.37/84.43 82.50/84.61

MISA 0.804 0.764 - 80.79/82.10 80.77/82.03

BIMHA 0.925 0.671 36.44 78.57/80.30 78.57/80.30

SELF-MM 0.712 0.795 45.79 82.54/84.77 82.68/84.91

CubeMLP 0.770 0.767 45.50 -/85.60 -/85.50

TETFN 0.717 0.800 - 84.05/86.10 83.83/86.07

TGMoE 0.760 0.767 45.89 85.37/85.64 85.23/85.71

TABLE II. EXPERIMENTAL RESULT OF THE TGMOE MODEL AND
BASELINE MODELS ON THE CMU-MOSEI DATASET

Model MAE Corr Acc-7 Acc-2 F1
TFN 0.593 0.700 50.20 -/82.50 -/82.10

LMF 0.623 0.677 48.00 -/82.00 -/82.10

MFM 0.568 0.717 51.30 -/84.40 -/84.30

MulT 0.580 0.703 - -/82.50 /82.30

MAG-BERT 0.543 0.755 52.67 82.51/84.82 82.77/84.71

MISA 0.568 0.724 - 82.59/84.23 82.67/83.97

BIMHA 0.559 0.731 52.11 84.07/83.96 83.35/83.50

SELF-MM 0.529 0.767 53.46 82.68/84.96 82.95/84.93

CubeMLP 0.529 0.760 54.90 -/85.10 -/84.50

TETFN 0.551 0.748 - 84.25/85.18 84.18/85.27

TGMoE 0.535 0.757 53.70 85.36/85.51 85.58/85.86

2) Ablation studies: In the field of sentiment analysis,
compared to audio and visual modalities, the text modality
contains more sentimental semantic information. Therefore,
the model proposed in this paper is text-centric, where the
sentimental information from audio and visual modalities is
extensively extracted and integrated into the text modality.
Subsequently, a sparsely gated MoE network is utilized to
select different expert combinations to analyze and process
the sentimental information.

To validate the rationality of the proposed fusion approach,
we further explored the impact of different modalities and
sparsely gate MoE on sentiment analysis results of the CMU-
MOSEI dataset. Experimental results are shown in Tables
III and IV, where T, V, and A, respectively represent text,
visual, and audio modalities. TGMoE-NoMoE indicates the
TGMoE model without the hybrid expert module, where the
extracted multimodal features are directly connected to a fully
connected layer for sentiment prediction. This leads to the
model being unable to learn sufficient nonlinear representations
from multimodal features. TGMoE-FFN represents the TG-
MoE model replacing the hybrid expert module with an FFN
layer, where the multimodal features output by the text guided
cross-modal feature fusion module are input into the FFN
layer to strengthen the multimodal features. This results in the
model only being able to learn limited sentimental information,
directly impacting the accuracy of sentiment analysis results.

TABLE III. EXPERIMENTAL RESULTS OF ABLATION EXPERIMENTS
INVOLVING DIFFERENT MODALITIES IN FUSION ON THE CMU-MOSEI

DATASET

Num Model MAE Corr Acc-7 Acc-2 F1
1 A 0.839 0.012 41.36 71.02/62.85 83.06/77.19

2 V 0.810 0.217 41.92 75.74/70.77 67.85/60.84

3 T 0.589 0.713 50.16 80.92/82.77 80.82/83.13

4 A+V 0.810 0.229 41.39 64.99/63.43 65.41/65.15

5 T+A 0.575 0.720 51.86 79.87/84.31 79.29/84.35

6 T+V 0.584 0.703 50.91 82.08/83.41 82.17/83.89

7 A+V+T 0.535 0.757 53.70 85.36/85.51 85.58/85.86

TABLE IV. EXPERIMENTAL RESULT OF THE EFFECTIVENESS
EXPERIMENT OF MOE MODULE ON THE CMU-MOSEI DATASET

Num Model MAE Corr Acc-7 Acc-2 F1
1 TGMoE-NoMoE 0.587 0.714 50.88 81.28/83.73 82.13/83.65

2 TGMoE-FFN 0.564 0.729 52.09 83.62/84.36 83.65/84.58

3 TGMoE 0.535 0.757 53.70 85.36/85.51 85.58/85.86

E. Discussion

From the perspective of the number of modalities, infor-
mation from each modality can complement each other, and
the addition of more modal information will lead to better
sentiment analysis results. For the single modality baseline,
the performance of the text modality is superior to the audio
and visual modalities, indicating that the text modality con-
tributes more to multimodal sentiment analysis than the audio
and visual modalities. In real life, people also prefer to use
language to express their direct sentiments.

From the perspective of model modules, when the MoE
module is removed, all metrics of the model are lower com-
pared to the complete model. Substituting the MoE module
with an FFN (Feedforward Neural Network) layer leads to
an improvement in model performance compared to TGMoE-
NoMoE, indicating that FFN can strengthen the sentimental
information in multimodal features, but with limited perfor-
mance. The complete TGMoE model outperforms all metrics.
Experimental results suggest that MoE plays a crucial role in
multimodal fusion, and removing or simply replacing MoE
results in the model’s inability to learn sufficient nonlinear
representations from multimodal features, thereby failing to
guarantee that the final fused features contain abstract senti-
mental information, consequently affecting sentiment predic-
tion performance.

In conclusion, the experiments above validate the effi-
cacy of the text guided mixture of experts model TGMoE.
This model adeptly harnesses sentimental data across various
modalities, facilitating efficient fusion, mitigating the impact
of sentimental information discrepancies across modalities on
the final sentiment, and bolstering the efficacy of multimodal
sentiment analysis.

V. CONCLUSION

To address the issue that the obtained multimodal fu-
sion representation may be defective in capturing sentimental
information due to ignoring the different contributions of
various modalities to sentiment analysis, this paper proposes a
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text guided mixture-of-experts model TGMoE for multimodal
sentiment analysis. The TGMoE model is structured around
three key modules. Firstly, features are extracted for each of
the three modalities respectively to capture the inherent con-
sistency within each modality. Secondly, a text guided cross-
modal fusion mechanism is proposed: cross-modal attention
mechanisms are used for text-visual and text-audio modalities,
respectively, to capture the interactive information of visual
and audio modalities with the text modality, supplementing the
text modality with the sentimental information from the visual
and audio modalities. Finally, a sparsely gated mixture of
expert networks is employed to fortify the nonlinear represen-
tational capacity within multimodal features, engender more
abstract fusion features, and elevate the precision of sentiment
polarity classification. Comparative evaluations against exist-
ing multimodal sentiment analysis frameworks demonstrate
a pronounced performance boost, underscoring the efficacy
of the proposed text guided cross-modal interactive approach
and the utility of employing mixture of expert networks for
sentiment analysis enhancement.

In real-world scenarios of multimodal sentiment analysis,
users may not provide information from all modalities simul-
taneously. For example, they might only provide text while
missing audio or visual data. Therefore, our future research
will focus on effectively handling cases of missing modali-
ties, developing more robust sentiment analysis models, and
enhancing the practical application value and user experience
of these models.

ACKNOWLEDGMENT

This work was supported the National Natural Science
Foundation of China (Grant No. 71473034), and the Hei-
longjiang Provincial Natural Science Foundation of China
(Grant No. LH2019G001).

REFERENCES

[1] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, “Tensor
fusion network for multimodal sentiment analysis,” in Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017, pp. 1103–1114.

[2] M. G. Huddar, S. S. Sannakki, and V. S. Rajpurohit, “Multi-level feature
optimization and multimodal contextual fusion for sentiment analysis
and emotion classification,” Computational Intelligence, vol. 36, no. 2,
pp. 861–881, 2020.

[3] Y.-H. H. Tsai, M. Q. Ma, M. Yang, R. Salakhutdinov, and L.-
P. Morency, “Multimodal routing: Improving local and global inter-
pretability of multimodal language analysis,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing,
2020, p. 1823.

[4] D. Wang, X. Guo, Y. Tian, J. Liu, L. He, and X. Luo, “Tetfn: A
text enhanced transformer fusion network for multimodal sentiment
analysis,” Pattern Recognition, vol. 136, p. 109259, 2023.

[5] D. Gkoumas, Q. Li, C. Lioma, Y. Yu, and D. Song, “What makes the
difference? an empirical comparison of fusion strategies for multimodal
language analysis,” Information Fusion, vol. 66, pp. 184–197, 2021.

[6] Z. Liu, Y. Shen, V. B. Lakshminarasimhan, P. P. Liang, A. B. Zadeh, and
L.-P. Morency, “Efficient low-rank multimodal fusion with modality-
specific factors,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, 2018, pp. 2247–2256.

[7] M. Hou, J. Tang, J. Zhang, W. Kong, and Q. Zhao, “Deep multimodal
multilinear fusion with high-order polynomial pooling,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[8] S. Mai, H. Hu, and S. Xing, “Divide, conquer and combine: Hierarchical
feature fusion network with local and global perspectives for multimodal
affective computing,” in Proceedings of the 57th annual meeting of the
association for computational linguistics, 2019, pp. 481–492.

[9] J. Yang, Y. Wang, R. Yi, Y. Zhu, A. Rehman, A. Zadeh, S. Poria, and
L.-P. Morency, “Mtag: Modal-temporal attention graph for unaligned
human multimodal language sequences,” in Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2021, pp.
1009–1021.

[10] J. Hu, Y. Liu, J. Zhao, and Q. Jin, “Mmgcn: Multimodal fusion via deep
graph convolution network for emotion recognition in conversation,”
in Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), 2021, pp.
5666–5675.

[11] Y. Wang, Y. Shen, Z. Liu, P. P. Liang, A. Zadeh, and L.-P. Morency,
“Words can shift: Dynamically adjusting word representations using
nonverbal behaviors,” in Proceedings of the AAAI conference on artifi-
cial intelligence, vol. 33, no. 01, 2019, pp. 7216–7223.

[12] W. Rahman, M. K. Hasan, S. Lee, A. Zadeh, C. Mao, L.-P. Morency,
and E. Hoque, “Integrating multimodal information in large pretrained
transformers,” in Proceedings of the conference. Association for Com-
putational Linguistics. Meeting, vol. 2020, 2020, p. 2359.

[13] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of
sentence embeddings,” in EMNLP 2021-2021 Conference on Empirical
Methods in Natural Language Processing, Proceedings, 2021.

[14] G. Degottex, J. Kane, T. Drugman, T. Raitio, and S. Scherer, “Co-
varep—a collaborative voice analysis repository for speech technolo-
gies,” in 2014 ieee international conference on acoustics, speech and
signal processing, 2014, pp. 960–964.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[16] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal
language sequences,” in Proceedings of the conference. Association for
Computational Linguistics. Meeting, vol. 2019, 2019, p. 6558.

[17] Z. Sun, P. Sarma, W. Sethares, and Y. Liang, “Learning relationships
between text, audio, and video via deep canonical correlation for
multimodal language analysis,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 05, 2020, pp. 8992–8999.

[18] A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency, “Multimodal senti-
ment intensity analysis in videos: Facial gestures and verbal messages,”
IEEE Intelligent Systems, vol. 31, no. 6, pp. 82–88, 2016.

[19] A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency,
“Multimodal language analysis in the wild: Cmu-mosei dataset and
interpretable dynamic fusion graph,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2018, pp. 2236–2246.

[20] Y.-H. H. Tsai, P. P. Liang, A. Zadeh, L.-P. Morency, and R. Salakhutdi-
nov, “Learning factorized multimodal representations,” in International
Conference on Representation Learning, 2019.

[21] D. Hazarika, R. Zimmermann, and S. Poria, “Misa: Modality-invariant
and-specific representations for multimodal sentiment analysis,” in
Proceedings of the 28th ACM international conference on multimedia,
2020, pp. 1122–1131.

[22] T. Wu, J. Peng, W. Zhang, H. Zhang, S. Tan, F. Yi, C. Ma, and Y. Huang,
“Video sentiment analysis with bimodal information-augmented multi-
head attention,” Knowledge-Based Systems, vol. 235, p. 107676, 2022.

[23] W. Yu, H. Xu, Z. Yuan, and J. Wu, “Learning modality-specific
representations with self-supervised multi-task learning for multimodal
sentiment analysis,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, no. 12, 2021, pp. 10 790–10 797.

[24] H. Sun, H. Wang, J. Liu, Y.-W. Chen, and L. Lin, “Cubemlp: An
mlp-based model for multimodal sentiment analysis and depression
estimation,” in Proceedings of the 30th ACM international conference
on multimedia, 2022, pp. 3722–3729.

www.ijacsa.thesai.org 1234 | P a g e


