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Abstract—The formulation of the proposed methods and 

algorithms facilitates a comprehensive examination of intricate 

non-stationary thermo-mechanical processes in rods with varying 

cross-sectional geometries. Furthermore, it advances the 

theoretical framework for analyzing the thermo-mechanical 

properties of rod structures utilized in the machinery industry of 

the Republic of Kazakhstan. The creation of these intellectual 

products aids in the progression of this sector and fortifies the 

nation's sovereignty. This article delineates methods and 

algorithms for investigating non-stationary thermo-mechanical 

processes in rods with diverse cross-sectional shapes that influence 

global manufacturing technologies. The scientific and practical 

importance of this work lies in the application potential of the 

developed approach for examining non-stationary thermo-

mechanical characteristics of rod-like elements in various 

installations. The findings also enhance the scientific research 

direction in mechanical engineering. In conclusion, the article 

outlines future technological advancements, summarizes the 

research on non-stationary thermo-mechanical processes in rods 

with different cross-sectional geometries, and highlights 

significant economic benefits by facilitating the selection of 

reliable rods for specified operating conditions. This ensures the 

continuous and dependable operation of machinery used in 

mechanical engineering. 

Keywords—Heat flow; heat transfer; thermal expansion 

coefficient; thermal conductivity; modulus of elasticity 

I. INTRODUCTION 

The structural components of modern gas turbine power 
plants, nuclear and thermal power stations, hydrogen and rocket 
engines, internal combustion engines, and installations for deep 
processing of mineral resources and oils operate within a 
complex force and thermal environment. The reliable operation 
of these systems depends on the thermo-mechanical 
characteristics of their load-bearing elements. Typically, these 
elements are considered as rods of limited length and constant 
cross-sectional area. In related studies, temperature distribution 
along the length of such rods is determined based on 
fundamental thermophysics laws, considering the types of heat 
sources acting on them. Unlike those, the current work focuses 
on a horizontal rod of limited length and constant cross-
sectional area, fully thermally insulated on its lateral surface. A 

constant heat flux is applied to the left end, while the right end 
exchanges heat with the environment. 

Using fundamental energy conservation laws, this study 
determines the temperature distribution along the rod, its 
thermal elongation, the axial compressive force generated, and 
the distribution of elastic, temperature, and thermoelastic 
deformations and stresses, as well as the displacement field. 
Understanding the temperature distribution along the rod is 
crucial for the thermal stress state in bearing components of 
power plants and engines. 

Previous works such as [1] and [2] have explored the 
principles of elasticity theory and numerical methods for 
applied mechanics. The primary thermo-physics equations, 
detailed in [3], include mass, momentum, and energy 
conservation. Other studies, like [4], [5], and [6], have 
investigated contact heat transfer and the thermal stress-strain 
state under various conditions, using the finite element method 
[7]. Additionally, [8] and [9] have addressed stress-strain states 
in rigid plastic pipes and nonlinear finite element modeling, 
while [10] and [11] discussed adiabatic shear bands and 
nonlinear continuum mechanics. 

In [12], the temperature distribution within nuclear fuel rods 
was analyzed, highlighting the importance of maintaining fuel 
integrity. Research in [13], [14], and [15] derived 
computational relationships for thermal forces in rectangular 
cross-section rods. Other studies, such as [16], examined the 
thermal behavior of bars during hot rolling. The finite element 
method was also employed in [17] and [18] to model 
temperature fields in Terfenol-D rods, while [19] investigated 
unstable temperature distributions in cylindrical rods subjected 
to laser heat sources. 

This body of work supports the development of a 
mathematical model for the thermomechanical state of a 
variable cross-section rod, considering local temperature, 
thermal insulation, and heat exchange. Scientific works [20]-
[26] provide analytical solutions for compressive extensions 
and force distributions in thermally insulating rods, based on 
energy conservation principles. This paper diverges by using 
quadratic spline functions to address a specific practical 
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problem, offering a novel approach to understanding the 
thermomechanical behavior of such rods. 

II. MATERIALS AND METHODS 

Let's consider a rod of finite length clamped at both ends, 
whose cross-section varies along its length and is circular. In 
this case, the radius of the cross-section depends linearly on the 
coordinates. The radius of the left end is denoted by 𝑟0, the 
radius of the right end by 𝑟𝐿 , and the length of the rod by L. 
Thus, the radius as a function of the coordinate x is given by the 
following expression [20]: 

𝑟 =
𝑟𝐿−𝑟0

𝐿
⋅ 𝑥 + 𝑟0   (1) 

where x is the coordinate along the length of the rod, 
ranging from 0 (left end) to L (right end) (Fig. 1). 

 
Fig. 1. Calculation diagram of the problem. 

The temperature is fixed at the left clamped end as 𝑇(𝑥 =
0) = 𝑇1, and at the right end as 𝑇(𝑥 = 𝐿) = 𝑇2𝑛+1. The lateral 
surfaces of the sections (0 ≤ 𝑥 ≤ 𝑥1) , (𝑥2 ≤ 𝑥 ≤ 𝑥3) 
and  (𝑥4 ≤ 𝑥 ≤ 𝑥𝐿)  are thermally insulated. In the section 
(𝑥1 ≤ 𝑥 ≤ 𝑥2)  heat exchange with the environment occurs 
through the lateral surface area, with a heat transfer coefficient 
h, and an ambient temperature 𝑇co. Additionally, a heat flux of 
constant intensity q  is applied to the lateral surface area in the 
section (𝑥3 ≤ 𝑥 ≤ 𝑥4) The objective is to numerically 
investigate the influence of the temperature value 𝑇0 ∈
[(−150 𝐶) ÷ (+150 𝐶)] on the system.[21]. 

On the temperature distribution field (𝑇 = 𝑇(𝑥)), elastic 
displacement (𝑢 = 𝑢(𝑥)) , as well as components of 
deformation (𝜀𝑥 = 𝜀𝑥(𝑥); 𝜀𝑇 = 𝜀𝑇(𝑥);  𝜀 = 𝜀(𝑥)) and voltage 
(𝜎𝑥 = 𝜎𝑥(𝑥); 𝜎𝑇 = 𝜎𝑇(𝑥);  𝜎 = 𝜎(𝑥)) . To develop a 
mathematical model of the temperature distribution along the 
length of the considered partially thermally insulated rod of 
finite length, the rod is discretized using quadratic elements 
with three nodes. The total number of elements is denoted by n. 
Consequently, the total number of nodes will be (2𝑛 + 1). The 
discretization is performed in such a manner that the element 
boundaries coincide with the boundaries of the thermally 
insulated regions of the rod. For each element, a functional 
expression is derived that characterizes its total thermal energy. 
Specifically, for elements belonging to the thermally insulated 
sections of the rod, the functional Ii is given by: 

𝐼𝑖 = ∫
𝐾xx

2
(

𝜕𝑇

𝜕𝑥
)

2

dV
𝑉𝑖

,(𝑖 = 1, 2, ...)           (2) 

Here, Kxx represents the thermal conductivity coefficient 
along the x-axis, T is the temperature, and Vi  is the volume of 
the i-th element. This integral expression accounts for the 

thermal energy stored within each element due to the 
temperature gradient along the rod. Where 𝑉𝑖- volume of the i-
th element. 

For elements located on the section of the rod where heat 
exchange occurs through the lateral surface, the expression for 
the corresponding functional takes into account both the 
internal thermal energy due to the temperature gradient and the 
heat exchange with the environment [22]. 

𝐼𝑗 = ∫
𝐾xx

2
(

𝜕𝑇

𝜕𝑥
)

2

dV
𝑉𝑗

+ ∫
ℎ

2
(𝑇 − 𝑇co)2dS,

𝑆jПБП
(𝑗 = 1, 2, ...)   (3) 

Where 𝑉𝑗 - volume of the j-th element, 𝑆jПБП- area of the 

lateral surface of the j-th element. 

For elements located on a section of the rod where a heat 
flux of constant intensity q is supplied through the lateral 
surface, the functional expression that characterizes their total 
thermal energy includes contributions from both the internal 
thermal energy due to the temperature gradient and the external 
heat flux applied to the surface. 

𝐼𝑘 = ∫
𝐾xx

2
(

𝜕𝑇

𝜕𝑥
)

2

dV
𝑉𝑘

+ ∫ qT(𝑥)dS
𝑆kПБП

,(𝑘 = 1, 2, ...)  (4) 

The general expression for the functional of total thermal 
energy for a partially thermally insulated rod with a variable 
cross-section, accounting for local temperatures, heat flux, and 
heat transfer, can be derived by combining the contributions 
from different sections of the rod. These contributions include 
the internal thermal energy due to the temperature gradient, heat 
exchange with the environment, and the applied heat flux. 

𝐼 = ∑ 𝐼𝑡
𝑛
𝑡=1    (5) 

To construct a mathematical model of the temperature 
distribution field along the length of the rod, the functional 
representing the total thermal energy must be minimized with 
respect to the nodal temperature values. This minimization 
leads to a system of linear algebraic equations, which can be 
solved to obtain the temperature distribution 

𝜕𝐼

𝜕𝑇𝑡
= 0,(𝑡 = 2, 3, ..., 2𝑛)       (6) 

Because 𝑇1  and 𝑇2𝑛+1  are considered given, then the 
number of equations in system (6) will be equal to(2𝑛 + 1). 

Solving the system for different values 𝑇1and fixed values 
𝑇2𝑛+1, h,𝑇co, as well as q, the influence of 𝑇1 on the nature of 
the temperature distribution field along the length of the rod in 
question.[23]. 

After constructing the temperature distribution field along 
the length of the rod, the next step is to develop a mathematical 
model for the distribution field of elastic displacement, as well 
as the components of deformation (strain) and stress. This 
model is crucial for understanding the mechanical response of 
the rod to the thermal loads. To do this, the rod under study is 

discretized (𝑁 =
𝑛

2
) quadratic elements with three nodes. After 

obtaining the temperature distribution and determining the 
displacement field, the next step is to write the expression for 
the functional of the potential energy of elastic deformation for 
each element. This functional represents the elastic energy 

L 

x r 
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stored in the rod due to the deformation caused by both 
mechanical and thermal effects. 

П𝑖 = ∫
𝜎𝑥𝜀𝑥

2
dV

𝑉𝑖
− ∫ 𝛼ET(𝑥)dV

𝑉𝑖
, (𝑖 = 1, 2, ..., 𝑁) (7) 

Where 𝑉𝑖 - volume of the i-th element,𝑢 = 𝑢(𝑥)- elastic 

displacement distribution field, 𝜀𝑥 =
𝜕𝑢

𝜕𝑥
- distribution field of 

the elastic component of deformation, 𝜎𝑥 = 𝐸𝜀𝑥 = 𝐸 ⋅
𝜕𝑢

𝜕𝑥
- 

distribution field of the elastic component of stress, E - elastic 
modulus of the rod material, 𝛼 - coefficient of thermal 
expansion of the rod material, 𝑇 = 𝑇(𝑥) - temperature 
distribution field determined from the solution of system (6). 

For the considered rod as a whole, the expression for the 
potential energy of elastic deformation is as follows: 

П = ∑ П𝑖
𝑁
𝑖=1    (8) 

To construct a mathematical model for the distribution of 
elastic displacement along the length of the rod, the functional 
of the potential energy of elastic deformation is minimized with 
respect to the nodal values of the elastic displacement. This 
minimization leads to a system of linear algebraic equations 
that describe the elastic displacement field.[26]. 

𝜕П

𝜕𝑢𝑖
= 0,(𝑖 = 1, 2, ..., (2𝑁 + 1))  (6) 

Solving this system, the elastic displacement distribution 
field is determined 𝑢 = 𝑢(𝑥)  along the length of the rod in 
question. Based on them, the corresponding fields for the 
distribution of the components of deformation and stress are 
constructed as follows: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
; 𝜀𝑇 = −𝛼𝑇(𝑥); 𝜀 = 𝜀𝑥 + 𝜀𝑇 (10) 

𝜎𝑥 = 𝐸𝜀𝑥; 𝜎𝑇 = 𝐸𝜀𝑇; 𝜎 = (𝜎𝑥 + 𝜎𝑇) (11) 

To carry out numerical studies, we take the following as 
initial data: 

𝐿 = 20 (cm) ,𝑟0 = 1 (cm) ,𝑟ℓ = 2 (cm) ,𝑛 = 200,𝑁 =
𝑛

2
=

100 , 𝑞 = −1000 (W cm2⁄ ) , 𝐾xx = 100 (W (⁄ cm ⋅ С)) , ℎ =
10 (W (⁄ cm2 ⋅ С)),𝑇co = 40 (𝐶),𝑇401 = 150 (𝐶), and vary the 

value 𝑇1 ∈ [(−150 𝐶) ÷ (+150 𝐶)] in increments (−50 𝐶). 
Consider the following 7 options. In all options except value 

𝑇1, the values of all parameters are fixed. 

III. RESULTS AND DISCUSSION 

A. Option-1 

Consider the case when 𝑇1 = 100 (𝐶), i.e. previous value 
𝑇1 = 150 (𝐶) 𝑙 et's reduce it by 1/3. In this case, the nodal 
temperature values are given in Table I. The corresponding 
field temperature distribution is given in Fig. 2. From them it is 
clear that the highest nodal temperature value will be 𝑇277 =
262,089 (𝐶). The coordinate of this section 𝑥 = 13, 8 (см), that 
the phenomenon is caused by the supply to the closed side 
surface of the area1 2 ≤ 𝑥 ≤ 16 (см) heat flux rod of constant 
intensity  𝑞 = −1000 (W cm2⁄ ) . Reducing the nodal 
temperature values on the site 4 ≤ 𝑥 ≤ 8 (cm) the rod is due to 
the ongoing heat exchange with the surrounding closed side 
surface of this section. Therefore, the smallest nodal 

temperature value 𝑇89 = 85,603 (𝐶) . The coordinate of this 
section 𝑥 = 4,4 (см). 

 

Fig. 2. Field temperature distribution at different values 𝑇(𝑥 = 0) = 𝑇1. 

TABLE I. NODAL TEMPERATURE VALUES 

Nodal 

points 
)( CT 

 
Nodal 

points 
)( CT 

 
Nodal 

points 
)( CT 

 
Nodal 

points 
)( CT 

 

1 100,00 101 87,031 201 192,399 301 253,884 

2 99,793 102 87,267 202 193,712 302 253,199 

3 99,586 103 87,522 203 195,025 303 252,485 

... ... ... ... ... ... ... ... 

10 98,170 110 89,802 210 204,078 310 246,763 

20 96,229 120 94,601 220 216,659 320 236,416 

30 94,378 130 101,289 230 228,839 330 224,721 

40 92,611 140 110,009 240 240,639 340 213,328 

50 90,923 150 120,969 250 250,826 350 202,240 

60 89,309 160 134,441 260 257,685 360 191,444 

70 87,764 170 149,334 270 261,349 370 180,928 

80 86,283 180 163,729 280 261,960 380 170,683 

90 85,622 190 177,635 290 259,650 390 160,697 

100 86,812 200 191,078 300 254,545 400 150,961 

      401 150,000 

Table II presents the nodal displacement values. The 
corresponding field distribution of displacements along the 
length of the considered rod of variable cross-section is given 
in Fig. 3. From these it is clear that all sections of the rod under 
study move against the direction of the Ox axis. In this case, the 
section of the rod with the coordinate   𝑥 = 8,8 (cm)  moves 
more than others i.e. 𝑢89 = −0,0142153 (cm). 

Fig. 4 their corresponding distribution field along the length 
of the rod under consideration is given. From them it is clear 
that on the site 0 ≤ 𝑥 ≤ 8,75 (cm) of the rod, the behavior of 
the elastic component of the deformations will be compressive, 
and then tensile. At the same time, the greatest 
compressive𝜀𝑥corresponds near the left pinched end. Highest 
tensile value 𝜀𝑥 = 0,0018518 which corresponds to the section 
coordinate 𝑥 = 14,45 (cm) . Corresponding field distribution 
𝜀𝑇  along the length of the rod in question is given by Fig. 6. It 
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should be noted that along the entire length of the rod under 
study  𝜀𝑇  has a compressive character. Its greatest value 
corresponds to the section with coordinate 𝑥 = 13,85 (cm) . 
Here  𝜀𝑇 = −0,0032759. The corresponding field distribution 
is given in Fig. 6. From these it is clear that starting from the 

left pinched end of the rod𝜀falls monotonously. But along the 
entire length of the rod it has a compressive character. Its 
greatest value corresponds to the left pinched end of the rod. 
Near the left end its value is equal to 𝜀 = −0,0041062. 

TABLE II. NODAL DISPLACEMENT VALUES 

Nodal points )(смu  Nodal points )(смu  Nodal points )(смu  Nodal points )(смu  

1 0,000000 51 -0,010882 101 -0,0138770 151 -0,006699 

2 -0,000285 52 -0,011036 102 -0,0138180 152 -0,006517 

3 -0,000572 53 -0,011190 103 -0,0137557 153 -0,006337 

… … … … … … … … 

10 -0,002465 60 -0,012174 110 -0,0131918 160 -0,005114 

20 -0,004907 70 -0,013294 120 -0,0120301 170 -0,003543 

30 -0,007077 80 -0,014002 130 -0,0104933 180 -0,002187 

40 -0,009009 90 -0,014212 140 -0,0087232 190 -0,001037 

50 -0,010723 100 -0,013930 150 -0,0068811 200 -0,000084 

      201 0,000000 
 

 

Fig. 3. Distribution field displacement at different values 𝑇(𝑥 = 0) = 𝑇1. 

The field distribution of these stress components along the 
length of the rod is given in Fig. 5. From these materials it is 
clear that the elastic component of the stress 𝜎𝑥  location on 0 ≤
𝑥 ≤ 8,75 (cm) the rod behaves compressively, and then has a 
tensile character. Temperature component voltage 𝜎𝑇 along its 
entire length it has a compressive character. Its greatest value 
𝜎𝑇 = −6551,887 (kG сm2⁄ ). This corresponds to the section 
whose coordinate  𝑥 = 13,85 (cm) . Thermoelastic stress 
component  𝜎 = 𝜎𝑥 + 𝜎𝑇 along its entire length it has a 
compressive character. Its highest value corresponds to the left 
pinched end of the rod, i.e. 𝜎 = −8212,409 kG сm2⁄ ). Starting 
from left to right, it monotonically decreases and at the right 
pinched end it has the smallest value  𝜎 =
−2084,123 (kG сm2⁄ ) . In this case, the magnitude of the 
compressive force 𝑅2 = 𝜎𝑛(𝑥 = 0,05) ⋅ 𝐹𝑛 =
−25929,2052 (kG). Naturally, this is less than in the case𝑇1 =
150 (𝐶) by 5.4%. 

 
1 − 𝜀𝑥; 2 − 𝜀𝑇; 3 − 𝜀 = 𝜀𝑥 + 𝜀𝑇 

Fig. 4. Field distribution of strain components at 𝑇(𝑥 = 0) = 𝑇1 = 100 (𝐶). 

 
1 − 𝜎𝑥; 2 − 𝜎𝑇; 3 − 𝜎 = 𝜎𝑥 + 𝜎𝑇  

Fig. 5. Field distribution of voltage components at 𝑇(𝑥 = 0) = 𝑇1 =
100 (𝐶). 

Now consider the next option. 
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B. Option-2 

Compared to option 1, in this option the value of the set 
temperature  𝑇1 𝑙 et's reduce it by three times, i.e. let's 
accept 𝑇1 = 50 (𝐶). In this case, the nodal temperature values 
are presented in Table III. The temperature distribution 
corresponding to the field along the length of the rod under 
study is shown in Fig. 2. In this case, the highest temperature 
value will be   𝑇278 = 260,034 (𝐶) . This temperature value 
corresponds to the section of the rod whose coordinate 𝑥 =
13,85 (cm). Naturally, this is due to the supplied heat flow of 
constant intensity and power𝑞 = −1000 (W сm2⁄ )on the side 
surface areas 12 ≤ 𝑥 ≤ 16 (cm) rod. 

The distribution field of the displacement field is given in 
Fig. 3. From these data it is clear that all sections of the rod 
under study move against the direction of the Ox axis. When 
the section moves the most, the coordinate of which 𝑥 =
8,7 (cm). This section moves against the direction of the Ox 
axis by 𝑢88 = −0,0148657 (cm). 

TABLE III. NODAL TEMPERATURE VALUES ( )(501 CT  ) 

Nodal 

points 
)( CT 

 
Nodal 

points 
)( CT 

 
Nodal 

points 
)( CT 

 
Nodal 

points 
)( CT 

 

1 50,000 101 75,942 201 188,655 301 252,280 

2 50,292 102 76,389 202 189,993 302 251,613 

3 50,583 103 76,850 203 191,330 303 250,917 

... ... ... ... ... ... ... ... 

10 52,578 110 80,437 210 200,555 310 245,321 

20 55,314 120 86,740 220 213,374 320 235,151 

30 57,922 130 94,577 230 225,785 330 223,627 

40 60,411 140 104,153 240 237,808 340 212,401 

50 62,790 150 115,724 250 248,213 350 201,475 

60 65,064 160 129,596 260 255,281 360 190,837 

70 67,242 170 144,773 270 259,149 370 180,475 

80 69,329 180 159,441 280 259,958 380 170,380 

90 71,831 190 173,611 290 257,840 390 160,540 

100 75,506 200 187,308 300 252,922 400 150,947 

The field-corresponding distribution of these components 

along the length of the rod in question is shown in Fig. 6. 

 
1 − 𝜀𝑥; 2 − 𝜀𝑇; 3 − 𝜀 = 𝜀𝑥 + 𝜀𝑇 

Fig. 6. Field distribution of strain components at𝑇(𝑥 = 0) = 𝑇1 = 50 (𝐶). 

From these data it is clear that the behavior of the elastic 
deformation component in the area 0 ≤ 𝑥 ≤ 8,65 (cm)the rod 
will be compressive, and then tensile. In this case, the largest 
compressive elastic component of deformations 𝜀𝑥 falls close to 
the left clamped end of the test rod of variable cross-
section,  𝜀𝑥 = −0,0032431. Greatest tensile 𝜀𝑥 corresponds to 
the section with coordinate 𝑥 = 14,45 (cm). In this section the 
value  𝜀𝑥 will  𝜀𝑥 = 0,0019087 . Behavior of the temperature 
component  𝜀𝑇  along the entire length of the rod will be 
compressive. At the same time, the greatest compressive 
𝜀𝑇 corresponds to the section with coordinate 𝑥 = 13,85 (𝑐𝑚). 
In this section 𝜀𝑇 = −0,0032504. 

Unlike 𝜀𝑥  and  𝜀𝑇 field distribution of the thermoelastic 
component of deformations 𝜀 = 𝜀𝑥 + 𝜀𝑇 will be described by a 
smooth curve. Along the entire length of the rod it has a 
compressive character. Moreover, its greatest value  𝜀 =
−0,0038718 corresponds closer to the left pinched one, and the 
smallest 𝜀 = −0,0009826 closer to the right end. 

Nodal values of all three stress components (𝜎𝑥,𝜎𝑇 and 𝜎 =
𝜎𝑥 + 𝜎𝑇) their field distributions along the length of the rod of 
variable cross-section under study are shown in Fig. 7. 

 
1 − 𝜎𝑥; 2 − 𝜎𝑇; 3 − 𝜎 = 𝜎𝑥 + 𝜎𝑇 

Fig. 7. Field distribution of voltage components at  𝑇(𝑥 = 0) = 𝑇1 =
50 (𝐶). 

From these results it is clear that the values of these stress 
components are directly proportional to the values of the 
corresponding strains. In addition, in this case the value of the 
compressive force will be 𝑅3 = 𝜎𝑛(𝑥 = 0,05) ⋅ 𝐹𝑛 =
−24448,9304 (kG) . This value is 10.8% less than the 
compressive force that occurs when 𝑇1 = 150 (𝐶). 

C. Option-3 

Now consider the fourth option, when  𝑇1 = 0 (𝐶) . The 
corresponding field temperature distribution along the length of 
the test rod of variable cross-section is given in Fig. 2. 

The corresponding displacement distribution fields along 
the length of the rod under study are shown in Fig. 3. It should 
be noted here that, except for the pinched ends, all sections of 
the rod move against the direction of the Ox axis. At the same 
time, in this direction the section whose coordinate moves more 
𝑥 = 8,6 (cm). The displacement value of this section 𝑢87 =
−0,0155244 (cm). 
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The corresponding field distribution along the length of the 
rod under study is shown in Fig. 8. 

 
1 − 𝜀𝑥; 2 − 𝜀𝑇; 3 − 𝜀 = 𝜀𝑥 + 𝜀𝑇 

Fig. 8. Field distribution of strain components at 𝑇(𝑥 = 0) = 𝑇1 = 0 (𝐶). 

From these results it is clear that in the area 0 ≤ 𝑥 ≤
8,55 (cm)behavior of the rod elastic component of deformation 
𝜀𝑥 will be compressive, and then tensile. In this case, the 
greatest compressive 𝜀𝑥 corresponds near the left pinched end. 
The highest value of the compressive elastic component of 
deformation 𝜀𝑥 = −0,0036275 , and tensile 𝜀𝑥 = 0,0019657 
and it corresponds to the section with coordinate 𝑥 =
14,45 (cm) rod. Behavior of the temperature component of 
deformation 𝜀𝑇 along the entire length of the rod will be 
compressive. In this case, its lowest value corresponds near the 
left pinched end, and its highest value   𝜀𝑇 = −0,0032249 
corresponds to the section with coordinate 𝑥 = 13,85 (cm) rod. 
As can be seen from Fig. 8 field distribution of the 
thermoelastic component of deformation 𝜀 = 𝜀𝑥 + 𝜀𝑇  is 
described by a smooth monotonically increasing curve. At the 
same time, behavior𝜀along the entire length of the rod under 
study will be compressive. Its greatest value occurs near the 
pinched left end of the rod and will be equal to 𝜀 = −0,0036374. 
Its smallest value corresponds closer to the right pinched end of 
the rod under study. 

 
1 − 𝜎𝑥; 2 − 𝜎𝑇; 3 − 𝜎 = 𝜎𝑥 + 𝜎𝑇 

Fig. 9. Field distribution of voltage components at 𝑇(𝑥 = 0) = 𝑇1 = 0 (𝐶). 

The field distribution of these voltage components is given 
in Fig. 9. Naturally different behavior matches behavior 𝜀𝑥,𝜀𝑇 
and 𝜀 = 𝜀𝑥 + 𝜀𝑇. The values of these stress components will be 

proportional to the corresponding strain components. In this 
case, the compressive force values  𝑅4  will be equal 𝑅4 =
𝜎𝑛(𝑥 = 0,05) ⋅ 𝐹𝑛 = −22968,6555 (kG) . This is less than 
𝑅1(in the case when 𝑇1 = 150 (𝐶)) by 16.2%. 

Now let's look at the fifth option. 

D. Option-4 

In this version we will accept 𝑇1 = −50 (𝐶) . The 
corresponding temperature distribution field along the length of 
the rod of variable cross-section under study is shown in Fig. 2. 
In this case, the maximum nodal temperature values 𝑇max =
𝑇279 = 255,968 (𝐶)  and it corresponds to the cross section of 
the rod in question whose coordinate  𝑥 = 13, 9 (cm). 

The corresponding distribution field on Fig. 3. In this case, 
all sections of the rod move against the direction of the Ox axis. 
In this direction the greatest movement of the section of the rod 
whose coordinate is 𝑥 = 8,4 (cm). The displacement value of 
this section 𝑢max = 𝑢85 = −0,0161891 (cm). 

The field-corresponding distributions of these strain 
components are shown in Fig. 10. 

 
1 − 𝜀𝑥; 2 − 𝜀𝑇; 3 − 𝜀 = 𝜀𝑥 + 𝜀𝑇 

Fig. 10. Field distribution of strain components at𝑇(𝑥 = 0) = 𝑇1 = −50 (𝐶). 

From these results it is clear that the behavior of the elastic 
component of deformations 𝜀𝑥  𝑙 ocation on 0 ≤ 𝑥 ≤
8,35 (cm) of the rod under study will be compressive, and then 
tensile. Highest compressive value 𝜀𝑥 = −0,0040118  and it 
corresponds near the left pinched end of the rod. In this case, 
the largest tensile value of the strain component 𝜀𝑥 =
0,0020226  and it corresponds to the section with 
coordinate  𝑥 = 14,45 (cm) rod. Unlike previous options, the 
behavior of the temperature component of 
deformations  𝜀𝑇  will be alternating. Location on 0 ≤ 𝑥 ≤
2,05 (cm) core behavior 𝜀𝑇  will be tensile, and then it behaves 
compressively. In this case, the greatest tensile value   𝜀𝑇  
observed near the left pinched end and it is equal 𝜀𝑇 =
0,0006089 . Location on 2,15 ≤ 𝑥 ≤ 𝐿 = 20 (cm)  rod 
behavior  𝜀𝑇  will be compressive. Maximum compressive 
temperature component of deformation  𝜀𝑇 will be equal 𝜀𝑇 =
−0,0031994 and it occurs in the section of the rod whose 
coordinate is  𝑥 = 13,95 (cm) . Behavior of the thermoelastic 
component of deformations 𝜀 = 𝜀𝑥 + 𝜀𝑇 along the entire length 
of the rod will have a compressive character. It should be noted 
that the values 𝜀 starting from the left pinched end, it 
monotonically decreases along the length of the studied rod of 
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variable cross-section. The highest value 𝜀 =
−0,0034029 which corresponds to the left pinched end of the 
rod. Near the right pinched end of the test rod, the value 𝜀  will 
be the smallest and will be equal 𝜀 = −0,0008636. 

The distribution of these stress components corresponding 
to them along the length of the rod of variable cross-section 
under study is given in Fig. 11. 

 
1 − 𝜎𝑥; 2 − 𝜎𝑇; 3 − 𝜎 = 𝜎𝑥 + 𝜎𝑇 

Fig. 11. Field distribution of voltage components at 𝑇(𝑥 = 0) = 𝑇1 =
−50 (𝐶). 

Location on 0 ≤ 𝑥 ≤ 8,35 (cm) behavior of the elastic 
component of stress of the rod under study  𝜎𝑥  will be 
compressive. In this case, the highest compressive stress 
𝜎𝑥  observed near the left pinched end and will 𝜎𝑥 =
−8023,682 (kG cm2⁄ ). On another part of the rod 8,45 ≤ 𝑥 ≤
𝐿 = 20 (cm)behavior 𝜎𝑥  will be stretchy. Moreover, its greatest 
value 𝜎𝑥 = 4045,210 (kG cm2⁄ ) observed near the section 
whose coordinate 𝑥 = 14,45 (cm). Unlike 𝜎𝑥  behavior of the 
temperature component of voltage  𝜎𝑇  location on  0 ≤ 𝑥 ≤
2,05 (cm) the rod under study will be tensile. More over, its 
greatest value 𝜎𝑇 = 1217,790 (kG cm2⁄ )observed near the left 
pinched end. On the rest of the behavior rod  𝜎𝑇  will be 
compressive. The highest value of compressive stress   𝜎𝑇 =
−6398,852 (kG cm2⁄ )  observed in the section whose 
coordinate 𝑥 = 13,95 (cm) . Behavior of the thermoelastic 
stress component 𝜎 = 𝜎𝑥 + 𝜎𝑇  along the entire length of the 
rod under study will have a compressive character. Its greatest 
value   𝜎(𝑥 = 0,05) = −6805,893 (kG cm2⁄ )  observed at the 
left pinched end of the rod. As the length of the rod 
increases𝜎its value decreases monotonically and near the right 
pinched end   𝜎(𝑥 = 19,95) = −1727,199 (kG cm2⁄ ) , 

i.e.
𝜎(𝑥=0,05)

 𝜎(𝑥=19,95)
= 3,94 times. From the obtained values 𝜎 = 𝜎𝑥 +

𝜎𝑇 let's calculate the value of the compressive  𝑅5 = 𝜎𝑛(𝑥 =
0,05) ⋅ 𝐹𝑛 = −21488, 3838 (kG). 

Now consider the next sixth option. 

E. Option-5 

In this option, we assume that the given value is  𝑇1 =
−100 (𝐶). In this case, the field temperature distribution along 
the length of the considered rod of variable cross-section is 
shown in Fig. 2. From Fig. 2 it is clear that the highest 
temperature value, 𝑇280 = 253,952 (𝐶)and it corresponds to the 
section of the rod whose coordinate 𝑥 = 13,95 (cm). 

The corresponding field of elastic displacement of sections 
of the rod is shown in Fig. 3. From Fig. 3 it can be seen that all 
sections of the rod under study move against the direction of the 
Ox axis. Moreover, in this direction the greatest displacement 
belongs to the section with the coordinate 𝑥 = 8,3 (cm). The 
displacement value of this section will be 𝑢84 =
−0,0168614 (cm). 

 
1 − 𝜀𝑥; 2 − 𝜀𝑇; 3 − 𝜀 = 𝜀𝑥 + 𝜀𝑇 

Fig. 12. Field distribution of strain components at 𝑇(𝑥 = 0) = 𝑇1 =
−100 (𝐶). 

The field-corresponding displacement of these deformation 
components along the length of the rod under study is shown in 
Fig. 12. From these tables and the figure it is clear that the 
behavior of the elastic component of deformations along the 
length of the rod under study will be alternating in sign. For 
example, on the site 0 ≤ 𝑥 ≤ 8,25 (cm) rod character 𝜀𝑥 will 
be compressive, and then it has a tensile character. Maximum 
compressive elastic deformation 𝜀𝑥 = −0,0043962  observed 
near the left pinched end where the temperature is set  𝑇1 =
−100 (𝐶) . In this case, the maximum tensile elastic 
deformation  𝜀𝑥 = 0,0020795  corresponds to the section  𝑥 =
14,45 (cm). On the contrary, the behavior of the temperature 
component of deformation 𝜀𝑇 in the initial section of the rod 
under study will have a tensile character, and then a 
compressive character. The highest value of the tensile 
temperature component of deformation  𝜀𝑇 =
0,0012277 corresponds near the left pinched end of the rod 
under study. At that time, the highest value of the compressive 
temperature component of deformation 𝜀𝑇  will 𝜀𝑇 =
−0,0031744 which belongs to the section whose coordinate 
𝑥 = 13,95 (cm)the rod under study. In Fig. 12, it is clear that 
the behavior of the thermoelastic component of 
deformations  𝜀 = 𝜀𝑥 + 𝜀𝑇  along the entire length of the rod 
under study will be compressive. In this case, from the left to 
the right end of the rod it will decrease monotonically. Highest 
value 𝜀 = −0,0031685 corresponds to the section near the left 
pinched end of the rod. 

The distribution of these voltage components corresponding 
to the field is given in Fig. 13. The behavior of these stress 
components will correspond to the behavior of similar strain 
components. In this case, the value of the compressive 
force𝑅6 = 𝜎𝑛(𝑥 = 0,05) ⋅ 𝐹𝑛 = −20008,1089 (𝑘𝐺). 
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1 − 𝜎𝑥; 2 − 𝜎𝑇; 3 − 𝜎 = 𝜎𝑥 + 𝜎𝑇 

Fig. 13. Field distribution of voltage components at  𝑇(𝑥 = 0) = 𝑇1 =
−100 (𝐶). 

Finally, let's look at the last option. 

F. Option-6 

In this option the value  𝑇 1  let's accept 𝑇1 = −150 (𝐶) . 
Field temperature distribution along the length of the test rod of 
variable cross-section in the case 𝑇1 = −150 (𝐶) shown in 
Fig.  2. In this case, the highest temperature value 𝑇280 =
251,950 (𝐶) corresponds to the section whose coordinate𝑥 =
13,95 (𝑐𝑚). 

The corresponding displacement field is shown in Fig. 3. 
From these results it is clear that all sections of the rod except 
the clamped ones move against the direction of the Ox axis. In 
this case, the greatest movement 𝑢83 = −0,0175417 (cm) 
which corresponds to the section coordinate𝑥 = 8,2 (cm). 

 
1 − 𝜀𝑥; 2 − 𝜀𝑇; 3 − 𝜀 = 𝜀𝑥 + 𝜀𝑇 

Fig. 14. Field distribution of strain components at 𝑇(𝑥 = 0) = 𝑇1 =
−150 (𝐶). 

The field-corresponding distributions of these strain 
components are shown in Fig. 14. From Fig. 14 it is clear that 
the behavior of the elastic component of deformations 𝜀𝑥 
location on 0 ≤ 𝑥 ≤ 8,15 (cm)will be compressive, and then 
tensile. In this case, the greatest value of the compressive 
force  𝜀𝑥 observed near the left pinched end of the rod and 
will  𝜀𝑥 = −0,0047805 . The largest value of the tensile 
component of deformation 𝜀𝑥 = 0,0021365 corresponds to the 
section  𝑥 = 14,45 (cm) . From Fig. 15 it is clear that the 
behavior of the temperature components of deformations 𝜀𝑇 at 
the initial section 0 ≤ 𝑥 ≤ 3,85 (cm)the rod will be tensile, and 
then compressive. In this case, the greatest value is tensile 𝜀𝑇 =

0,0018464 which is observed near the left pinched end of the 
rod. The highest compressive value  𝜀𝑇 = −0,0031494 which 
corresponds to the section whose coordinate 𝑥 = 13,95 (cm). 
From the results given Fig. 14 it is clear that the behavior of the 
thermoelastic component of deformations  𝜀 = 𝜀𝑥 + 𝜀𝑇 along 
the entire length of the rod will be compressive. Moreover, as x 
increases, its value decreases monotonically. Highest 
value𝜀observed near the left pinched end of the rod and will be 
equal to 𝜀 = −0,0029341. 

Table IV presents the values of the stress components 
x  , 

T ,  
Tx    in the cross-sections of the studied rod.The 

field-corresponding distribution of these components along the 
length of the test rod of variable cross-section is shown in 
Fig. 15. 

 
1 − 𝜎𝑥; 2 − 𝜎𝑇; 3 − 𝜎 = 𝜎𝑥 + 𝜎𝑇 

Fig. 15. Field distribution of voltage components at 𝑇(𝑥 = 0) = 𝑇1 =
−150 (𝐶). 

TABLE IV. NODAL VALUES OF x
 , T , Tx  

 AT 

)(1501 CT 
 

Nodal 

points 

Nodal points 

x  

Nodal points 

T  

Nodal points 

Tx    

1 -9561,083 3692,868 -5868,216 

2 -9447,384 3579,169 -5868,216 

3 -9219,750 3466,593 -5753,157 

... ... ... ... 

10 -8136,232 2708,653 -5427,579 

50 -3066,817 -757,061 -3823,878 

100 1653,829 -4305,735 -2651,906 

150 4214,083 -6160,725 -1946,642 

200 2283,025 -3772,275 -1489,250 

It should be noted here that the behavior of these stress 
components will be like the corresponding strain components. 
Naturally, the value of the stress components will be 
proportional to the values of the corresponding strain 
components. In this case, the corresponding value of the 
compressive force  𝑅7 = 𝜎𝑛(𝑥 = 0,05) ⋅ 𝐹𝑛 =
−18527,8372 (kG). 

By analyzing the seven options considered, you can build a 
comparative Table I. From this table it can be seen that with 
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decreasing value 𝑇1 the magnitude of the resulting compressive 
force R decreases. For large negative values 𝑇1 the magnitude 
of the compressive force is noticeably reduced. Thus, setting 
the values  𝑇1 it is possible to control the magnitude of the 
compressive force R arising from the distribution of the 
temperature field in such a way that this rod element of the 
variable cross-section of the structure does not collapse. We 
will also build Fig. 16, where a curve is given that characterizes 
the relationship between the resulting compressive force R and 
the values of the given temperature 𝑇(𝑥 = 0) on the left 
pinched end. It should be noted here that the radius of the left 
end of the rod is two times smaller than the right one. 

 

Fig. 16. Dependency between𝑇(𝑥 = 0)and R. 

TABLE V. INFLUENCE VALUE 𝑇(𝑥 = 0) = 𝑇1BY THE MAGNITUDE OF THE 

RESULTING COMPRESSIVE FORCE R 

No. 

p/p 

𝑻𝟏 

(𝑪) 

𝑻max 

(𝑪) 

Coord. 

sections 

(cm) 

𝒖max 

(cm) 

Coord. section 

(cm) 

1 150 264.153 𝑥 = 13,75 -0.0135704 𝑥 = 8,9 

2 100 262,089 𝑥 = 13,80 -0.0142153 𝑥 = 8,8 

3 50 260,034 𝑥 = 13,85 -0.0148657 𝑥 = 8,7 

4 0 257,993 𝑥 = 13,85 -0.0155244 𝑥 = 8,6 

5 -50 255,968 𝑥 = 13,90 -0.0161891 𝑥 = 8,4 

6 -100 253,952 𝑥 = 13,95 -0.0168614 𝑥 = 8,3 

7 -150 251,950 𝑥 = 13,95 -0.0175417 𝑥 = 8,2 

IV. CONCLUSION 

As a result, the following tasks were completed: 

1) Algorithms have been compiled for studying local heat 

flows and heat transfer problems transmitted in the fields of 

temperature, displacement, deformation and stress on a variable 

rod with a cross-sectional area of finite length; 

2) Algorithms and methods have been created for 

determining the thermal field of the side surface of an insulated 

column under the influence of heat flow and heat transfer. 

The scientific and practical significance of the work lies in 
the possibility of using the developed approach to study the 
non-stationary thermophysical characteristics of plant elements 
having the shape of a rod with different cross-sectional 
configurations. The results also contribute to the development 
of research areas in mechanical engineering. The use of 

developed methods and algorithms for studying non-stationary 
thermophysical processes in rods with different transverse 
shapes provides significant savings, as they allow one to select 
a reliable rod for given operating conditions. This makes it 
possible to ensure continuous and reliable operation of 
installations used in mechanical engineering. 

In the Republic of Kazakhstan, similar developments and 
research are practically absent. 

The development of the proposed methods and algorithms 
makes it possible to study in detail complex non-stationary 
thermophysical processes in rods with different cross-sectional 
shapes. In addition, they make it possible to theoretically 
develop an appropriate methodology for studying the 
thermophysical characteristics of rod structures used in the 
engineering industry of the Republic of Kazakhstan. The 
development of such smart products contributes to the 
development of this industry and strengthens the country's 
sovereignty. 
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