
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

Priority-Based Service Provision Using Blockchain,
Caching, Reputation and Duplication in Edge-Cloud

Environments

Tarik CHANYOUR1, Seddiq EL KASMI ALAOUI2, Mohamed EL GHMARY3

CSS Lab-Science Faculty of Ain-Chock, Hassan II University, Maarif Casablanca, Morocco1,2

FSDM, Sidi Mohamed Ben Abdellah University, Atlas-Fez, Morocco3

Abstract—The integration of Multi-access Edge Computing
(MEC) and Dense Small Cell (DSC) infrastructures within 5G
and beyond networks marks a substantial leap forward in
communication technologies. This convergence is critical for
meeting the stringent low latency demands of services delivered
to Smart Devices (SDs) through lightweight containers. This
paper introduces a novel split-duplicate-cache technique seam-
lessly embedded within a secure blockchain-based edge-cloud
architecture. Our primary objective is to significantly shorten
the service initiation durations in high density conditions of SDs
and ENs. This is executed by meticulously gathering, verifying,
and combining the most optimal chunk candidates. Concurrently,
we ensure that resource allocation for services within targeted
ENs is meticulously evaluated for every service request. The
system challenges and decisions are modeled then represented as
a mixed-integer nonlinear optimization problem. To tackle this
intricate problem, three solutions are developed and evaluated:
the Brute-Force Search Algorithm (BFS-CDCA) for small-scale
environments, the Simulated Annealing-Based Heuristic (SA-
CDCA) and the Markov Approximation-Based Solution (MA-
CDCA) for complex, high-dimensional environments. A compar-
ative analysis of these methods is conducted in terms of solution
quality, computational efficiency, and scalability to assess their
performance and identify the most suitable approach for different
problem instances.

Keywords—Multi-access Edge-cloud Computing; container base
image chunks; replication; fragmentation; service provision;
blockchain; Markov approximation

I. INTRODUCTION

A. Preliminary

Multi-access Edge Computing (MEC) [1], [2] represents
a distributed computing framework, fostering a distributed
computing environment at the network edge. By meticulously
placing computational resources at access points, edge routers,
gateways, base stations or dedicated edge servers, MEC en-
ables the efficient deployment of high-speed, real-time systems
and solutions for end-users or Smart Devices (SDs). This
approach is optimized for latency-critical, high-capacity data
processing, making it ideal for emerging mobile apps and IoT
devices.

MEC presents a transformative range of applications, no-
tably within the Internet of Things (IoT) domain, along-
side augmented and virtual reality, autonomous vehicles, and
smart factories [3]. It empowers localized data processing and
analysis, reducing reliance on centralized cloud data centers
and effectively addressing latency and bandwidth challenges.

Moreover, MEC architectures seamlessly integrate with a wide
spectrum of wireless technologies, including next-generation
cellular networks, legacy cellular and wireless local area
networks. This integration ensures that MEC solutions are
versatile and adaptable across different network environments,
whether public or private.

Dense Small Cell (DSC) networks, characterized by a high
density of small cell base stations within a limited geographic
area, have emerged as a critical component of modern cellular
architectures. These networks are designed to deliver high-
capacity, high-speed connectivity to users. However, the surge
in user demands necessitates rapid service provisioning and
virtualization [4] to maintain seamless and superior user ex-
periences. Virtualization offers substantial benefits, including
enhanced service delivery, scalability, simplified management,
and improved performance. This is especially advantageous
in the constrained physical environments and dynamic traffic
patterns of Dense Small Cell (DSC) networks. By optimizing
resource utilization and enabling on-demand provisioning,
virtualization helps DSC networks effectively meet the grow-
ing demands of users [5]. In addition, containerized appli-
cations enable service virtualization, which provides a more
sophisticated method for effective service deployment and
management in resource-constrained environments. Container-
ization enables to create lightweight, self-contained service
instances that improve operational flexibility and streamline
management procedures. This method not only makes re-
source allocation easier but also supports advanced interference
mitigation techniques like network slicing, which guarantee
optimal performance and scalability in dynamic network con-
ditions. Nevertheless, Delivering swift service provisioning
in DSC environments necessitates a combination of high-
speed network connectivity for rapid data transfer, advanced
service orchestration to optimize network performance, and
low-latency data processing to support real-time applications.
These essential components work together to ensure timely
and reliable service accessibility for end-users.

Furthermore, by integrating blockchain technology with
caching mechanisms [6], [7], [8], containers data can
be fragmented and dispersed within multiple ENs. This
distribution not only enhances data availability but also
reinforces data integrity through distributed verification.
Thus, initiating container-based MEC services using split-
ting/duplicating/caching entails distributing container image
fragments across multiple secure nodes using the blockchain
technology [9]. Subsequent verification, orchestration, and

www.ijacsa.thesai.org 1243 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

service delivery to the user ensure privacy, confidentiality,
reliability, and fault tolerance. This decentralized fragmenta-
tion approach also alleviates network congestion and improves
performance by caching and replicating frequently requested
service data.

B. Motivation

This paper aims to optimize service delivery by minimiz-
ing container-based service data collection time, bandwidth
consumption, and network hops between the user and the
target Edge Node (EN). The service data comprises base image
chunks of service containers, which require optimal caching,
replication, and transfer to the designated target EN. To address
this, we formulate an optimization problem considering chunks
transfer paths and the availability of diverse resources at each
Edge Node. Three solution approaches are proposed: a brute-
force search algorithm (BFS-CDCA) for small-scale envi-
ronments, a simulated annealing-based heuristic (SA-CDCA),
and a Markov approximation-based solution for larger, more
complex scenarios.

C. Contributions

The distinctive features of this paper can be enumerated as
follows:

• A method based on reputation and blockchain for
secure service provision, emphasizing the strategic
optimized collection of containers’ base image from
multiple edge nodes, was introduced within a multi-
user MEC network.

• An adaptive approach for Containers’ Base Image
Chunks (CBIC) collection is proposed, ensuring ef-
ficient service provision by strategically considering
CBIC with the possibility of duplication across Edge
Nodes (ENs). The focus is placed on security and effi-
ciency within a dense small cell network environment.

• An optimization problem was formulated to minimize
a derived cost function, considering constraints im-
posed by network bandwidth, cached chunk availabil-
ity, and strict service initiation deadlines. Notably, the
availability of critical resources was enhanced through
the implementation of service penalization based on
priority.

• Given the NP-hard nature of the formulated opti-
mization problem, a time-efficient heuristic scheme
was proposed, incorporating a simulated annealing-
based algorithm and a Markov approximation-based
solution, with a thorough evaluation of their respective
performances.

D. Paper Organization

The remaining sections of this paper are detailed following
the structure : Section II presents relevant works related to the
study. Section III elaborates on the framework under exami-
nation. Section V outlines the formulation of the optimization
problem. Following that, Section VII provides an overview of
resolution methods, and Section VIII offers an overview of
the main evaluation results. Finally, Section IX serves as the
conclusion, offering insights into future directions.

II. RELATED WORKS

Recent studies, such as [10], have shown a rising interest in
using edge computing for the Internet of Things (IoT). Many,
like the authors in [11], have investigated how it can enhance
performance, primarily by optimizing resources. The authors
of [10] focused on reducing costs related to task completion,
and employed specialized techniques to lower energy use
during tasks. Meanwhile, in [11], wireless charging and task
offloading were combined to save energy. Liu et al. developed
a new strategy for data storage in edge computing, aiming
to boost service providers’ profits [12]. Yet, studies such as
[13], [14] took a broader view, improving system performance
through task offloading and data storage techniques. However,
these studies highlight the limitations of individual Edge Nodes
(EN) in providing services.

Addressing these shortcomings, the authors of [15]-[16]
advocated for EN collaboration to enhance resource utilization
and equitably distribute workloads. Specifically, [15] and [17]
centered on diminishing task completion durations. While [15]
explored collaborative methodologies, [17] added resource al-
location to its examination. Feng et al. in [18] concentrated on
minimizing user delays and conserving energy. On a different
note, [16] embarked on ascertaining the optimal count of
collaborating ENs. However, a shared assumption across these
studies is that providers freely extend their services, leading
to potential reservations about their spontaneous participation
absent of incentives.

The subsequent works have primarily centered on enhanc-
ing data caching and data sharing by mobile devices. In this
context, a plethora of contemporary studies have delved into
issues related to edge caching for content sharing. For example,
Huang et al. [19] tackled the specific issue of ensuring fairness
in data sharing for caching within MEC environments. In a
related vein, Asheralieva et al. [20] probed the data caching
dilemma using D2D-based method, allowing users to trans-
parently reveal their content sharing costs, diminish average
network expenses, and stabilize the queuing framework. Yin
et al. [21] put forth a hierarchical strategy for data sharing
applications within the same environments, focusing on the
challenge of efficient sharing management in MEC networks
to enhance user device mobility and heterogeneity.

Progressing further, the authors of [22], [23] amalga-
mated machine learning methodologies with secure computing
techniques to redress the limitations observed in antecedent
models. Specifically, in [22], devices were harnessed to execute
federated calculations, with an accent on fine-tuning task
offloading choices. Concurrently, Cui et al., in their study
[23], synergistically integrated secure data storage mecha-
nisms with a blockchain framework, solidifying data integrity.
Notwithstanding these innovative strides, it’s worth noting that
conventional mathematical approaches might grapple when
faced with intricate network configurations. To elevate sys-
tem performance to its zenith, striking a harmonious equi-
librium between competitive and collaborative paradigms is
paramount. In recent work by [24], a model was proposed
concentrating on a singular container-based service. However,
this study overlooked the significance of considering the
blockchain block size as a crucial parameter, limiting its scope.
In contrast, our investigation delves into the integration of
multiple container-based services, addressing their specificities

www.ijacsa.thesai.org 1244 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

and intricacies. Additionally, we explore the impact of the
blockchain operational delay as a critical parameter, consid-
ering its implications on the overall system dynamics and
performance.

III. THE MULTI-TIER FRAMEWORK UNDER STUDY

In this section, the foundational framework upon which our
study is built is outlined. A comprehensive overview of the
framework’s architecture, components, and key methodologies
is provided. The framework aims to provide Container-based
Services (CSs) to smart devices (SDs) by offering Container
Base Image (CBI) caching with intelligent fragmentation and
duplication. It employs a blockchain network to secure the ex-
change of the resulting Container Base Image Chunks (CBICs)
among the ENs constituting a DSC network situated within a
two-dimensional geographical area.

Afterwards, the main components of the proposed frame-
work, as illustrated in Fig. 1, are presented in this section.

Fig. 1. Overview of the framework’s main components.

A. Cloud Server and Edge Nodes

The framework handles a Remote Cloud Server (RCS)
and several Small/Macro Base Stations. The RCS is expected
to have extensive resources, including virtually unlimited
capacities for disk storage, memory, CPU, GPU, etc. The
base stations, acting as Edge Nodes (EN), provide wireless
network access for smart devices (SDs) within their coverage
areas. Additionally, interconnections between ENs are estab-
lished through wired connections, utilizing high-bandwidth
Ethernet cables or fiber-optic connections. Furthermore, each
EN supports many users/subscribers and is provisioned with
a dedicated edge server that has finite resources, thereby
enhancing their capacity to perform localized data processing
and service provisioning.

The set of all ENs is organized into multiple regions,
each orchestrated by a designated Head Macro Base Station
(HMBS) serving as the region head. The clustering of ENs
into distinct regions, overseen by HMBSs, enables streamlined
network operation and facilitates the delivery of services to
end-users, resulting in improved reliability and performance.

Additionally, HMBSs take on the role of caching nodes,
overseeing image and transaction management to ensure the
reliability and security of CBICs while disseminating them
across the network. They orchestrate the geographical dis-
tribution of published containers’ CBICs and handle service
initiation requests by refining collection procedures to reduce
service initiation time.

B. Container-based Service and Reputation

Each EN can provide only a limited set of independent CSs,
due to limited capacities, where each running service uses a
container instance and serves one SD only. Advancing further,
the base image of the i-th CS, is partitioned into multiple
chunks according to the specified chunk size, and subsequently,
each CBIC is replicated Di times.

Furthermore, a reputation management model is integrated,
playing a crucial role in fostering trust among entities and
enabling secure and informed caching decisions. This model
dynamically allocates a reputation score to each CS i within
each region r based on its historical usage and interactions.
This reputation reflects the size of the demand for the service
within that specific region. As a result, the degree of duplica-
tion of a CS within a region is closely tied to its reputation.
Essentially, the more reputable a CS is perceived to be, the
higher the likelihood of it being duplicated within that region.
This approach is driven by the principle that services with a
stronger reputation are in higher demand and therefore benefit
from having more duplicates available to meet user requests
promptly and efficiently.

Practically, the reputation scores are computed based on
all pertinent trust information and feedback provided by the
network entities. These scores serve to establish trust relation-
ships among caching entities, including service providers and
edge nodes.

C. Blockchain Network

The blockchain network operations in the proposed secure
caching framework comprises the following four phases:

1) System initialization: During this phase, the Trusted
Authority (TA) executes a Setup procedure to compute public
parameters. TA generates cyclic groups with a prime order,
selects random exponents and hash functions, computes essen-
tial parameters to release the public parameters to all involved
entities of the blockchain network.

2) Entity registration: Upon joining the blockchain net-
work, both the Service Provider (SP) and the ENs undergo a
registration phase, during which the Trusted Authority (TA)
authenticates their identities. TA executes a key generation
procedure to generate random values and computes secret keys
for encryption, signing, and verification. TA assigns the signing
key to SP and the decryption key to edge nodes (EN) through
a secure communications channel.

3) Block creation and validation: Registered SPs encrypt
message chunks with a randomly generated symmetric secret
key and define access structures to control access to encrypted
messages by target edge nodes (ENs). SPs then signcrypt the
secret key under the access structure and send the resulting
ciphertext to the blockchain network for validation. This record

www.ijacsa.thesai.org 1245 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

includes the SP’s public key, pseudo identity, block hash, and
signcrypted ciphertext along with the SP’s signature. All reg-
istered SPs are considered authority candidates for validation.
A genesis block is created at the initiation of the permissioned
chain, and time intervals are allocated for affixing single blocks
to the chain. In the case of multiple authorities, one leader
per interval collects and validates records before passing them
to other candidate authorities. Validated records are included
in new blocks along with blockheaders containing relevant
metadata.

4) Chunks distribution: Upon receiving a new block, the
network may opt to forward the blockchain header to the
edge nodes (ENs), allowing them to decide whether to request
the signed ciphertext (ST) and signature (π) from specific
blocks via a pull request. Upon receiving ST and π from
the blockchain, ENs decrypt to recover the symmetric key
(keysym), then decrypt the chunk message and verify its
integrity and signature. After obtaining keysym, ENs use it
to decrypt the message and calculate verification parameters,
comparing them to π to confirm that the message has not been
altered.

IV. SYSTEM MODEL

This section offers a comprehensive overview of the mod-
elization of the primary components essential to our study.
Here, to simplify our notation, we will assign the variables
i, j, k, n, p, r and m to refer container-based services, chunks,
chunks’ duplicates, edge nodes, paths, regions and resources,
respectively.

A. Nodes and Resources

The CSs are denoted by the set S = {S1, S2, ..., i, ..., Sσs},
distributed among the Edge Nodes (ENs) represented by the
set N = {N1, N2, ..., n, ..., Nσn

}. Each EN is equipped
with a edge server which in turn offers a diverse array
of resources across multiple categories, encompassing CPU,
GPU, TPU, FPGA, memory, storage, network bandwidth,
etc. Here, the set of possible σz resources is denoted Z =
{r1, r2, ..., rσz

}. Accordingly, every node n is characterized
by its capacity set in terms of resources which we denote
Zcap

n = {Zc
n,1, Z

c
n,2, ..., Z

c
n,σz
}. Here, Zc

n,m denotes the
maximum quantity of resource rm that node n can provide.
Furthermore, its current resource utilization is represented by:
Zuse

n = {Zu
n,1, Z

u
n,2, ..., Z

u
n,σz
}, where Zu

n,m indicates the
amount of resource rm utilized in node n.

B. Container-based Service and Chunks

For convenience, we will interchangeably use the term
Container-based Service (CS) or its user, and denote CS Si

as i. Then, to summarize the operational parameters related
to CS i, we use the notation Ωi, defined as :
Ωi ≜ ⟨Ri, πi, π

min
i , πmax

i , ρi, N
t
i ,Mi, B

ser
i ,Zdem

i , Di, t
trans
i , Ai⟩.

As shown in Table I, the operational parameters for CS i
encompass essential details regarding its initiation and
execution.

TABLE I. SUMMARY OF OPERATIONAL PARAMETERS FOR CS i

Parameter Description
Ωi The operating parameters of CS i
Ri Region receiving the service initiation request for CS i.
Ci The set of chunks related to CS i with the size σi

Di Number of duplicates of the CS i.
Ai Total data amount of CS i.
πi Priority score of CS i.

πmin
i , πmax

i Priority score bounds of CS i.
ρi Reputation score of CS i.
Nt

i EN receiving the service initiation request for CS i.
Mi Localization matrix of all available duplicates of chunks associated

with CS i.
Bser

i Minimum permissible data rate for the available bandwidth between
the node hosting CS i and Nt

i .
Zdem

i Resource demand of CS i, quantified by the number of standardized
virtual resource units.

ttrans
i Maximum permissible deployment delay for CS i.

Specifically, Zdem
i = {Zd

i,1, Z
d
i,2, ..., Z

d
i,σz
} denotes the

resource demand of CS i in terms of resources, where the
resources are quantified by the number of standardized virtual
resource units. Here, σz denotes the number of resource types,
and zdi,m indicates the required quantity of resource rm.

Afterwards, the set of chunks of CS i is denoted Ci =
{Ci,1, Ci,2, ..., Ci,σi

} where σi is the chunks count of CS i.
For ease of use the j chunk of Ci is denoted as Ci,j (j ∈
Ci = [[1;σi]]) and defined by the following key parameters:
Ωi,j ≜ ⟨Ii,j , Di,j⟩. Here, Ii,j is the identifier used to determine
the order of the chunk within the CS i, and Di,j denotes the
total data size of the chunk, measured in bytes. Moreover, in
region Ri the σi duplicates of all chunks belonging to CS
i are distributed across its ENs. The location information is
provided by a set of σi matrices that are continually updated
by the HMBS. This set specifies, for each CS i, the identifiers
of the ENs caching all its chunk duplicates. The matrix Mi

linked to CS i is of dimensions (σi × Di). For convenience,
the k-th duplicate (k ∈ K = {1, 2, ..., Di}) of the j-th chunk
of CS i is denoted as Ci,j,k and located in EN Mi,j,k.

C. Service Priority and Reputation

Penalization of services in dense small cell networks is an
unavoidable challenge, often stemming from users diversity
and resource constraints such as limited bandwidth, compu-
tational capabilities, or storage/memory availability. Capacity
constraints within a system may lead to the prioritization
of certain users over others, achieved through a deliberate
reduction in the pace at which their service requests are
fulfilled. This selective prioritization strategy is implemented to
effectively manage resource limitations, ensuring that critical
users or tasks receive timely attention while acknowledging
and potentially delaying less urgent requests. Such prioriti-
zation mechanisms play a crucial role in optimizing resource
utilization and maintaining system stability under high demand
scenarios. In response to these challenges, we adopt a prioriti-
zation model wherein users with higher priorities are subjected
to lesser penalties, if necessary. Accordingly, a priority πi is
attributed to CS i such that:

πi ∈
{
πmin
i , ..., πmax

i

}
∪ {M,M + ρi} ; i ∈ S (1)

Here, πmin
i and πmax

i respectively represent the minimum
and maximum allowable priority scores for CS i. M is a very

www.ijacsa.thesai.org 1246 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

big number such that πmax
i ≪M ,∀i ∈ S. The priority factors

are used to favour the transfer of CS. In particular, CS with
priority at least πi = M are high priority containers that are
solicited for urgent transfer. Other priorities are determined
according to the service continuity requirement in terms of
downtime or the service level agreement.

Simultaneously, users who have been penalized in one
round may be perceived as potential priority users in subse-
quent rounds. This dynamic approach recognizes that users
experiencing penalties in a time slot might require special
attention or resource allocation in subsequent slots to ensure
fair access and equitable long term treatment. By adapting
priorities based on historical user interactions, the system
aims to efficiently handle specific needs and requirements of
individual users over time. As a result, within our model,
the penalization score undergoes adjustments based on the
following criteria:

• If user i holds high-priority score M + ρi, its prior-
ity score remains unchanged. Here, ρi, referred the
reputation score which is introduced to establish a hi-
erarchical order among high-priority users to ensuring
their precedence.

• Alternatively, if user i does not possess high-priority
status:
◦ If its request is fulfilled during the current time

slot, its priority πi is reset to its initial value
πmin
i .

◦ If its request remains unsatisfied during the
current slot, its priority in the subsequent time
slot is either incremented by 1 or set to M :
if πi reaches the maximum allowable value
πmax
i , πi is set to M , otherwise it is elevated

to πi + 1.

D. Network Model

The network model is given by P =
{Pn→n′ / n ∈ N ;n′ ∈ N \ {n}} composed of all sufficient
paths connecting all pairs of distinct nodes (n, n′). Also, we
use Pn

i,j,k to denote the set PMi,j,k→n of paths connecting
EN Mi,j,k housing chunk Ci,j,k to node n. Without loss of
generality, we assume that the set Pn

i,j,k is precalculated and
given at the decision time slot.

Moreover, each available path p ∈ Pn→n′ that is used for
multi-hop data transmission is characterized by [5], [25]:

• its hop count Hp
n→n′

• its allocatable bandwidth Bpn→n′

• traversing delay Dp
n→n′

Thus, if EN n is the transfer destination of the CS i’s
chunks, the backhaul bandwidth between n and the target node
N t

i , serving the user of CS i’s, is given by:

Bn
i =


∞ ;n = Nt

i

max
p∈P

n→Nt
i

{
Bp

n→Nt
i

}
;n ̸= Nt

i
; i ∈ S;n ∈ N (2)

E. Delays

The cumulative delay while transferring a data byte of
chunk Ci,j,k using path p in the set Pn

i,j,k is denoted Dn,p
i,j,k.

In this study, the service collection process involves trans-
ferring the base image of its container from the most suitable
caching ENs to the nearest node possible to node N t

i to
cater to the user’s request. According to the specific service
being requested, the provider’s CBI might be exclusively stored
in the RCS, completely located on an EN, or distributed
as multiple chunks across regional ENs. Upon receiving a
new service request, the associated node acquires necessary
instructions from the HMBS. The MBS selects the most
appropriate procedure from three potential options based on
specific circumstances. Notably, the focus of this study is the
third option, which encompasses the characteristics of the other
two scenarios. Consequently, the transfer latency experienced
by a specific chunk, denoted as Ci,j,k, to EN n is determined
by the cumulative transfer delays of all selected chunks from
their respective caching nodes. These delay are influenced by
the underlying blockchain network architecture and prevailing
transfer conditions. As such, they can be decomposed into the
following components:

1) Blockchain-related operational delays: [26], [27] this
delay encompasses the time it takes for a node to respond and
send a requested block back to the requester. This delay is intri-
cately tied to factors like node processing power, data volume,
network bandwidth, and the blockchain protocol employed. In
our approach, we extend this modeling by incorporating the
block size as an additional parameter, recognizing its influence
on delay. Specifically, we characterize this delay as a linear
function of both the chunk size and block size, introducing
two parameters associated with the hosting EN and the HMBS.
This refinement allows for a more comprehensive representa-
tion of the operational delay in the blockchain network.

2) Network-related transfer delays: which refers to the
time it takes for the transfer of the CBIC to propagate
through the network from its holding node to its final decided
node. This duration is influenced by several factors, including
network topology, congestion, and the number of hops.

The first delay, denoted BCTi,j,k, is given in the next
formula where ai,j,k, bi,j,k and ci,j,k are the delay-related
parameters associated with the hosting EN Mi,j,k :

BCTi,j,k = ai,j,k ∗Di,j + bi,j,k ∗ LBloc + ci,j,k (3)

Here, i ∈ S , j ∈ Ci, k ∈ K, Di,j is the total data amount
of chunk Ci,j , the terme bi,j,k ∗ LBloc represents the delay
overhead related to the adopted block-chain block size LBloc.

Achieving precise estimates for the parameters ai,j,k, bi,j,k
and ci,j,k within the blockchain edge-cloud network involves a
comprehensive strategy. Initial empirical experiments provide
a foundational dataset for response time with varying chunk
sizes. Employing regression analysis offers initial parameter
estimates. To enhance precision, integrate machine learning
(ML) techniques, utilizing supervised learning algorithms and
considering features like hosting EN attributes, blockchain
protocol, and chunk characteristics. Advanced ML methods,
including neural networks, contribute to capturing intricate

www.ijacsa.thesai.org 1247 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

relationships. Continuous monitoring and adaptation based on
real-world performance data ensure ongoing accuracy. This hy-
brid empirical-ML approach establishes a robust framework for
dynamic and precise estimation of the delay-related parameters
in the blockchain edge-cloud network.

The second delay depends on the decided target node n
and it is given by:

NETTn,p
i,j,k=

{
0 ;n=Mi,j,k

Di,j ×Dn,p
i,j,k ;n̸=Mi,j,k

(4)

where i ∈ S; j ∈ Ci; k ∈ K;n ∈ N ; p ∈ Pn
i,j,k.

Deploying a CS in this work refers to the transfer of all
its CBICs from the distributed hosting nodes to the decided
MEC server in order to make it ready to start serving the
requester user. Thus, a new incoming service request from a
user trigger the service deployment from their hosting nodes
to the best available nearby EN.

Hence, the transfer process delay of duplicate Ci,j,k to EN
n is composed of the blockchain operational delay as well as
the transfer delay from the storing nodes to the decided hosting
node n. Using Eq. 3 and 4 we can formulate the overall transfer
delay Tn,p

i,j,k related to the duplicate Ci,j,k as follows:

Tn,p
i,j,k=

BCTi,j,k+
NET Tn,p

i,j,k (5)

Lastly, Table II provides an inventory of the primary
notations employed in this paper.

TABLE II. MAIN NOTATIONS

Notation Definition
N The set of edge-cloud nodes
S The set of container-based services

σn, σc, σr The the total number of nodes, CS and resources
Pn→n′ The set of available paths connecting nodes Nn and Nn′
Bp

n→n′ The bandwidth of path p ∈ Pn→n′
Hp

n→n′ The hop count of path p ∈ Pn→n′
Di,j The total data amount of the container, chunk Ci,j

Pn
i,j,k The set of available paths connecting nodes Nn and Nn′

Dn
i,j,k The transfer cumulative delay using path p ∈ Pn

i,j,k

Zd
i,m The CS i’s demand in terms of resource rm

Zu
n,m The available resource of node Nn in terms of resource rm

V. THE OPTIMIZATION PROBLEM

In this section, the fundamental problem that serves as
the focal point of our study is articulated. The variables,
objectives, and constraints are clearly defined to establish
a comprehensive formulation and delineate the overarching
objective that requires optimization.

A. Decision Variables

To accurately represent the operations within our system,
the decision variables employed in our model are introduced
as follows:

The transfer binary decision variable of CS i to node n is
denoted αn

i where αn
i = 1 refers to the decision to deploy Ci

to node n, otherwise, αn
i = 0.

αn
i ∈ {0; 1} ; i ∈ S;n ∈ N (6)

The duplicate choice binary decision variable of chunk
duplicate Ci,j,k is denoted βi,j,k where βi,j,k = 1 refers to
the decision to transfer Ci,j,k, otherwise, βi,j,k = 0.

βi,j,k ∈ {0; 1} ; i ∈ S; j ∈ Ci; k ∈ K (7)

Additionally, when transferring chunk Ci,j,k from its
caching node Mi,j,k to node n the decision variable to select
the migration path p among the possible paths set Pn

i,j,k =
PMi,j,k→n is the binary variable γn,p

i,j,k where γn,p
i,j,k = 1 refers

to the decision to use the p-th path in Pn
i,j,k to migrate Ci,j,k

from node Mi,j,k to n, otherwise γn,p
i,j,k = 0.

γn,p
i,j,k ∈ {0; 1} ; i ∈ S; j ∈ Ci; k ∈ K;n ∈ N ; p ∈ Pn

i,j,k (8)

In situations where the available system resources are
insufficient to support the initiation of a CS, our proposed
model offers the option to defer the initiation of this CS.
To represent this penalization decision for Ci, we utilize the
binary variable δi, where δi = 0 indicates penalization, while
δi = 1 denotes no penalization.

δi ∈ {0; 1} ; i ∈ S (9)

B. The Cost Model

In this section, we present the proposed Cost Model,
a fundamental component of our system design aimed at
comprehensively assessing and optimizing the framework de-
cisions.

1) Delay cost: In our model, when deploying CSs to
the designated hosting nodes, the delay cost incurred during
the transmission of data transfer flows is contingent on the
congestion levels of the network’s links. Consequently, with a
placement decision vector α, a duplicates selection vector β,
and a path selection vector γ as well as using Eq. 5 we can
formulate the transfer delay related to the CS i s as follows:

Ti(α,β,γ)=
∑
j∈Ci

∑
k∈K

∑
n∈N

∑
p∈Pn

i,j,k

αn
i βi,j,kγ

n,p
i,j,k

(
Tn,p
i,j,k

)
(10)

As a result, the comprehensive delay-related cost can be
calculated as follows:

Ψdelay (α, β, γ, δ) =
∑
i∈S

δiTi (α, β, γ) (11)

Additionally, for normalization purpose we use the total
maximal allowable transfer delay for all CS given by:

Ψdelay
max =

∑
i∈S

ttransi (12)

www.ijacsa.thesai.org 1248 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

2) Backhaul cost: Once all the required container chunks
related to Si have been transferred to destination EN n, the
backhaul bandwidth between the connected EN N t

i and n
plays a crucial role in determining the service-related user’s
perceived delay. Ideally, the user’s experience is best when
n = N t

i , and we aim to prioritize such decisions. To achieve
this, our model takes into account two main costs related to
EN n: the available bandwidth between EN n and N t

i as well
as the hop count between them. Utilizing a placement decision
vector α and employing Eq. 2, the serving bandwidth for the
user linked to CS Si can be expressed as:

Bi(α) =
∑
n∈N

αn
i Bni ; i ∈ S (13)

The resulting backhaul cost function, denoted as Ψback
i,n , is

defined in such a way that it equals 0 when n = N t
i . However,

in all other cases, it takes on a value as follows:

Ψback
i,n = min

p∈P
n→Nt

i

Wr

min
p′∈P

n→Nt
i

Bp′

n→Nt
i

Bp

n→Nt
i

+Wh

Hp

n→Nt
i

max
p′∈P

n→Nt
i

Hp′
n→Nt

i


(14)

Here, i ∈ S , n ∈ N and the weights Wr and Wh are
two adjustable weights to fine-tune the optimization process
for different scenarios, where Wr represents the weight as-
sociated with available bandwidth, and Wh represents the
weight associated with hop count costs, with the constraint that
Wr +Wh = 1. Moreover, the cost function Ψback

i,n falls within
the range [0,1], and the use of the max and min expressions
for fractions serves the purpose of normalization.

Therefore, with the decision vector α, the overall user
backhaul cost can be obtained as:

Ψback (α, δ) =
∑
i∈S

{
δi

∑
n∈N

αn
i Ψ

back
i,n

}
(15)

3) Load balancing cost: The load balancing procedure
targets an equitable distribution of the incoming service
workloads, aiming to minimize deviations from the average
value. Within our model, the associated cost must consider
the processing workloads across all ENs. This includes the
current workload of running services on each EN, along with
anticipating the additional load expected from services that
will be selected to run on them.

Initially, following the CS deployment, the anticipated
resource utilization Zu

n,m of processing resource rm on node
n can be determined using the following equation:

Za
n,m (α, δ) = Zu

n,m +
∑

i∈S αn
i δiZ

d
i,m ;n ∈ N ;m ∈ Zp. (16)

Next, we establish the processing load ratios θn,m associ-
ated with resource rm in EN n, along with their mean value
θ̄m, defined as follows:

θn,m (α, δ) =
Za
n,m (α, δ)

Zc
n,m

∈ [0, 1] ;n ∈ N ;m ∈ Zp (17)

θm (α, δ) =
∑
n∈N

θn,m (α, δ)

σn
∈ [0, 1] ;m ∈ Zp (18)

Subsequently, the processing load concerning EN n across all
processing resource types in Zp is defined as:

Ψload
n (α, δ) =

∑
m∈Zp

|θn,m (α, δ)− θm (α, δ) |
σz

;n ∈ N (19)

Finally, the resulting overall processing load is as follows:

Ψload (α, δ) =
∑

n∈N

∑
m∈Zp

|θn,m (α, δ)− θm (α, δ) |
σnσz

∈ [0, 1] (20)

C. The Multi-Objective Function

The adopted multi-objective function, to be elaborated
upon, consists of two components: the overall cost and the
degree of penalization for users. We begin by introducing
the overall cost model below. It is constructed using a multi-
objective function, which combines the detailed cost metrics
into a weighted sum using the weight aggregation approach:

Ψ(α,β,γ,δ)=Wd
Ψdelay(α,β,γ,δ)

Ψ
delay
max

+Wb
Ψback(α,δ)

σc
+WlΨ

load(α,δ)

(21)

Here, Wd, Wb, and Wl serve as regulatory weight constants
that determine the priority attributed to each cost. Their values
range between 0 and 1, satisfying the condition Wd + Wb +
Wl = 1. Furthermore, the denominators in this function act
as normalization factors for each cost function. The metrics
normalizing procedure involves transforming the values of the
three studied metrics into dimensionless costs between 0 and
1. This ensures the ability to addition and comparison within
the cost function by standardizing the metrics’ scales.

Next, a penalty function is introduced in order to minimize
the number of penalized users. It is proposed such that high-
priority users could be penalized, if necessary, only if all
non priority users are penalized. Accordingly, we adopt the
following penalty function given by:

Π(δ) =
∑
i∈S

(1− δi)πi (22)

The formulation of this function establishes a penalization
hierarchy among the users, where the decision to penalize any
CS guarantees that high-priority containers are penalized last,
if required.

At this point, we can finally state the following equation,
which defines the adopted overall multi-objective function,
referring to the objective function targeted for minimization:

Θ(α, β, γ, δ) = Ψ (α, β, γ, δ) + Π (δ) (23)

D. The Constraints

In our model, the case when CS i is not transferred
(penalized by setting δi = 0) is represented by setting αn

i = 0
for n ∈ N and if transferred, only one target node is selected.
Accordingly, the transfer decision of CS i has to meet the
following constraint:

www.ijacsa.thesai.org 1249 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

∑
n∈N

αn
i = δi ; i ∈ S (24)

Additionally, if i is not penalized, only one duplicate
of chunk Ci,j,k must be selected, resulting in the following
constraint:

∑
k∈K

βi,j,k = δi ; i ∈ S; j ∈ Ci (25)

Also, all the σi chunks of CS i, if not penalized, must be
transferred to the selected node which lead to the following
constraint:

∑
j∈Ci

∑
k∈K

βi,j,k = δiσi ; i ∈ S (26)

By selecting only one path p in Pn
i,j,k to serve the transfer

flow of chunk Ci,j,k, if i is not penalized, from its nodeMi,j,k

to target node n, the next constraint has to be satisfied:

∑
p∈Pn

i,j,k

γn,p
i,j,k = δi ; i ∈ S; j ∈ Ci; k ∈ K;n ∈ N (27)

Therefore, the anticipated demand for each resource rm on
each node n must fulfill every resource type requirement. This
can be formally formulated as:

Za
n,m (α, δ) ≤ Zc

n,m ;n ∈ N ;m ∈ Z. (28)

The subsequent constraint ensures that the total delay
incurred during the collection of all chunks associated with
CS i does not surpass its tolerated transfer delay ttransi .

δiTi (α, β, γ) ⩽ ttransi ; i ∈ S (29)

Finally, the bandwidth constraint associated with CS i,
utilizing the maximum available bandwidth specified in Eq.
(13), is formalized as follows:

Bi (α) ⩾ δiB
ser
i ; i ∈ S (30)

E. The Problem Formulation

Based on the elucidated problem context, the following
optimization problem, designated as P1, aims to optimize the
aforementioned dual objectives. The solution aims to maximize
user benefits while respecting resource constraints, meeting
transfer delay and bandwidth requirements, and minimizing
penalties associated with priority.

P1 : minimize
{α,β,γ,δ}

Θ(α, β, γ, δ)

s.t. (6), (7), (8), (9), (24), (25), (26), (27), (28), (29), (30)

VI. PROBLEM DECOMPOSITION

The general problem P1 involves making decisions re-
garding CSs placement (α decision variables), selecting CBICs
along with path determination (β and γ decision variables) as
well as the final penalization decision (δ decision variables).
Next, P1 is decomposed into sub-problem as well as a general
problem. The sub-problem (CSPDP) deals exclusively with
the aspect concerning the selection of CBICs along with path
determination and penalization decisions. It is assumed that
the decisions regarding container placement have been made.
Subsequently, the general problem (GCP) iterates over the
placement possibilities and employs the solution from the
CSPDP to derive the overall solution.

A. CSPDP Sub-Problem

The formulation of this problem can be presented as
follows:

CSPDP : minimize
{β,γ,δα}

Θα (β, γ, δα)

s.t. (7), (8), (9), (25), (26), (27), (29)

In this formulation, with fixed decisions α, the objective
function value is obtained using Eq. (23). Additionally, the
penalty vector δα pertains only to containers for which re-
source and bandwidth constraints ((28) and (30) respectively
) are satisfied based on decisions α. That is to say, if a certain
container i is penalized with decisions α (δi = 0), then δαi
always equals 0 and is not considered a variable for the CSPDP
problem. The remaining penalty decisions of δα are related to
transfer time constraints that depend on selecting CBICs along
with path determination (β and γ decision variables).

Subsequently, a proposition related to the set of feasible
solutions of the problem will be demonstrated.

Proposition 1. The set Sαf of feasible solutions of CSPDP
is non-empty.

Proof: By utilizing binary decisions, constraints
(7), (8), (9) are fulfilled. Additionally, ∀α, with a penalty
vector δ+ = 0, resource constraints ((28) and (30)) will be
satisfied. Let the decision vectors β+ and γ+ be constructed
such that β+ = 0 and γ+ = 0. Since δ+i = 0 ∀i, all
remaining constraints (25), (26), (27), (29) are satisfied.
Therefore, (β+, γ+, δ+) ∈ Sαf ⇒ Sαf ̸= ∅.

B. GCP Global Problem

The general problem P1 involves traversing all possible
decisions given by the containers placement α and solving
the sub-problem CSPDP at each iteration. This means that for
each potential configuration α, problem CSPDP is solved to
obtain a corresponding optimal solution. This iterative process
is repeated until all possibilities of α are explored, thereby
determining the best global solution for problem P1.

Thus, by using the next constraint, this challenging place-
ment problem, denoted GCP , can be further formulated:

(β, γ, δα) ∈ Sαf (31)

www.ijacsa.thesai.org 1250 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

and the GCP Global Problem is as follows:
GCP : minimize

{α}
Θα (β, γ, δα)

s.t. (6), (24), (28), (30), (31)

However, this problem’s placement decisions lies in opti-
mally placing σs containers within σn edge nodes. This place-
ment must consider resource constraints, including available
resources and bandwidth capacity, which contribute to the
inherent complexity of the problem. Consequently, the next
proposition 2 is derived.

Proposition 2. The optimization problem GCP is NP-hard.

Proof: Given σs services to place within σn ENs. To
find the best placement solution for problem GCP , even
when all resources are sufficient, the problem remains one of
determining the optimal placement of σs services among σn

nodes, the computation complexity of GCP can reach O(σσc
n).

Therefore, problem GCP is NP-hard and cannot be well solved
in polynomial time.

Subsequently, an efficient resolution of P1 (or its equiva-
lent form GCP) will be presented in the next section.

VII. PROBLEMS RESOLUTION

Now, the resolution of the obtained optimization problem
P1 is explored. The identified optimization-related challenges
will be tackled through a detailed approach, and the derived
solutions will be presented. The end of this section will provide
insights into our efforts to effectively address the problem and
demonstrate our commitment to achieving optimal results.

A. GCP Problem Resolution

Initially, two conditions are established regarding the ENs
that can potentially serve as candidates for the placement of
service i. The first condition (32) ensures that each EN must
satisfy the resource constraints (28) and the service bandwidth
constraints (30).

Zd
i,z +

∑
i′∈C\i

αn
i′Z

d
i′,z ≤ Zc

n,z z ∈ Z

max
p∈Pn→Nt

i

{
Bp
n→Nt

i

}
⩾ Bser

i

(32)

Based on this first condition (32), we can define the next
set Ei(α) associated with CS i as the collection of candidate
ENs with their minimum hop count to target node N t

i .

Ei(α)=


n, min

p∈P
n→Nt

i

{
Hp

n→Nt
i

};n∈N and (32) is satisfied


(33)

A tuple (n, h) is included in this set if EN n is reachable
from target node N t

i with a hop count h and satisfies the
conditions in (32).

Then, using Ei(α), we define a second condition to identify
a refined set Ei(α,∆h) of candidate placement ENs relevant
to CS i. This condition use a threshold ∆h to ensure that
the minimum number of hops between each potential node in

Ei(α) and the target node N t
i is less than ∆h. If no nodes

satisfy this condition, the set will instead comprise the node
from the set Ei(α) that is closest to N t

i , regardless of this
condition, provided such node exist. Since an empty subset
signifies an unavoidable penalty for the associated service, this
condition guarantees that the set Ei(α,∆h) is empty only when
Ei(α) is also empty. Moreover, the use of the threshold ∆h

is primarily driven by the need to restrict the solution search
space, thus excluding trivially non-feasible combinations. Ad-
ditionally, it serves the purpose of maintaining control over the
execution time, particularly in scenarios involving non-feasible
configurations.

Accordingly, and in relation to all services, we define a
general vector E(α,∆h) containing all subsets Ei(α,∆h) as
follows:

E(α,∆h) = {Ei(α,∆h) / i ∈ S} (34)

Subsequently, the total number χ(α,∆h) of placement
possibilities for “not yet penalized” services can be derived
as:

χ(α,∆h)←
∏

{x∈E(α,∆h) and x ̸=∅}

(|x|) (35)

Now that we’ve established these key concepts, let’s delve
into the solution implementation. Here’s the Algorithm 1,
named GSPA, that outlines the steps involved:

Algorithm 1 : Global Service Placement Algorithm (GSPA)

Require: S, N , C, K, P , M, Ω, D and ∆h.
Ensure: Global solution α∗, β∗, γ∗, δ∗ with cost Cost∗

1: Cost∗ ←∞;
2: build E0 = E(0,∆h) using (34);
3: N ← χ(0,∆h) using (35);
4: for l = 0 à N − 1 do
5: for each service i in S do
6: αi ← 0;
7: if |E0

i | = 0 then
8: δi ← 0; //service i penalization
9: else

10: δi ← 1; //no penalization of service i
11: ni is the node within E0

i at index
(
l mod |E0

i |
)
;

12: αni
i ← 1; // service i placement at node ni

13: l← l div |E0
i |;

14: end if
15: end for
16: (β, γ, δ,X)← subSolution(α, δ);
17: if X < Cost∗ then
18: (α∗, β∗, γ∗, δ∗, Cost∗)← (α, β, γ, δ,X)
19: end if
20: end for
21: return (α∗, β∗, γ∗, δ∗, Cost∗)

In the outer for loop (line 4), all feasible placements are
iterated over, with each iteration involving the construction of
the placement vector α and the initial penalization decisions
δ (lines 5 to 15). Subsequently, the CSPDP sub-problem is
resolved, and the current solution along with its cost are
updated (lines 16 to 19).

www.ijacsa.thesai.org 1251 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

B. CSPDP Sub-Problem Resolution

In this subsection, the process of solving this sub-problem
is demonstrated. Three solutions are proposed and detailed:
The first involves an exact solution based on a Brute Force
Search (BFS) method, while the remaining two utilize ap-
proximate solutions based on Simulated Annealing (SA) and
Markov Approximation (MA) methods, respectively.

1) Brute-force-search-based scheme: To determine the op-
timal chunks duplicate Transfer decisions provided by the
placement decisions α, we conduct an exhaustive search across
all potential solutions using a Brute Force Search for Chunks
Duplicates Collection, denoted as BFS-CDCA. Algorithm 2
presents this solution. An exhaustive search over all possible
combinations of chunk duplicates and paths is conducted with
respect to the placement decision α. This search aims to
identify the optimal solution (β∗, γ∗, δ∗) with the minimum
cost S∗. The cost function is computed based on the decisions
made for α, β, γ, and δ, considering the constraints of problem
CSPDP . The algorithm iterates, evaluates and updates the
optimal solution whenever a lower cost is encountered. The
function minPenalisation facilitates the determination of the
penalty vector that minimizes the overall objective function Θ,
considering that the decisions α, β, and γ have already been
established. Finally, the algorithm returns the intermediate
optimal solution (β∗, γ∗, δ∗) along with the corresponding cost
S∗.

Algorithm 2 Brute Force Search based CBIC Distributed
Collection Algorithm (BFS-CDCA)

Require: S, N , C, K, P , M, Ω, D and α.
Ensure: Intermediate solution (β∗, γ∗, δ∗) with cost S∗;

1: S∗ ←∞
2: N ← combinations count;
3: for l = 0 à N − 1 do
4: construct decisions vectors β, γ from l;
5: δ ← minPenalisation(α, β, γ)
6: if constraints of CSPDP are satisfied then
7: S ← Θ(α, β, γ, δ) according to (23);
8: if S < S∗ then
9: (β∗, γ∗, δ∗, S∗)← (β, γ, δ, S)

10: end if
11: end if
12: end for
13: return (β∗, γ∗, δ∗, S∗)

2) Simulated-annealing-based scheme: In Algorithm 3, the
proposed heuristic solution based on simulated annealing is in-
troduced. Simulated annealing, a widely utilized optimization
technique, is renowned for its simplicity, general applicability,
and efficiency compared to alternative methods.

Algorithm 3 uses a probabilistic approach that allows for
potential degradation in cost to prevent being trapped in local
minima. It utilizes a cost function as an analogy to the energy
of a thermodynamic system. Throughout the iteration in the
solution space, the acceptance of the current state depends
on whether the new state has lower energy. If the new state
has higher energy, acceptance is probabilistic, determined by
a temperature parameter and the Boltzmann distribution. As
the temperature decreases, the system becomes less likely to

Algorithm 3 : Simulated Annealing based CBIC Distributed
Collection Algorithm (SA-CDCA)

Require: S, N , C, K, P , M, Ω, D, ∆, Lmax, T0 and α.
Ensure: Intermediate solution (β∗,γ∗,δ∗) with cost S∗;

1: Generate initial decisions (β,γ)
2: δ←minPenalisation(α,β,γ);
3: S∗←Θ(α,β,γ,δ) according to (23);
4: for l=1 to Lmax do
5: T←T0e

−0.5l
1

2∆ ;
6: β

′←rand neighbour(β);
7: (γ

′
,δ

′
)←bestTransfer(α,β

′
);

8: if constraints of CSPDP are satisfied then
9: Calculate S

′
=Θ(α,β

′
,γ

′
,δ

′
) using 23;

10: ∆S←S
′−S

11: if ∆S<0 or e
−|∆S |

T ⩾random(0,1) then
12: (β,γ,δ,S)←

(
β

′
,γ

′
,δ

′
,S

′
)

13: if S<S∗ then
14: (β∗,γ∗,δ∗,S∗)←(β,γ,δ,S)
15: end if
16: end if
17: end if
18: end for
19: return X∗=(β∗,γ∗,δ∗,S∗)

accept higher energy states. This adjustment in the probability
of accepting a penalizing transition seeks a balance between
exploring new solutions and exploiting known solutions in the
space.

The algorithm enters a simulated annealing loop (line 4),
where it iterates over a specified number of iterations Lmax.
In each iteration, the temperature T is updated based on
the current iteration l, and a random neighbor solution β′

is generated. The corresponding best γ′ is then determined
using β′. The penalty vector δ′ for the new solution is
obtained by minimizing penalization. If the constraints of
problem CSPDP are satisfied, the cost S′ is calculated, and
a decision is made based on the Metropolis criterion to accept
or reject the new solution. If accepted, the current solution is
updated, and if it improves the global solution, it is recorded.
Finally, the algorithm returns the global intermediate solution
X∗ = (β∗, γ∗, δ∗) along with the corresponding cost S∗.

3) Markov approximation-based scheme: Markov Approx-
imation is a technique used in optimization to approximate
complex problems by simplifying them into a Markov chain
model. It is particularly useful for problems with large so-
lution spaces where exact methods become computationally
infeasible. In this method, the problem is represented as a
Markov decision process, where each state corresponds to a
possible solution, and transitions between states are determined
by a stochastic process based on the problem’s constraints
and objectives. By iteratively updating the probabilities of
transitioning between states, the algorithm converges towards
an optimal or near-optimal solution.

a) Log-sum-exp approximation: Now, we delve into a
Log-sum-exp method aimed at approximating the mathemati-
cal expression of the obtained problem. Let the configuration
c = {α;β; γ; δ} ∈ Sαf be a solution, where Sαf is the Fea-
sible Solution Set (FSS) of problem CSPDP with objective

www.ijacsa.thesai.org 1252 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

function Θα. Sure, problem CSPDP is equivalent to:

min
c∈Sα

f

Θα(c) (36)

According to Appendix A of [28], by associating a prob-
ability pc with the adoption of a configuration c, the optimal
solution of the problem max

c∈Sα
f

Θα(c) is the same as that of the

problem max
p≥0

∑
c∈Sα

f

pcΘ
α(c) where

∑
c∈Sα

f

pc = 1. It follows that

the optimal solution of problem CSPDP is the same as that
of the following problem:

min
p≥0

∑
c∈Sα

f

pcΘ
α(c) subject to

∑
c∈Sα

f

pc = 1. (37)

Here p = (pc)c∈Sα
f

is a probability distribution associated
with the possibility universe Sαf .

Subsequently, the formulation of the log-sum-exp approx-
imation can be derived such that [29]:

• Firstly, for any strictly positive constant τ , we have:

0 ≤ min
c∈Sα

f

Θα(c) + 1
τ
ln

 ∑
c∈Sα

f

e−τΘα(c)

 ≤
ln

∣∣∣Sα
f

∣∣∣
τ (38)

• Secondly, let gτ be the log-sum-exp function defined
on Rm by:

gτ (x1; ...;xm) =
1

τ
ln(

∑
1≤i≤m

eτxi) (39)

where m = |Sαf |. As τ → ∞ and according to Eq.

(38), the approximation gap
ln |Sα

f |
τ → 0, and thus the

proposed approximation in Eq. 38 becomes exact.

• Thirdly, by using the conjugate function of gτ and
according to [30]-p.93, we can find that:

gτ (x) = max{
p≥0 s.t.

∑
1≤i≤m

pi=1

} ∑
1≤i≤m

pixi − 1
τ
piln(pi)

(40)

• Finally, the approximation defined by Eq. 40 is also
the solution to the following optimization problem:

minp≥0 s.t.
∑

c∈Sα
f

pc=1


∑
c∈Sα

f

pcΘ
α(c) +

1

τ

∑
c∈Sα

f

pcln(pc)

(41)

b) The Markov chaine: : In this subsection, the
Metropolis-Hastings algorithm will be employed to construct
an irreducible Markov chain (Xn)n≥0 with state space Sf .
This chain will have p∗ as its reversible probability distribution,
thereby ensuring its stationarity.

Firstly, the Lagrangian of problem (41) is given by:

L(p, λ) =
∑
c∈Sα

f

pcΘ
α(c)+

1

τ

∑
c∈Sα

f

pc ln (pc)+λ

 ∑
c∈Sα

f

pc − 1


(42)

where λ is the Lagrange multiplier [29].

Secondly, solving the Karush-Kuhn-Tucker conditions
yields the following two equations

∑
c∈Sα

f
p∗c = 1 and Θα(c)+

1
τ (ln (pc

∗) + 1)+ λ∗ = 0
(
∀c ∈ Sαf

)
, where (pc

∗)c∈Sα
is the

optimal solution of the primal problem and λ∗ is the optimal
solution of the dual problem. Thus, from the second equation
we can get:

p∗c = e−τ(Θα(c)+λ∗)−1;∀c ∈ Sαf (43)

This result and the condition
∑

c∈Sα
f
p∗c = 1, give the

result:

λ∗ =
1

τ

ln

 ∑
c∈Sα

f

e−τΘα(c)

− 1

 (44)

Finally, combining Eq. (43) and (44) leads to the following
probability distribution:

p∗c =
e−τΘα(c)∑

u∈Sα
f
e−τΘα(u)

;∀c ∈ Sαf (45)

here p∗c represents the optimal solution of problem (Eq.
41) and thus a quasi-optimal solution of problem (Eq. 36).

c) MA-CDCA algorithm: Our problem-solving process
starts with constructing an initial configuration, denoted as c0.
Once c0 is established, we employ the Metropolis-Hastings
algorithm to create an irreducible Markov chain, represented
by (Xn)n≥0. This Markov chain has the desirable property
of converging to a specific stationary probability distribution,
denoted by p∗. The core of the algorithm lies in a probabilistic
approach based on the Metropolis-Hastings principle, which is
described in detail next as follows :

if at time t, we have Xt = c ∈ Sαf , a state c′ is randomly
drawn from Sαf according to the distribution qc,c′ given by:

qc,c′ =
p∗c + p∗c′

|Sαf | − 1
(46)

then we calculate the acceptance probability Ac,c′ =

min

{
p∗c′qc′,c
p∗cqc,c′

; 1

}
simplified as:

Ac,c′ = min
{
e−τ(Θα(c′)−Θα(c)); 1

}
(47)

Hence, we accept the transition Xt+1 = c′ with probability
Ac,c′ and reject it with probability 1−Ac,c′ .

The pseudo-code of the solution is presented in Algorithm
4.

www.ijacsa.thesai.org 1253 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

Algorithm 4 : Markov Approximation based CBIC Distributed
Collection Algorithm (MA-CDCA)

Require: N , C, K, P , M, Ω, D, Tmax and α.
Ensure: Intermediate solution X∗=(β∗,γ∗,δ∗);

1: Generate an initial chunks selection (β0) based on α;
2: (γ0,δ0)←bestTransfer(α,β0);
3: Build the initial solution X0=(α,β0,γ0,δ0);
4: for t=0 to Tmax do
5: Select CS i such that CS Gain(Xt,i)>0;
6: Generate a chunks selection βi(t+1) related to CS i such

that Chunk Gain(Xt,i,βi(t+1))>0;
7: Update β

′
according to shift βi(t)→βi(t+1);

8: (γ
′
,δ

′
)←bestTransfer(α,β

′
) ;

9: Build the new configuration c
′←(α,β

′
,γ

′
,δ

′
)

10: Calculate acceptation probability AXt,c′ using 47;
11: if AXt,c′>random(0,1) then
12: Accept the new transition Xt→c′ and set Xt+1=c′

13: else
14: Reject the new transition Xt→c′ and set Xt+1=Xt

15: end if
16: end for
17: return X∗=XTmax+1

VIII. EVALUATION

To evaluate the proposed solutions, we conducted a series
of experiments using a range of metrics. These experiments
were meticulously designed to test each solution under various
conditions, ensuring a comprehensive assessment.

A. Simulation Setup

All the experiments were conducted on a personal com-
puter running Windows 10, equipped with a 2.4GHz Intel Core
i5 processor and 16GB of RAM. This setup ensured a consis-
tent and controlled environment for testing, minimizing the
potential influence of hardware variability on the performance
metrics.

The parameters of the simulation experiments are detailed
in Table III. These parameters were meticulously chosen to
reflect realistic and challenging conditions for the proposed
solutions.

TABLE III. SIMULATION PARAMETERS

Parameter Values
σs;σn;σi; Di variable

σr 3 resource types: CPU, RAM, Storage
|Pn→n′ | ∈ [[3; 5]]

τ 1010

Wr ; Wh 0.5; 0.5
Wd; Wb; Wl 0.5; 0.5; 0.5

LBloc 10.0 MB
ai,j ∈ [5, 30] × 10−3 s/MB
bi,j ∈ [1, 5] × 10−3 s/MB
ci,j ∈ [1, 10] × 10−4 s

B. Cost and Execution Time Analysis

This section presents a comparative analysis of the three
solutions: BFS-CDCA, MA-CDCA, and SA-CDCA focusing
on their normalized cost and execution time under varying

conditions. In this analysis, we consider a scenario with 8
services (users) and a variable count of edge nodes σn ranging
from 2 to 9. For all services i, a duplication factor Di = 2 is
used and two settings for chunks fragmentation are considered,
σi ∈ {3; 5}, and these values are used as suffixes in the names
of each solution to denote their specific configurations. For
example, MA-CDCA-3 and MA-CDCA-5 refer to the Markov
Approximation-based solution with a chunk fragmentation
settings of σi = 3 and σi = 5, respectively.

Fig. 2 shows how the average total cost changes with the
number of edge nodes.

Fig. 2. Normalized Cost; σs = 8, Di = 2, σi ∈ {3; 5}.

The results indicate a significant similarity between the
three solutions’ performance, particularly for σn ∈ {2; 3; 4}
across both settings of σi. Furthermore, for σc ∈ {5; 6; 7; 8; 9},
the experiment demonstrates that both MA-CDCA and SA-
CDCA solutions achieve costs within 1.1% and 1.3% margin
of difference compared to the exact BFS-CDCA solution,
respectively.

Likewise, Fig. 3 shows how average execution time
changes with the number of edge nodes σn.

Fig. 3. Execution Time; σs = 8, Di = 2, σi ∈ {3; 5}.

The trend in Fig. 3 is confirmed by the data. Execution time
increases with the number of edge nodes σn, particularly for
the BFS-CDCA solution, which exhibits exponential growth.
In contrast, the MA-CDCA and SA-CDCA solutions demon-
strate stable execution times. For example, with a fragmenta-

www.ijacsa.thesai.org 1254 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

tion parameter σi of 3 and 9 edge nodes, MA-CDCA-3 and
SA-CDCA-3 require only 210.0ms and 229.0ms, respectively,
while the exact BFS-CDCA solution reaches impractically
high execution times of 6452677.1ms. Similarly, with a frag-
mentation parameter of 5 and 9 edge nodes, MA-CDCA-5 and
SA-CDCA-5 require only 320.0ms and 389.0ms, respectively,
whereas the exact BFS-CDCA solution reaches impractically
high execution times of 10877142.4ms.

While the number of edge nodes σn has the most sig-
nificant impact on execution time, the results also reveal the
influence of the fragmentation parameter σi. As σi increases,
all solutions show a trend of requiring more execution time.
This suggests that careful consideration must be given to
the fragmentation parameter σi to avoid additional processing
overhead for the adopted solutions.

C. Service Provision Analysis

Now, this section examines the satisfaction rate for service
provision requests, focusing on three main factors: fragmenta-
tion, duplication, and service priority. The influence of these
factors is analyzed to determine their effects on the overall
performance of both the system and the proposed solutions.

1) Chunks count and duplication factors: In this experi-
ment, the impact of fragmentation on request satisfaction rates
is investigated. This is achieved by controlling two factors
related to each service: the per-service duplication factor Di

and The chunk count factor σi. In essence, the experiment
examines how dividing services into smaller chunks (fragmen-
tation) affects service requests satisfaction. For each service i,
the Di factor is set in {1; 3}) while the chunk count was
varied from σi = 1 (where only a single piece of service data
is considered) to σi = 8. Also, the number of services is set to
either σs = 8 or σs = 16. These services are deployed across
10 edge nodes (σn = 10) and are assigned equal priority.
Moreover, considering the significant impact of data size on
the studied timing metric, the CSs’ data sizes Ai are generated
within the range of [1, 8] MB. For the configuration where
σs = 8, the obtained average data size Ai is 4.6 MB, whereas
for the σs = 16 configuration, the average is 5.7 MB.

Fig. 4 shows how the Average Collection Time of the
selected chunks changes with the number of chunks.

Fig. 4. Average Chunks Collection Time; σs ∈ {8; 16}, σn = 10,
Di ∈ {1; 3}.

A preliminary analysis of the results reveals a high degree
of similarity between the SA-CDCA and MA-CDCA solutions
across most configurations examined. This suggests that both
approaches achieve comparable efficiency. For fragmentation
levels (σi) ranging from 1 to 4, the average collection time
consistently decreases across all combinations of service count
(σs) and duplication factor (Di). This suggests that a moderate
level of fragmentation may improve efficiency in collecting
data. In fact, regardless of the service count (σs), increasing the
duplication factor (Di) from 1 to 3 consistently reduces the av-
erage collection time. This implies that data redundancy intro-
duced by duplication might be beneficial for faster collection.
Interestingly, the behavior changes beyond a fragmentation
level of 4. Indeed, when Di = 1 (no duplication), the collection
time tends to increase regardless of the service count (σs).
This suggests that excessive fragmentation without redundancy
becomes detrimental for collection efficiency. Conversely, with
three duplicates of each chunk (Di = 3), the collection time
continues to decrease until a fragmentation level of 6, after
which it slightly increases. This implies that a higher level
of redundancy can tolerate a wider range of fragmentation
levels before seeing a performance drop. These observations
highlight the importance of considering both fragmentation and
duplication when optimizing data collection strategies.

2) Service priority factor: The next experiment investi-
gates the influence of service priority under critical resource
limitations, where the available resources can meet the re-
quirements of only two CS. Twenty services, all requiring
the same resources, were divided into two groups of ten.
The first group (GU) received a uniform priority (πi = 1).
The second group (GG) received graded individual priorities
assigned from 10 (highest) to 1 (lowest). The experiment was
conducted over five rounds, with served services removed
from the pool for subsequent rounds. This setup allowed the
study of the global penalization function, which evaluates the
overall penalty incurred due to unmet service requests based on
priority levels. Additionally, the obtained average normalized
cost was analyzed to understand how the changing priority of
the variable service affects the efficiency of service delivery.

Fig. 5 illustrates how the Average Normalized Cost and the
overall penalization evolve as the rounds progress.

Fig. 5. Normalized cost (line chart), penalization cost (bar chart); σs = 20,
σn = 12, Di = 2, σi = 2.

www.ijacsa.thesai.org 1255 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

In terms of Normalized Cost, the two algorithms, SA-
CDCA and MA-CDCA, yield nearly identical costs for the cost
related objective function. However, the MA-CDCA algorithm
has a minor edge in terms of cost making it slightly more effec-
tive. Furthermore, the penalization cost for all priority groups
(GU, GG) and algorithms (SA, MA) consistently decreases
across the rounds. This indicates a general improvement in
performance over execution rounds in terms of penalized CS.
Indeed, in the GU group, where all equipment possesses a
uniform priority (πi = 1), the consistent decrease in penal-
ization cost by 2 units per round implies that two CS are
being served consistently each round. Similarly, in the GG
group, the decreasing rate in penalization cost implies that
the highest priority equipment is being served consistently,
leading to a reduction in penalties. In other words, the adopted
prioritization strategy effectively prioritizes high-priority CS.

D. Blockchain-based Caching Analysis

The third experiment investigates how replicating services
influences time overhead. To understand the effect of varying
fragmentation levels, four different chunks’ count scenarios
(σi = 1 to σi = 4) are considered, each with 1 and 3
duplicate scenarios for each of the σs services (σs ∈ {8, 16}).
This experiment aims to analyze how different levels of frag-
mentation and duplication impact the overall time overhead.
Throughout the experiment, all services are assigned the same
priority, and a fixed number of edge nodes (σn = 10) is
maintained. For each service, the Blockchain-related (BC)
Time Overhead is calculated as the maximum operational time
across all the involved blockchain nodes, as given by equation
3. The maximum is taken because BC operations are performed
in parallel. Then, the total time overhead for the system is
obtained by summing these maximum times for all σs services.

Fig. 6 shows how the Overall Blockchain-related Time
Overhead changes as the fragmentation progresses.

Fig. 6. Overall blockchain-related time overhead; σs ∈ {8; 16},
σi ∈ {1; 2; 3; 4}, σn = 10, Di ∈ {1; 3}.

As the services are divided into an increasing number of
chunks (σi), the time overhead associated with the blockchain
operations decrease. Indeed, with lower fragmentation levels,
the time overhead is relatively high due to fewer parallel
operations being performed. However, as the fragmentation

level increases, more chunks are processed in parallel across
the blockchain nodes, resulting in a reduction in processing
time. This trend is observed consistently, regardless of the
number of services or duplicates involved. Additionally, the
total time overhead clearly increases with a higher number
of services, as more cache blocs are processed. Conversely,
the total time overhead decreases with an increase in the
number of duplicates, as the redundant data allows for more
flexible decisions regarding the timing characteristics of the
caching blockchain nodes. Hence, the results clearly highlight
the positive impact of service fragmentation and replication
on reducing the time overhead caused by blockchain-related
operations. These insights are essential for the development
of efficient cache management mechanisms within the inves-
tigated blockchain-based systems.

IX. CONCLUSIONS AND PERSPECTIVES

This paper investigates the fusion of Multi-access Edge
Computing (MEC) capabilities with blockchain technology
to address the low-latency and safety requirements of Smart
Devices (SDs). The emphasis was placed on examining the role
of a split-duplicate-cache method within a secure blockchain-
enhanced MEC system, with the objective of enhancing ser-
vice provision. An optimization problem was derived and
solved with the objective to reduce the backhaul bandwidth
and the number of hops between the serving node and the
selected deployment node. The experimentation assessed the
performance of the three proposed solutions: MA-CDCA, SA-
CDCA, and BFS-CDCA. The analysis revealed that BFS-
CDCA performed best in smaller-scale settings, while MA-
CDCA and SA-CDCA showed efficient execution times, espe-
cially in configurations with a high number of CBICs, replicas,
ENs, and CSs. Additionally, it was demonstrated that the
fragmentation-replication methodology positively impacts the
Blockchain operational time overhead.

Future research could focus on evaluating the scalability of
MA-CDCA and SA-CDCA in larger, more complex scenarios
and assessing their real-world deployment in smart cities and
IoT networks. Additionally, exploring the security implica-
tions, energy efficiency, and impact on end-user experience
could provide valuable insights into the practical benefits and
limitations of these solutions.

REFERENCES

[1] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE access, vol. 8, pp. 116 974–117 017, 2020.

[2] Y. Hmimz, T. Chanyour, M. El Ghmary, and M. O. Cherkaoui Malik,
“Energy efficient and devices priority aware computation offloading to
a mobile edge computing server,” in 2019 5th International Conference
on Optimization and Applications (ICOA), 2019, pp. 1–6.

[3] T. Chanyour, Y. Hmimz, M. El Ghmary, and M. O. Cherkaoui Malki,
“Delay-aware and user-adaptive offloading of computation-intensive
applications with per-task delay in mobile edge computing
networks,” International Journal of Advanced Computer Science
and Applications, vol. 11, no. 1, 2020. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2020.0110190

[4] V. K. Kaliappan, S. Yu, R. Soundararajan, S. Jeon, D. Min, and
E. Choi, “High-secured data communication for cloud enabled secure
docker image sharing technique using blockchain-based homomorphic
encryption,” Energies, vol. 15, no. 15, p. 5544, 2022.

www.ijacsa.thesai.org 1256 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

[5] T. Chanyour and M. O. Cherkaoui Malki, “Deployment and
migration of virtualized services with joint optimization of
backhaul bandwidth and load balancing in mobile edge-cloud
environments,” International Journal of Advanced Computer Science
and Applications, vol. 12, no. 3, 2021. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2021.0120368

[6] G. Wang, C. Li, Y. Huang, X. Wang, and Y. Luo, “Smart contract-based
caching and data transaction optimization in mobile edge computing,”
Knowledge-Based Systems, vol. 252, p. 109344, 2022.

[7] J. Guo, C. Li, and Y. Luo, “Blockchain-assisted caching optimization
and data storage methods in edge environment,” The Journal of Super-
computing, vol. 78, no. 16, pp. 18 225–18 257, 2022.

[8] R. Aghazadeh, A. Shahidinejad, and M. Ghobaei-Arani, “Proactive
content caching in edge computing environment: A review,” Software:
Practice and Experience, vol. 53, no. 3, pp. 811–855, 2023.

[9] H. Chai, S. Leng, M. Zeng, and H. Liang, “A hierarchical blockchain
aided proactive caching scheme for internet of vehicles,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC). IEEE,
2019, pp. 1–6.

[10] S. Chen, Y. Zheng, W. Lu, V. Varadarajan, and K. Wang, “Energy-
optimal dynamic computation offloading for industrial iot in fog com-
puting,” IEEE Transactions on Green Communications and Networking,
vol. 4, no. 2, pp. 566–576, 2019.

[11] R. Malik and M. Vu, “On-request wireless charging and partial com-
putation offloading in multi-access edge computing systems,” IEEE
Transactions on Wireless Communications, vol. 20, no. 10, pp. 6665–
6679, 2021.

[12] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang, “Data caching
optimization in the edge computing environment,” IEEE Transactions
on Services Computing, vol. 15, no. 4, pp. 2074–2085, 2020.

[13] Z. Chen and Z. Zhou, “Dynamic task caching and computation of-
floading for mobile edge computing,” in GLOBECOM 2020-2020 IEEE
Global Communications Conference. IEEE, 2020, pp. 1–6.

[14] G. Zhang, S. Zhang, W. Zhang, Z. Shen, and L. Wang, “Joint service
caching, computation offloading and resource allocation in mobile edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 20, no. 8, pp. 5288–5300, 2021.

[15] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 2076–2085.

[16] P. Yuan, S. Shao, L. Geng, and X. Zhao, “Caching hit ratio maxi-
mization in mobile edge computing with node cooperation,” Computer
Networks, vol. 200, p. 108507, 2021.

[17] S. Zhong, S. Guo, H. Yu, and Q. Wang, “Cooperative service caching
and computation offloading in multi-access edge computing,” Computer
Networks, vol. 189, p. 107916, 2021.

[18] H. Feng, S. Guo, L. Yang, and Y. Yang, “Collaborative data caching

and computation offloading for multi-service mobile edge computing,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9408–
9422, 2021.

[19] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair and efficient
caching algorithms and strategies for peer data sharing in pervasive edge
computing environments,” IEEE Transactions on Mobile Computing,
vol. 19, no. 4, pp. 852–864, 2019.

[20] A. Asheralieva and D. Niyato, “Combining contract theory and lya-
punov optimization for content sharing with edge caching and device-
to-device communications,” IEEE/ACM Transactions on Networking,
vol. 28, no. 3, pp. 1213–1226, 2020.

[21] J. Yin, M. Zhan, Z. Zhang, L. Wang, D. Zhang, and X. Xiao, “Research
on the content sharing system for mobile edge caching networks: a
hierarchical architecture,” in 2022 15th International Congress on Image
and Signal Processing, BioMedical Engineering and Informatics (CISP-
BMEI). IEEE, 2022, pp. 1–6.

[22] S. Zarandi and H. Tabassum, “Federated double deep q-learning for
joint delay and energy minimization in iot networks,” in 2021 IEEE
International Conference on Communications Workshops (ICC Work-
shops). IEEE, 2021, pp. 1–6.

[23] L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou, and W. Xiao, “Creat:
Blockchain-assisted compression algorithm of federated learning for
content caching in edge computing,” IEEE Internet of Things Journal,
vol. 9, no. 16, pp. 14 151–14 161, 2020.

[24] T. Chanyour and A. Kaddari, “Blockchain-based distributed caching
with replication for efficient service provision in edge-cloud
environments,” in Proceedings of the 6th International Conference on
Networking, Intelligent Systems & Security, ser. NISS ’23. Larache,
Morocco: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3607720.3607768

[25] Z. Ma, S. Shao, S. Guo, Z. Wang, F. Qi, and A. Xiong, “Container
migration mechanism for load balancing in edge network under power
internet of things,” IEEE Access, vol. 8, pp. 118 405–118 416, 2020.

[26] F. Wilhelmi, S. Barrachina-Muñoz, and P. Dini, “End-to-end latency
analysis and optimal block size of proof-of-work blockchain applica-
tions,” IEEE Communications Letters, vol. 26, no. 10, pp. 2332–2335,
2022.

[27] T. Pflanzner, H. Baniata, and A. Kertesz, “Latency analysis of
blockchain-based ssi applications,” Future Internet, vol. 14, no. 10, p.
282, 2022.

[28] W. Pu, X. Li, J. Yuan, and X. Yang, “Resource allocation for millime-
ter wave self-backhaul network using markov approximation,” IEEE
Access, vol. 7, pp. 61 283–61 295, 2019.

[29] X. Li and C. Zhang, “Semi-dynamic markov approximation-based base
station sleep with user association for heterogeneous networks,” IET
Communications, vol. 17, no. 6, pp. 704–711, 2023.

[30] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

www.ijacsa.thesai.org 1257 | P a g e

