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Abstract—To address the challenges of high parameter 

quantities and elevated computational demands in high-

resolution network, which limit their application on devices with 

constrained computational resources, we propose a lightweight 

and efficient high-resolution network, LE-HRNet. Firstly, we 

designs a lightweight module, LEblock, to extract feature 

information. LEblock leverages the Ghost module to 

substantially decrease the number of model parameters. Based 

on this, to effectively recognize human keypoints, we designed a 

Multi-Scale Coordinate Attention Mechanism (MCAM). MCAM 

enhances the model's perception of details and contextual 

information by integrating multi-scale features and coordinate 

information, improving the detection capability for human 

keypoints. Additionally, we designs a Cross-Resolution Multi-

Scale Feature Fusion Module (CMFFM). By optimizing the 

upsampling and downsampling processes, CMFFM further 

reduces the number of model parameters while enhancing the 

extraction of cross-branch channel features and spatial features 

to ensure the model's performance. The proposed model's 

experimental results demonstrate accuracies of 69.3% on the 

COCO dataset and 88.7% on the MPII dataset, with a parameter 

count of only 5.4M, substantially decreasing the number of model 

parameters while preserving its performance. 
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Ghost module; attention mechanism; multi-scale feature fusion 

I. INTRODUCTION 

Human pose estimation, as a core topic in the field of 
computer vision, aims to recognize and locate keypoints of the 
human body from images or videos. The key to this task lies in 
accurately understanding and analyzing human posture and 
movement, which is crucial for computer vision to comprehend 
and process complex scenes. Human pose estimation plays an 
important role in numerous application areas, such as sports 
analysis, human-computer interaction, and security monitoring 
[1] [2]. 

The research on human pose estimation has evolved from 
early model-based and traditional learning algorithm-based 
methods, such as graphical models and handcrafted feature 
extraction [3], to recent deep learning-based methods. Deep 
learning methods, particularly Convolutional Neural Network 
(CNN) [4], have significantly improved the accuracy and 
robustness of techniques for recognizing and locating key- 
points of the body. This heatmap-based approach effectively 
handles complex scenes and multi-person pose estimation 
tasks. Since heatmaps can intuitively represent the positional 
probability of each keypoint, the model can accurately 

recognize key points even in cases of partial occlusion or 
overlap of the human body. 

In recent years, numerous classic human pose estimation 
algorithms have emerged [5][10], achieving significant 
advancements in recognizing and locating human keypoints in 
images or videos. Particularly, High-resolution network 
(HRNet) [11], with their unique network structure and high-
resolution feature representation capabilities, can achieve 
effective human pose estimation while maintaining high 
accuracy, making them widely applicable in various scenarios. 
However, due to their complex network structure and large 
number of parameters and high computational demands, high-
resolution networks face difficulties when deployed on 
resource-constrained devices. Lite-HRNet [12] effectively 
reduces the model's parameter count by incorporating a 
Conditional Channel Weighting module. Dite-HRNet [13] 
introduces dynamic lightweight processing, multi-scale context 
information extraction, and long-range spatial dependency 
modeling in high-resolution networks, ensuring model 
performance with lower parameters. X-HRNet [14] 
incorporates Spatially Unidimensional Self-Attention (SUSA) 
for lightweight processing, significantly reducing model 
parameters without compromising accuracy. These methods 
have made significant progress in model lightweighting. 
However, human pose estimation is a task highly sensitive to 
positional information, and lightweighting high-resolution 
networks can lead to the loss of critical human keypoint 
positional information. During multi-scale feature fusion, 
frequent upsampling and downsampling operations introduce a 
computational burden. Furthermore, downsampling reduces the 
spatial detail in feature maps, which is difficult to recover 
during upsampling. 

In response to the issues mentioned above, we propose a 
lightweight and efficient high-resolution network, LE-HRNet. 
We utilize the Ghost module to reduce the model's parameter 
count and introduce a novel attention mechanism in LE-HRNet 
to enhance the detection of keypoint positional information. 
This approach ensures model performance while lowering both 
the parameter count and computational load. Additionally, we 
optimize the multi-scale feature fusion stage to further decrease 
computational demands and enhance the extraction of channel 
and spatial dimensional feature information. The main 
contributions of this paper are summarized as follows: 

 We designed a lightweight module, LEblock, for 
extracting feature information. We used the Ghost 
module instead of standard convolution to reduce the 
model's parameter count, and designed a Multi-Scale 
Coordinate Attention Mechanism to enhance the 
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detection capability of human key points, ensuring the 
model's performance. 

 We optimized the multi-scale feature fusion stage and 
proposed a Cross-Resolution Multi-Scale Feature 
Fusion Module. This module optimizes the upsampling 
and downsampling processes, and by learning cross-
branch channel information and spatial features, it 
ensures the model's performance while further reducing 
the model's parameter count. 

 We conducted experimental validation on the COCO 
dataset and MPII dataset to demonstrate the 
effectiveness of the proposed method. 

The structure of this paper is organized as follows: Section 
II introduces the main methods proposed in this paper. Section 
III conducts experimental verification on the COCO and MPII 
datasets and analyzes the experimental results. Section E 
summarize the research results and discuss the future work of 
LE-HRNet. 

II. PROPOSED METHOD 

HRNet is widely used for visual tasks that require detailed 
features, such as human pose estimation and semantic 
segmentation. Unlike most existing methods that recover high-
resolution features from low-resolution features, HRNet 
connects high-resolution to low-resolution subnets in parallel, 
maintaining high-resolution feature representation throughout 
the entire network. It extracts feature information using 
residual block [15] and achieves multi-scale information 
exchange through multi-scale feature fusion. This design 
allows HRNet to effectively retain and utilize high-resolution 
detailed feature information, enabling more precise capture of 
image details during the multi-scale feature fusion process. 
HRNet processes multiple resolution feature maps in parallel 
within its structure and facilitates information interaction and 
fusion between feature maps of different resolutions, allowing 
it to simultaneously acquire local detailed information and 
high-level semantic information. 

Although HRNet has made significant progress in terms of 
performance, its high parameter count and computational 
demands make it challenging to apply to devices with 
constrained computational resources, hindering its practical 
application value. To address this issue, we propose a 
lightweight high-resolution network, LE-HRNet, based on 
HRNet, aimed at human pose estimation. Its structure is shown 
in Fig. 1. 

LEblock Add

Stage1 Stage2 Stage3 Stage4

Conv CMFFM

 
Fig. 1. LE-HRNet structure diagram. 

As shown in Fig. 1, we use LEblock instead of residual 
blocks for feature extraction. This block effectively lowers the 
number of model parameters and computational demands 
while minimizing performance degradation, ensuring the 
model's ability to detect keypoints. Between different 
resolution feature maps, we optimize the sampling process and 
use CMFFM for multi-scale feature fusion. This process 
further reduces the parameter count and computational load, 
and enhances performance by learning cross-resolution channel 
and spatial information. 

A. ELblock 

HRNet uses residual block as the feature extraction module. 
While residual block effectively enhance the model's feature 
representation capability, they also bring a large number of 
parameters and computational load. Therefore, this paper 
proposes a lightweight block, LEblock, based on the residual 
block. The structure of LEblock is shown in Fig. 2. We 
substitute the conventional 3×3 convolution in the residual 
block with the Ghost module [16] to reduce the number of 
model parameters and computational overhead. To minimize 
performance loss and enhance the detection capability of 
human keypoints while lightweighting the model, we designed 
and added a Multi-Scale Coordinate Attention Mechanism, 
which improves the detection of human keypoints with a 
smaller computational load. 

3×3

3×3

BN+ReLU

BN

Ghost module

Ghost module

BN+ReLU

BN

MCAM

 

Fig. 2. The left is the residual block and the right is the ELblock. 

B. Ghost Module 

In traditional convolution operations, a large number of 
parameters and computations are generated, many of which are 
redundant. Ghost module optimizes the convolution process to 
obtain more image features with fewer parameters, thereby 
achieving model lightweighting. Ghost module decomposes 
the standard convolution process into three main steps: first, 
the number of feature map channels is reduced to generate the 
initial feature map; second, the initial feature map undergoes 
linear transformations to generate Ghost feature maps; finally, 
the initial feature map and the generated Ghost feature maps 
are concatenated to form the final output feature map. The 
specific transformation process of the Ghost module is shown 
in Fig. 3. 
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Fig. 3. The Ghost module. 

Assuming the input feature map size is C×H×W, the 
number of output channels is N, and the convolution kernel 
size is k×k, the number of parameters for standard convolution 
is: 

convParam k k C N   
   (1) 

Among them, C and N are usually quite large, which results 
in a large number of parameters. 

To address this, Ghost Convolution compresses the number 

of channels in the first step, reducing the channels to /m N s
. Next, linear transformations are used to generate Ghost 

feature maps with the number of channels ( 1) /m s N s   . 

Finally, the feature maps obtained from the first two steps are 
concatenated along the channel dimension using an identity 
operation, resulting in an output feature map with N channels. 

Assuming k d  and s is much smaller than C, the number of 

parameters for Ghost module can be calculated as follows: 

( 1)GhostParam k k C m s d d m        
  (2) 

Compared to standard convolution, the parameter 

compression ratio 
paramr for Ghost Convolution is: 

1

conv

param

Ghost

Param s C
r s

Param s C


  

 
   (3) 

Through the Ghost module, the number of parameters can 
be reduced by a factor of s, achieving a significant reduction in 
parameter count. 

C. Multi-Scale Coordinate Attention Mechanism 

Although using the Ghost module to replace 3×3 
convolution can decrease the parameter count and enhance 
computational efficiency, it also weakens the model's feature 
representation capability, leading to performance degradation 
and affecting the final prediction results. To enhance the 
detection capability of the model, attention mechanisms are 
commonly employed. SE (Squeeze-and-Excitation) [17] and 
ECA (Efficient Channel Attention) [18] enhance feature 
representation by re-weighting the channels of feature maps. 
The SE block integrates information between channels through 
global average pooling and fully connected layers, while the 
ECA enhances features through local cross-channel 
interactions. CBAM (Convolutional Block Attention Module) 
[19] combines channel attention and spatial attention, 
extracting global feature information through global average 
pooling and max pooling, capturing inter-channel dependencies 
and important spatial information, further enhancing feature 
representation and model performance. Human pose estimation 

is a task highly sensitive to positional information, making this 
information crucial. Coordinate Attention Mechanism[20] 
encodes spatial information by performing global average 
pooling in horizontal and vertical directions on the input 
feature map, and then fuses channel information to generate 
coordinate attention weights, re-weighting the input feature 
map. This not only enhances channel feature representation but 
also captures critical spatial information, thereby improving the 
model's feature expression capability and overall performance. 
However, Coordinate Attention Mechanism promotes channel 
fusion by using channel dimension reduction and expansion, 
which, although reducing the number of parameters, results in 
the loss of feature information during the reduction process. 
Additionally, 1×1 convolution are limited in their ability to 
extract local feature information and overlook the positional 
dependencies between different keypoints. Therefore, we 
propose a Multi-Scale Coordinate Attention Mechanism 
(MCAM) rove the model's ability to detect human keypoints. 
The structure of MCAM is shown in Fig. 4. 

MCAM enhances the semantic and spatial information of 
feature maps by using feature grouping, parallel sub-branches, 
and multi-scale feature learning, producing better pixel-level 
attention without losing channel dimension information. For 
the input feature map, to avoid performance loss caused by 
channel dimension reduction, the input feature map is divided 
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Fig. 4. The structure of multi-scale coordinate attention mechanism. 

into multiple sub-feature maps to extract different semantic 

information. Assuming the input feature map is 
inputF  and the 

output feature map is 
outputF , the generated multiple sub-

feature maps are as follows: 

1 2, ,..., ( )submap submap submapg inputF F F Group F
    (4) 

For each sub-feature map, three parallel sub-branches are 
used to extract coordinate position information and multi-scale 
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feature information. The first two sub-branches use operations 
similar to the coordinate attention mechanism, performing 
global average pooling in the vertical and horizontal directions 
to generate direction-aware attention maps. Then, using 
concatenation and 1×1 convolution, channel fusion is promoted 
without channel dimension reduction. Finally, the fused 
coordinate information feature maps are output through the 
sigmoid activation function. The formula is as follows: 

( )

( )

GAP

x x submapi

GAP

y y submapi

z f F

z f F

 


     (5) 

1 1([ , ])mid conv x yF f z z

   

(6) 

( )

( )

x mid

y mid

g F

g F








    (7) 

_Coord i submapi x yF F g g  

   

(8) 

In another sub-branch, we split into three branches and 
apply depthwise convolution with different kernel sizes of 3×3, 
5×5, and 7×7. Smaller kernels can extract local feature 
information, while larger kernels, due to their larger receptive 
fields, can more easily extract relevant features between 
different keypoints. By integrating multi-scale feature 
information from local to global, we can enhance the model's 
ability to detect human keypoints in complex scenes, further 
improving the overall performance and robustness of the 
model. Finally, multi-scale feature maps are generated through 
concatenation and 1×1 convolution. The formula is as follows: 

3 5 7

1 1 3 3 3 5 5 5 7 7 7

, , ( )

([ ( ), ( ), ( )])

splite submapi

multi DW DW DW

F F F f F

F f f F f F f F   




       (9) 

The feature map with coordinate information is modeled in 
the channel dimension through GAP and Softmax, and fused 
with the multi-scale feature map to ultimately output the 
feature map that integrates multi-scale feature information and 
positional information. The formula is as follows: 

max _

1 2

( ( ( )) )

[ , ,..., ]

i GAP soft Coord i mulit

outputi i submapi

output output output outputg

f f F F

F F

F F F F

 



  


 


   (10) 

Compared to existing attention mechanisms, MCAM not 
only offers higher computational efficiency but also avoids the 
compression and expansion in the channel dimension, which 
reduces the loss of feature information. MCAM effectively 
enhances the detection capabilities for human keypoints by 
integrating coordinate positional information with multi-scale 
feature information. 

D. Cross-Resolution Multi-Scale Feature Fusion Module 

HRNet enhances the network's understanding of feature 
maps from local to global by integrating multi-scale feature 
information through a process of multi-scale feature fusion, 
improving recognition accuracy and adaptability. However, 
frequent upsampling and downsampling operations increase 
the computational burden. Additionally, these sampling 
processes can lead to the loss of spatial feature information, 
adversely affecting the model's performance. 
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Fig. 5. The structure of cross-resolution multi-scale feature fusion module.

To address this, this paper optimizes the sampling process 
and proposes a cross-resolution multi-scale feature fusion 
module, as shown in Fig. 5. Taking the downsampling process 
as an example, a depthwise convolution with a stride of 2 is 
applied to the high-resolution branch feature map to reduce its 
computational load. Global average pooling is then performed 
along the channel dimension, reducing the number of channels 
to 1, ensuring that the information of each channel is uniformly 

preserved in a single feature map, thereby maintaining the 
essential information of the channels. The pooled feature map 
is then duplicated N times, where N is the number of channels 
of the low-resolution feature map. 

For the low-resolution branch feature map, global average 
pooling is performed along the spatial dimension, and the 
channel weights are generated through a fully connected layer, 
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ReLU, and Sigmoid functions. The channel weight information 
is multiplied with the newly generated low-resolution feature 
map to achieve fusion, resulting in the optimized downsampled 
feature map. This process reduces the computational load 
during downsampling and significantly enhances the response 
to important feature channels while suppressing the response to 
unimportant channels by learning cross-resolution channel 
weight information. The optimized downsampling computation 
formula is as follows: 

3 3

(Re ( ( ( ))))

( ( ( )))

FC GAP low R

down copy CGAP DW high R

LU f f F

F f f f F

 





 




   (11) 

Assuming the size of the high-resolution feature map is
M H W   and the size of the low-resolution feature map is

1 1N H W  , the compression ratio flopsr  of the computational 

load in the downsampling process is: 

1 1

1 1

3 3 1

3 3

new

flops

original

Flops H W M
r

Flops H W N M N

   
  

    
  (12) 

From the formula, it can be seen that this optimization 
effectively reduces the computational load in the 
downsampling process. The upsampling process is similar to 
the downsampling process. The processing flow for 
upsampling is as follows: 

(Re ( ( ( ))))

( ( ( )))

FC GAP high R

up upsamp copy CGAP low R

LU f f F

F f f f F

 










   (13) 

We optimize the upsampling and downsampling processes 
in two main steps. The first step involves channel-wise 
aggregation compression, where information from different 
channels is merged into one channel. This representation 
encapsulates key information from multiple channels, resulting 
in a comprehensive feature representation. The second step 
focuses on learning cross-resolution channel weight 
information and using these weights to model the to-be-
sampled feature maps along the channel dimension. This 
optimizes feature selection and reorganization, enhancing the 
model's representational ability and processing efficiency. 
These steps not only effectively reduce the computational load 
but also enhance the model's adaptability and sensitivity to 
features of different scales. By adjusting channel weights, we 
can provide varying degrees of emphasis on features at 
different levels, thus balancing detail and global information 
better during the upsampling or downsampling processes. 

To retain more spatial information and enhance the ability 
to extract spatial features, we draw on the ideas of CBAM and 
use a spatial attention mechanism to extract spatial 
information. First, global average pooling and global max 
pooling are used to capture the average feature information and 
salient features of the feature map, respectively. These pooled 
features are then combined to form a more comprehensive 

feature representation. A 7×7 convolution is applied to further 

extract richer spatial feature information, and a Sigmoid 
activation function is used to generate spatial weights. These 
spatial weights are fused with the original feature map to 

produce a weighted and enhanced feature map, effectively 
preserving and highlighting the spatial details in the feature 
map. 

III. EXPERIMENT 

A. Datasets and Evaluation Metric 

COCO (Common Objects in Context) [21] is a large-scale 
dataset widely used in computer vision, particularly suitable for 
human pose estimation, object detection, and image 
segmentation. This dataset offers rich scene complexity and 
extensive category coverage, including over 200,000 images 
and 250,000 human-annotated object in-stances. For human 
pose estimation, COCO meticulously annotates 17 keypoints 
cov-ering the major joints and parts of the body, making it an 
essential resource for re-searching and developing advanced 
human pose recognition algorithms. 

MPII [22] dataset is a large-scale dataset focused on human 
pose estimation, containing over 25,000 images spanning 410 
types of activities. Each image is detailed and annotated with 
16 human body keypoints, including the head, neck, shoulders, 
elbows, hands, hips, knees, and feet. These images are derived 
from everyday life scenes, encompassing both individual and 
multi-person interactions, making MPII not only extensively 
used in academic research but also crucial for developing 
practical application algorithms in pose recognition. 

In the COCO dataset, the performance of human pose 
estimation is primarily assessed using Object Keypoint 
Similarity (OKS). OKS is an evaluation metric that compares 
the similarity between predicted keypoints and true keypoints. 
The formula for calculating OKS is as follows: 

2

2 2
exp ( 0)

2

( 0)

i
ii

i

ii

d
v

s k
OKS

v





 
 

 







    (14) 

Where
id is the Euclidean distance between the ground truth 

and predicted keypoint 𝑖; 𝑘 is the constant for keypoint 𝑖; 𝑠 is 
the scale of the ground truth object; 𝑣𝑖 is the  is the ground 
truth visibility flag for keypoint 𝑖; 𝛿(𝑣𝑖 > 0) is the Dirac-delta 
function which computes as 1 if the keypoint i is labeled, 
otherwise 0. 

OKS can be understood as a normalized measure of the 
error between the predicted and true annotations for each 
keypoint, which takes into account the size of the human body 
and the specific sensitivity of each keypoint. Based on OKS, 
the COCO dataset also calculates Average Precision (AP) at 
multiple thresholds, ranging from OKS=0.50 (looser matching) 
to OKS=0.95 (very strict matching). 

MPII uses PCK (Percentage of Correct Keypoints) as the 
main metric to evaluate model performance. PCK measures 
the percentage of predicted keypoints that match the true 
keypoints within a certain distance threshold. The specific 
calculation formula is as follows: 

1

1
( ( ( , ) max( , ))

n

i ii
PCK dist p q h w

n
 


 

 (15) 
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Where 𝑛  is the number of keypoints; 𝑝𝑖  is the predicted 

position of the i-th keypoint;
iq  is the actual position of the i-th 

keypoint; 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞𝑖) is the distance between the pre- dicted 

keypoint 𝑝𝑖  and the actual keypoint 𝑞𝑖 ; 𝛼  is a predefined 
threshold, and ; 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞𝑖) < 𝛼  means the prediction is 
considered accurate. 

B. Experimental Setup 

The experimental setup for this paper is as follows: Intel(R) 
Xeon(R) Silver 4310 CPU @ 2.10GHz, 64GB RAM, two RTX 
A5000 GPU with 24GB VRAM each, Ubuntu 22.04.3 LTS, 
Python 3.8. The deep learning framework used is Pytorch 3.9, 
with CUDA 11.5 for accelerated computing. 

When training on the COCO training set, images from the 
COCO training set are cropped and scaled to a fixed size of 
256×192. Adam is used as the optimizer during network 
training, with an initial learning rate of 0.001. The learning rate 
is reduced to 0.0001 at the 170th epoch, and then to 0.00001 at 
the 210th epoch, with a total of 230 epochs of training. During 
training, random image rotation and horizontal flipping are also 
used for data augmentation. When training on the MPII dataset, 
cropped images are uniformly scaled to a fixed size of 
256×256. Other training details are the same as those for the 
COCO dataset, using the same parameter settings and 
experimental environment. 

C. Result and Analysis 

The performance comparison of LE-HRNet with other 
human pose estimation algorithms on the COCO validation set, 
with an input size of 256×192, is shown in Table I. As seen 
from the table, compared to HRNet, LE-HRNet reduces the 
number of parameters and computational load by 81.1% and 
78.7% respectively, while the AP only decreases by 4.1%. LE-
HRNet achieves a significant reduction in model parameters 
and computational load with minimal performance loss, 
maintaining a balance between model performance and 
parameter size. Compared to Hourglass and CPN, LE-HRNet 
has lower parameters and higher performance. Compared to 
SimpleBaseline, LE-HRNet's AP is only 1.1% lower, but its 
number of parameters is much lower than SimpleBaseline. 
Compared to lightweight models like MobileNetV2[23] and 
ShuffleNetV2[24], LE-HRNet's AP is higher by 4.7% and 
9.4% respectively, and LE-HRNet also has an advantage in 
terms of parameters and computational load. Compared to even 
smaller lightweight models like Lite-HRNet, Dite-HRNet, and 
X-HRNet, LE-HRNet has more parameters, but its AP is 
higher by 2.1%, 1.0%, and 1.9% respectively. Unlike these 
models which aggressively pursue lightweight design, LE-
HRNet focuses more on balancing parameter size and 
performance, ensuring model performance while reducing the 
number of parameters. 

With an input size of 384 × 288, the performance 
comparison on the COCO test set is shown in Fig. 6. LE-
HRNet achieved an AP score of 72.1, outperforming other 
networks while maintaining a balance between performance 
and computational load. 
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Fig. 6. Performance comparison of different algorithms on the COCO test 

set. 

 

Fig. 7. Performance comparison of inference speed of different models. 

The comparison of inference speed between some methods 
and LE-HNet was conducted in this paper. The testing of 
lightweight models emphasizes performance under limited 
resources, so the tests in this paper were conducted using only 
the CPU, specifically an Intel(R) Xeon(R) Silver 4310. The 
tests were carried out under consistent experimental conditions, 
and the results are shown in  Fig. 7. Compared to other models, 
LE-HRNet achieves an inference speed of 9.6 FPS while 
maintaining high performance, making it faster than Lite-
HRNet, Dite-HRNet, and X-HRNet. Although other 
lightweight models, such as ShuffleNetV2, have slightly faster 
inference speeds, their accuracy is lower and they fail to 
accurately detect human key points. LE-HRNet offers a better 
balance, and the verification of its inference speed 
demonstrates that LE-HRNet is more suitable for edge 
computing platforms. 
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TABLE I.  PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON 

THE COCO VALIDATION SET 

Model 
Params

/106 

GFlop

s/G 

AP/

% 

AP50

/% 

AP75

/% 

APM

/% 

APL

/% 

AR/

% 

Hourglass 25.1 14.3 66.
9 

- - - - - 

CPN 27.0 6.20 68.

6  

- - - - - 

SimpleBa

seline 

34.0 8.90 70.

4  

88.6 78.3 67.1 77.2 76.

3 

HRNet 28.5 7.10 73.
4   

89.5 80.7 70.2 80.1 78.
9 

MobileNe

tV2 
9.6 1.48 

64.

6  
87.4 72.3 61.1 61.1 

70.

7 
ShuffleNe

tV2 
7.6 1.28 

59.

9  
85.4 66.3 56.6 66.2 

66.

4 

Lite-
HRNet 

1.8 0.31 
67.
2  

88.0 75.0 64.3 73.1 
73.
3 

Dite-

HRNet 
1.8 0.3 

68.

3  
88.2 76.2 65.5 74.1 

74.

2 

X-HRNet 2.1 0.3 
67.

4 
87.5 75.4 64.5 73.3 

73.

5 

LE-
HRNet 

5.4 1.51 69.
3 

88.6 77.2 66.1 74.3 74.
6 

Table II shows the comparison results with different human 
pose estimation algorithms on the MPII validation set. 
Compared to HRNet, LE-HRNet significantly reduces the 
number of parameters and computational load, with only a 

3.6% decrease in accuracy. Compared to MobileNetV2 and 
ShuffleNetV2, LE-HRNet has lower parameters and an 
accuracy improvement of 3.0% and 5.6%, respectively. 
Compared to Lite-HRNet, Dite-HRNet, and X-HRNet, LE-
HRNet improves accuracy by 1.7%, 1.1%, and 1.4%, 
respectively, with a slight increase in parameters and 
computational load. This demonstrates that LE-HRNet 
maintains model performance while ensuring low parameter 
count. 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON 

THE MPII VALIDATION SET 

Model Params/106 GFLOPs/G PCKh/% 

MobileNetV2 9.6 1.9 85.4 

ShuffleNetV2 7.6 1.7 82.8 

Lite-HRNet 1.8 0.4 87.0 

Dite-HRNet 1.8 0.4 87.6 

X-HRNet 2.1 0.4 87.3 

HRNet 28.5 7.6 92.3 

LE-HRNet 5.4 1.44 88.7 

1.94
1.7

0.42 0.46 0.43

7.23

1.39
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Fig. 8. Performance comparison of different algorithms on the MPII test set. (a) Comparison of different algorithms on GFLOPs and PCK; (b) Recognition 

accuracy of different algorithms at each keypoint.

Fig. 8 shows the performance comparison of different 
algorithms on the MPII test set. From the results in the figure, 
LE-HRNet has higher keypoint recognition accuracy compared 
to other lightweight algorithms. Particularly for some 
challenging keypoints such as Wrist, Knee, and Ankle, the 
accuracy improvement is more significant than for other 
keypoints. This is mainly due to the MCAM, which 

significantly enhances the detection capability for human 
keypoints. 

We randomly selected a set of images from the COCO 
dataset for visual analysis. This set includes various scenarios 
such as single-person and multi-person scenes, as shown in 
Fig. 9. From the figure, it can be seen that LE-HRNet can 
accurately identify human keypoints in single-person scenarios. 
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Fig. 9. Visualization results on the COCO dataset.

In multi-person scenes, especially when there is overlap 
between body parts, LE-HRNet, with its strong feature 
extraction capabilities, can accurately infer the positions of the 
occluded keypoints by extracting multi-scale feature 
information and utilizing other visible keypoints. The visual 
analysis of different scenarios demonstrates that LE-HRNet 
maintains excellent detection performance in various complex 
scenes. 

D. Ablation Experiment 

To validate the effectiveness of the proposed method, we 
conducted ablation experiments on the COCO dataset for 
LEblock and CMFFM. The experimental results are shown in 
Table III. By replacing the residual block with LEblock, the 
model's parameter count is reduced by 76.4%, while the AP 
score only decreases by 4.5%, demonstrating that the 
lightweight module LEblock can significantly reduce the 
model's parameter count with minimal performance loss. 
Building on this, we inserted CMFFM for multi-scale feature 
fusion. The model's parameter count was further reduced, and 
the AP increased by 0.4%. This improvement is due to the 
optimization of the sampling process and the decomposition of 
the convolution process, which reduced the parameter count. 
Additionally, learning cross-resolution channel weight 
information effectively models channel features, and the spatial 
attention mechanism preserves more spatial detail features. 

TABLE III.  ABLATION EXPERIMENTS ON LEBLOCK AND CMFFM ON THE 

COCO DATASET 

Model LEblock CMFFM Params AP/% 

HRNet × × 28.5M 73.4 

LE-HRNet 
√ × 6.7M 68.9 

√ √ 5.4M 69.3 

To further validate the effectiveness of MCAM, we 
conducted ablation experiments on MCAM, with the results 
shown in Table IV. With the addition of MCAM, the parameter 
count increased by only 1.4M, while performance improved by 
1.5%, demonstrating that MCAM effectively enhances the 
model's ability to detect human keypoints. 

TABLE IV.  ABLATION EXPERIMENTS ON MCAM 

Model Params AP/% 

+ELblock 6.7M 68.9 

+ELblock 

   (No MCAM) 
5.3M 67.4 

E. Discussion 

To enable human pose estimation on mobile devices or 
edge computing devices, we propose a series of methods to 
streamline the high-resolution network. High-resolution 
networks are widely used in scenarios such as human pose 
estimation and semantic segmentation due to their high 
recognition accuracy. However, the high parameter count and 
computational complexity of these models make it difficult to 
deploy them on devices with limited computational resources. 

To address this, we propose replacing the standard 3 × 3 

convolution with a Ghost module to reduce computational load, 
and we further optimize the upsampling and downsampling 
processes to improve computational efficiency. Additionally, 
to maintain model performance while reducing computation, 
we introduce a multi-scale coordinate attention mechanism that 
effectively minimizes performance loss due to lightweighting. 
Through this series of methods, we have successfully 
streamlined the high-resolution network and achieved 
favorable inference speed on low-power devices. 
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IV. CONCLUSION AND FUTURE WORK 

To address the issues of large parameter count and high 
computational complexity in high-resolution network models, 
we propose a lightweight and efficient high-resolution network 
module. We use the Ghost module to replace 3×3 convolution 
to reduce the parameter count and computational load of the 
model. Simultaneously, to minimize the loss of feature 
information during the lightweight process and ensure model 
performance, we designed a Multi-Scale Coordinate Attention 
Mechanism. This mechanism effectively enhances the 
detection of human keypoints by integrating multi-scale feature 
information and coordinate positional information without 
compromising performance. Finally, we optimized the multi-
scale feature fusion stage, modeling both channel and spatial 
features while reducing the parameter count, further enhancing 
the model's performance. Experiments on multiple datasets 
validated the effectiveness of our proposed method. 

In future work, we will deploy LE-HRNet on mobile 
devices and apply it in physical education, such as high jump, 
long jump, and swimming. By using LE-HRNet to identify key 
points of students' movements and calculate similarity with 
standard actions, we will be able to score students' movements 
and provide improvements for non-standard actions, which will 
aid in students' sports training. 
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