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Abstract—Intelligent transport system (ITS) is the 

development direction of future transport systems, in which 

intelligent vehicles are the key components. In order to protect the 

safety of intelligent vehicles, machine learning techniques are 

widely used in ITS. For intelligent protection in ITS, the study 

introduces an improved driving behaviour modelling method 

based on Bagging Gaussian Process Regression. Meanwhile, to 

further promote the accuracy of driving behaviour modelling and 

prediction, Convolutional Neural Network-Long and Short-term 

Memory Network-Gaussian Process Regression are used for 

effective feature extraction. The results show that in the straight 

overtaking scenario, the mean absolute error, root mean square 

error and maximum absolute error of the improved Bagging 

Gaussian process regression method are 0.5241, 0.9547 and 

10.7705, respectively. In the corner obstacle avoidance scenario, 

the improved Bagging Gaussian process regression method is only 

0.6527, 0.9436 and 14.7531. Besides, the mean absolute error of the 

Convolutional Neural Network-Long and Short-term Memory 

Network-Gaussian process regression algorithm is only 0.0387 in 

the case of the input temporal image frame number of 5. This 

denoted that the method put forward in the study can provide a 

more accurate and robust modeling and prediction of driving 

behaviours in complex traffic environments, and it has a high 

application potential in the field of safety and protection of 

intelligent vehicles. 
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I. INTRODUCTION 

With the rapid development of science and technology, 
intelligent transport systems have become a hot topic in today’s 
society. In the intelligent transport system, intelligent vehicles 
play a crucial role [1]. However, with the popularity of 
intelligent vehicles, their safety problems are becoming more 
and more prominent. Driving behaviour modelling methods can 
help intelligent vehicles achieve safer and more efficient driving 
by predicting and simulating vehicle and driver behaviours. 
Traditional driving behaviour modelling methods include rule-
based methods, probabilistic model-based methods, and so on. 
However, rule-based methods are difficult to adapt to the 
complex and changing traffic environment, and the formulation 
of rules often requires a lot of manual intervention and lacks 
adaptivity. Meanwhile, probabilistic model-based methods need 
to learn from a large amount of historical data, and model 
building requires high computational resources and time costs 
[2, 3]. Aiming at such problems, the study will explore the 
machine learning techniques for protecting intelligent vehicles 
in ITS, and introduce an improved driving behaviour modelling 
method based on Bagging Gaussian Process Regression 

(Bagging GPR), in order to achieve more accurate driving 
behaviour modelling and prediction In order to achieve more 
accurate modelling and prediction of driving behaviour, 
Convolutional Neural Network-Long Short-Term Memory-
Gaussian Process Regression (CNN-LSTM-GPR) is used for 
effective feature extraction, to achieve good results in the field 
of intelligent vehicle security protection field to achieve good 
results. The study is composed of six main sections. The 
introduction is given in Section I. Section II gives details about 
the previous research work. Section III introduces the advanced 
driving behaviour modelling methods, the improved Bagging 
GPR driving behaviour modelling method is introduced in the 
first section, and the CNN-LSTM-GPR-based feature extraction 
method is presented in the second section. Section IV focuses on 
the experimental validation of the studied proposed method. 
Section V and Section VI summarize and discuss the 
experimental results and propose future directions. The 
contribution of the research is the introduction of advanced 
driving behaviour modelling methods, which help to improve 
the accuracy of driving behaviour modelling and prediction. 
These methods have important application value in the safety 
protection of intelligent vehicles and can effectively protect the 
safe driving of intelligent vehicles. 

II. LITERATURE REVIEW 

GPR is a nonparametric model for regression analysis of data 
with a Gaussian process prior, which is widely used. Deringer V 
L et al. put forward the GPR machine learning method to 
investigate the nature of atoms in chemistry and materials 
science. The method constructs an interatomic potential or force 
field using a Gaussian approximation of the potential framework 
and can be fitted with arbitrary scalars, vectors and tensors. The 
outcomes denoted that the method can effectively and accurately 
predict atomic properties [4]. Liu and other scholars developed 
two related data-driven models for the prediction of the effective 
capacity of lithium-ion batteries with a systematic understanding 
of the covariance function in GPR. The results illustrated that 
the raised models can accurately predict the battery capacity 
under different cycling modes [5]. Band et al. In order to 
accurately predict the groundwater level in arid areas, the 
researchers proposed to use the Support Vector Regression, 
GPR and its combination with Wavelet Transform for the 
prediction. The results show that the wavelet transform method 
combined with GPR has a strong performance advantage in 
GWL prediction compared to GPR [6]. Hewing L et al. 
researchers raised a model prediction control method with GPR 
for modelling and control of nonlinear dynamical systems. The 
method integrates the nominal system with the additional 
nonlinear part of the dynamics modelled as GPR. The findings 
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indicated that the method can effectively assess the residual 
uncertainty [7]. Zhang Y’s team developed a GPR-based 
predictive model for the optimisation of the magneto-thermal 
effect and relative cooling power of ferromagnetic lanthanum 
manganites. The model mainly searches for the correlation 
between RCP and lattice parameters by statistical learning. The 
findings denoted that the GPR model can predict RCP values 
efficiently and cost-effectively [8]. 

Driver behaviour recognition can detect and correct driver 
violations in time, reduce the accident rate and play an important 
role in vehicle protection. Xing and other scholars proposed a 
deep convolutional neural network-based driver activity 
recognition system for driver behaviour recognition and safe 
driving. The system utilizes a Gaussian mixture model to 
segment the original image to extract the driver’s body from the 
background. The outcomes denoted that the raised system can 
accurately recognize seven driver activities with an average 
accuracy of 81.6% [9]. McDonald et al. found that an advanced 
driver assistance system needs to have a proper understanding 
of the driver’s state, and therefore proposed a method for 
inference of self-vehicle driver’s intention. The results show that 
the interaction between these modules has a significant impact 
on the lane change intention inference system [10]. Kabzan et 
al. researchers put forward a learning-based method to the 
problem of self-driving racing car control. The method was 
improved using a simple nominal vehicle model and GPR was 
used to account for model uncertainty. Test results show that on 
a full-size AMZ driverless race car, the method can improve the 
model and cut down the lap time by 10% [11]. Researchers such 
as Mozaffari have proposed a deep learning-based method for 
the problem of behavioural prediction of autonomous vehicles, 
which predicts the future state of a nearby vehicle by observing 
the surrounding environment. This approach provides better 
performance in more complex environments than traditional 
methods [12]. Hoel C J’s team introduced a generalised 
framework that combines planning and learning in order to 
better address the tactical decision-making challenges of 
autonomous driving. The approach, based on the AlphaGo Zero 
algorithm and extended to continuous state spaces, shows better 
performance than the baseline approach [13]. 

In summary, numerous researchers and scholars have carried 
out extensive studies on GPR methods as well as driver 
behaviour recognition methods, but few scholars have applied 
improved GPR methods to driver behaviour recognition. 
Therefore, the study introduces the advanced GPR method for 
driver behaviour modelling, which is utilised with a view to 

achieving intelligent vehicle prediction and avoiding potential 
hazards. 

III. RESULTS 

To protect the safety of intelligent vehicles, the study 
proposes an improved Bagging GPR driving behaviour 
modelling method, which uses GPR to design the base regressor 
and Bagging method to improve the whole effectiveness of the 
algorithm, as well as self-sampling method for the generation of 
new datasets. In order to achieve more accurate driving 
behaviour modelling and prediction, the study adopts CNN-
LSTM-GPR for effective feature extraction, which mainly uses 
CNN to extract features from the input time-series image data, 
and inputs the extracted features into LSTM for processing 
Finally, the processed features are used as inputs for model 
fitting and prediction using GPR. 

A. GPR-Based Modelling of Intelligent Vehicle Driving 

Behaviour 

In intelligent transportation systems, to deal with different 
complex driving environments and promote adaptability and 
safety, driving behaviour modelling techniques play a key role. 
Based on this, the study introduces the GPR algorithm, which is 
a non-parametric Bayesian learning method that can be used for 
regression problems and is suitable for dealing with problems 
with uncertainty [14, 15]. In driving behaviour modelling, the 
perceived state quantities usually include the vehicle’s attitude, 
speed, acceleration and other sensor data, and the GPR 
algorithm can be used to learn these perceived state quantities to 
build a model of the driving behaviour and perform real-time 
prediction and control. Therefore, the GPR algorithm is an 
effective method for modelling driving behaviour based on 
perceptual state quantities. However, the basic GPR algorithm 
has the issue of imitating a large amount of data and uneven 
distribution, to improve the algorithm’s effectiveness, the study 
further proposes an improved Bagging GPR approach for 
driving behaviour modelling. The method firstly uses GPR to 
design the base regressor, and then uses the Bagging method to 
further improve the algorithm’s whole effectiveness. The main 
process is to first randomly sample the driving behaviour in the 
training set by self-sampling method with playback, then train N 
GPR base learners using GPR, and lastly integrate the outputs of 
each base learner by averaging method to obtain the predicted 
values [16]. The driving behaviour modelling framework based 
on Bagging GPR is shown in Fig. 1. 
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Fig. 1. A driving behaviour modeling framework based on Bagging GPR. 
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In the Bagging GPR-based driving behaviour modelling 
method, the self-sampling method is a method to generate a new 
dataset from an initial dataset. The specific steps of the method 
are, firstly, given a dataset containing m samples. Then, m 
random sampling operations are performed. In each sampling, a 
sample is randomly selected and placed into the new dataset, 
which is then placed back into the initial dataset. According to 
the limiting formula for probability estimation of the self-
sampling method, it can be deduced that about 36.82% of the 
samples in the initial dataset never appeared in the new dataset, 
while about 63.2% of the samples appeared in the new dataset, 
which is calculated as shown in Eq. (1). 

1 1
lim(1 )m

m m e
         (1) 

A Gaussian process is a set of random variables, where any 
finite amount of random variables satisfy the joint Gaussian 
distribution.GPR mainly uses kernel methods for nonlinear 
mapping, and is a nonparametric model with good generalisation 
performance and global mapping ability. Given a training 
sample set D, where each element is a binary group containing 

an input vector is  and an output vector ia . The GPR model’s 
output is worked out as shown in Eq. (2). 

( )a f s          (2) 

In Eq. (2),  denotes the error, which satisfies the Gaussian 
distribution, and its representation is shown in Eq. (3). 

2~ (0, )nN        (3) 

In Eq. (3),
2

n  denotes the variance of the output error. a

The prior distribution of is indicated as expressed in Eq. (4). 

2~ (0, )na N K           (4) 

In Eq. (4), K  represents the covariance matrix. Based on 
the prediction samples as well as the training samples a joint 
Gaussian prior distribution can be obtained, which is represented 
as shown in Eq. (5). 

2( , ) ( , *)
~ 0,

* ( , *) ( *, *)

n

T

K s s K s sa
N

a K s s K s s

   
          

       (5) 

In Eq. (5), *s  and *a  denote the input vector and output 

vector of prediction, respectively. 
( , *)K s s

denotes the 
prediction and the training samples’ the covariance matrix, and

( *, *)K s s
 denotes the prediction sample’s self-covariance 

matrix. With the kernel function, the construction of the 
covariance matrix is mainly carried out. The kernel function 
chosen for the study is the radial basis function kernel, which is 
represented as shown in Eq. (6). 

2
2

2

( *)
( , *) exp( )

2

s s
K s s

l



            (6) 

In Eq. (6), l  is the kernel width of the radial basis function 
kernel, and  represents the hyperparameters, and the optimal 
hyperparameters are mainly obtained by the great likelihood 
method. After obtaining the optimal  , the the predicted value

*a ‘s posteriori probability will be got based on the new *s  , 
which is calculated as shown in Eq. (7). 

( , *)
( * )

( )

p a a
p a a

p a
               (7) 

In Eq. (8), *a ‘s distribution is calculated. 

ˆˆ* ~ ( ( *), ( *))a N y s s             (8) 

In Eq. (8),
ˆ( *)y s

 represents the mean value, which is 
calculated as denoted in Eq. (9). 

2 1ˆ( *) ( *) ( )T

ny s K s K a              (9) 

ˆ( *)s
denotes the variance, which is calculated as shown in 

Eq. (10). 

2 1ˆ( *) ( *, *) ( *) ( ) ( *)T

ns K s s K s K K s          (10) 

The steps of GPR application are shown in Fig. 2. 

Aiming at the characteristics of large volume and uneven 
distribution of driving behaviour data, the study adopts the 
Bagging algorithm to promote of GPR algorithm’s 
effectiveness. Bagging is an integrated learning method used to 
improve the accuracy of learning algorithms, and integrating and 
combining it can cut down the variance of the output, and 
promote the accuracy and stability of the algorithm. The 
Bagging method contains three parts, namely, sampling, training 
the base learner, and combining the output of three parts, and 
averaging method is used to obtain the output of the strong 
regressor, which is calculated as expressed in Eq. (11). 

1

1
ˆ( ) ( )

N

k

k

y s GPR s
N 

              (11) 

The study proposes a Bagging GPR driving behaviour 
modelling method with improved sampling, due to the Bagging 
GPR algorithm’s insensitivity to samples with large learning 
errors. The method raises the comprehensive effectiveness of the 
integrated regressor by increasing the sampling probability of 
samples, increasing the fluctuation of training samples, and 
increasing the attention of the base learner to samples with large 
training errors, which further reduces the maximum prediction 
error of the proposed algorithm [17]. The flow of the improved 
Bagging GPR approach for driving behaviour modelling is 
shown in Fig. 3. 
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Fig. 2. Application steps of the GPR. 
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Fig. 3. Flow chart of improved Bagging GPR driving behaviour modelling method. 

B. Intelligent Vehicle Feature Extraction Based on CNN-

LSTM-GPR 

To achieve driving behaviour modelling and prediction, 
effective feature extraction is required as input. Considering the 
characteristics of human drivers, driving behaviour learning 
should focus on the correlation between before and after states 
and actions. The study focuses on CNN-LSTM for time-series 
image feature extraction and fusion. Among them, CNN is a 
dedicated algorithm for image processing. CNN is not only able 
to efficiently downsize a large amount of image data into a small 
amount of feature data, but is also able to effectively extract the 
features related to a specific task through training. 
Convolutional, pooling, and fully connected layers are 

composed of CNN networks [18]. The output of the l  
convolutional layer is calculated as shown in Eq. (12). 

( )l lC z                 (12) 

In Eq. (12),  represents the activation function, and
lz  

denotes the variables of the activation function of the l  layer. 

The output of the pooling layer at l  is calculated as shown in 
Eq. (13). 

( )l lD pool C                 (13) 

The output of the fully connected layer is calculated as 
shown in Eq. (14). 

1( * )n n n nF F W b                (14) 

In Eq. (14),
1nF 
, 

nW , and 
nb  denote the output, weight 

matrix, and bias of the n th fully connected layer, respectively. 
The LSTM network is mainly applied to deal with the temporal 
prediction problem, whose input is the features extracted by the 
CNN at the time t, and the output is the predicted output at the 
time t. The dimensionality of the output is mainly related to the 
amount of output nodes of the LSTM network. The LSTM 
model can be viewed as a stack of cell units, each of which 
controls the transfer of information through a specially designed 
"gate" structure. The output of each cell consists of state and 
implicit layers, while the output of each implicit layer is jointly 
determined by three gates, including the inputting gate, 
forgetting gate and outputting gate. Each Cell unit selectively 
remembers and forgets the information through these three 
gates, and then passes it to the next Cell unit [19]. The LSTM 
network’s structure is shown in Fig. 4. 
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Fig. 4. Structure diagram of LSTM. 
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The CNN-LSTM’s error loss function is mainly used to 
measure the degree of deviation between the labels and the 
output of the network. This loss function defines a criterion for 
evaluating the performance of the network and aims to cut down 
the difference between the actual and the desired output. During 
the training, the optimisation algorithm continuously adjusts the 
network parameters to minimise the loss function, thus making 
the network’s prediction more accurate. Its calculation is shown 
in Eq. (15). 

2

2
1

1 N

i i

i

E y a
N 

              (15) 

In Eq. (15), iy  represents the CNN-LSTM network’s 

output, ia  represents the labels of the expert demonstration 

teaching, and N  is the size of the Batch size. The CNN-LSTM 
method considers the temporal correlation between image 
sequences while considering the image feature extraction. This 
method can promote the simulation accuracy of driver 
behaviour. The neural network’s layer is a combination of 
convolutional and pooling layers. The specific configuration of 
the convolutional layers is as follows: the first, second, third, 
fourth, and fifth convolutional layers have a convolutional 
kernel size of 5 × 5, 5 × 5, 5 × 5, 3 × 3, and 3 × 3, respectively, 
and a feature map number of 24, 36, 48, 64 and 64, respectively. 
The first, second, fourth, and fifth convolutional layers have a 

pooling downsampling window size of 2 × 2 steps with a step 
size of 2, while the third layer has a pooling downsampling 
window size of 1 × 2 steps with a step size of 2. Subsequently 
these feature maps are fed into the fully-connected layer, which 
has a node count of 512. The fully connected layer is followed 
by two LSTM layers. Finally, the output of the LSTM layer is 
connected to the output layer, which outputs the normalized 
value of the steering wheel angle [20]. A schematic diagram of 
the CNN-LSTM feature extraction network structure is shown 
in Fig. 5. 

The research focuses on combining CNN-LSTM with GPR 
to enhance the understanding of the mapping relationship 
between temporal features and driving behaviour. The core idea 
of the method is to utilize GPR to further optimize the features 
of the CNN-LSTM to promote the fully connected layer’s 
structure. The CNN-LSTM accumulates errors layer-by-layer 
during the training process, which limits its generalisation 
ability. Since the fully connected layer is similar to that of CNN, 
its generalisation ability is limited. By using the GPR method, 
the perfect temporal feature extraction effect of CNN-LSTM is 
fully utilized, while the fitting mapping ability between temporal 
features and driving behaviour is further improved by GPR, to 
improve the comprehensive performance of the algorithm. The 
detailed process of the CNN-LSTM-GPR method is denoted in 
Fig. 6. 
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Fig. 5. Schematic diagram of CNN-LSTM feature extraction network structure. 
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Fig. 6. The process of CNN-LSTM-GPR method. 

IV. INTELLIGENT VEHICLE PROTECTION ANALYSIS BASED 

ON GPR METHODOLOGY 

This chapter focuses on the experimental analysis of the 
improved Bagging GPR and the CNN-LSTM-GPR methods 
proposed by the study. Among them, for the improved Bagging 
GPR method, the study analyses the effect of driving behaviour 
modelling and verifies the performance from two scenarios, 
namely the straight overtaking scenario and the corner obstacle 
avoidance scenario. The study verifies the effectiveness of each 
algorithm from different input image frames, and compares the 
steering wheel corner prediction results of different algorithms 
to evidence the performance of the raised method. 

A. Driving Behaviour Modelling Analysis Based on Improved 

Bagging GPR Methodology 

To verify the effectiveness of the improved Bagging GPR 
method, firstly, the driving behaviours of the straight overtaking 
scenario as well as the corner obstacle avoidance scenario are 
modelled and learned. At the same time, three driver behaviour 
modelling methods, namely, multi-layer Back Propagation 
Algorithm (BP), Integrated Regression Tree and GPR, are 
selected for performance comparison with them. The parameter 
settings of each method are expressed in Table I. 
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TABLE I. PARAMETER SETTINGS FOR EACH METHOD 

Method Project Parameter 

Multi-layer BP network Number of nodes of the two hidden layers 75, 15 

Integrated regression tree 
Integrated learning cycle 100 

Learner Regression tree 

GPR 

Kernel function Gaussian kernel function 

Nuclear width 1 

Noise parameters 0.1 

Improved Bagging GPR 

Number of iterations of the Bagging 20 

The size of the Bagging 2000 

Error threshold 3 
 

The steering wheel angle prediction results of different 
driving modelling methods for different scenarios are indicated 
in Fig. 7. From Fig. 7, in contrast with the remaining three 
modelling methods, the driving behaviour modelling method of 
the improved Bagging GPR has a better fitting performance with 
the actual steering wheel angle and a higher matching accuracy. 
Whereas, the multi-layer BP algorithm has the largest deviation 
from the actual steering wheel angle, representing its worst 
modelling performance. It indicates that the proposed 
algorithms in the study have high prediction accuracies in 
modelling driving behaviours in both straight overtaking 
scenarios as well as cornering obstacle avoidance scenarios. 

The experiments continue to use Mean Square Error (MSE), 
Root Mean Square Error (RMSE) and Maximum Absolute Error 
(MAXE) to experimentally validate the different driving 
behaviour modelling methods. The comparative results of the 
steering wheel corner prediction performance of each method in 
different scenarios are expressed in Fig. 8. From Fig. 8, the 
improved Bagging GPR method outperforms the remaining 

three methods for steering wheel angle prediction in the straight 
overtaking scenario as well as in the corner obstacle avoidance 
scenario. Among them, in the straight overtaking scenario, the 
MAE, RMSE, and MAXE of the improved Bagging GPR 
method are 0.5241, 0.9547, and 10.7705, respectively, whereas 
those of the multilayer BP algorithm are as high as 1.7763, 
3.0334, and 23.0549, respectively. The integrated regression 
tree is as high as 1.2863, 2.1538, 27.349, and 1.2863, 
respectively, 2.1538, and 27.3626, respectively. The indexes of 
GPR are 0.5569, 0.9638, and 10.9934, respectively, which are 
improved by 0.0328, 0.0091, and 0.2184 compared with the 
improved Bagging GPR method. At the same time, in the corner 
obstacle avoidance scenario, the MAE, RMSE, and MAXE of 
the improved Bagging GPR method are 0.660, 0.660, and 0.660, 
respectively. MAE, RMSE, and MAXE are 0.6527, 0.9436, and 
14.7531, respectively, which are 1.383, 1.8274, and 12.8996 less 
than the multi-layer BP algorithm, suggesting that the improved 
Bagging GPR method has better performance and stability when 
dealing with complex driving behaviour modelling problems. 
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Fig. 7. Prediction results of steering wheel angles in different scenarios. 
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Fig. 8. Comparison of steering wheel angle prediction performance of various methods in different scenarios. 
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B. Feature Extraction Analysis Based on CNN-LSTM-GPR 

Algorithm 

The study first uses a CNN-LSTM network to extract the 
features of various input sequence images. In terms of training 
parameter settings, the specific settings are denoted in Table II. 

The experiments have been conducted on Apollo dataset 
using CNN-LSTM network with an input image sequence of 3 
and an input image sequence of 5. The variation of the training 
error loss function is denoted in Fig. 9. The MSE of the training 
and test set for the case of the input image sequence of 3 is lower 
than the case of the input image sequence of 5. In particular, the 
MSE of the test set with an input image sequence of 3 converges 
to 0.0415 at about 25 iterations, which is 0.014 higher than the 
case with an input image sequence of 5. This indicates that, for 
the task of learning driving behaviours, the use of the CNN-
LSTM network with longer input image sequences can extract 
the image features in a better way and help to improve the 
model’s accuracy and generalization ability. 

The experiments continued with GPR to fit the features for 
mapping driving behaviour. The CNN-LSTM-GPR algorithm’s 
parameters were set as below: the kernel function was RBF, the 
kernel width parameter was 0.5, and the noise parameter was 
0.3. The experiments were conducted using 50-dimensional 
features extracted by the CNN-LSTM on the Apollo dataset for 
driving behaviour Learning. To ensure the accuracy of the 
experiments, the study conducted a total of 10 experiments and 
took the effective average as the final experimental results. 
Meanwhile, MSE is chosen as the evaluation index of the 
experiment. The test outcomes of various driving behaviour 

learning methods under different input timing image frame 
numbers are shown in Fig. 10. The CNN-LSTM-GPR algorithm 
can obtain lower MSE under different input time-series image 
frame numbers, among which, under the input time-series image 
frame number of 3, the MSE of the CNN-LSTM-GPR algorithm 
is only 0.0405, which is 0.010 less than that of the CNN-LSTM 
algorithm under the input time-series image frame number of 5, 
the MSE of the CNN-LSTM-GPR algorithm is only 0.0405, 
which is 0.010 less than that of the CNN-LSTM algorithm. The 
MSE of the CNN-LSTM-GPR algorithm is 0.0387, which is 
reduced by 0.0023 in contrast with the CNN-LSTM algorithm. 
The MSE values of the individual algorithms for the input 
temporal image frame number of 5 are lower compared to the 
case where the input temporal image frame number is 3. It shows 
that the CNN-LSTM-GPR algorithm has higher accuracy in 
learning to mimic the driving behaviour of the temporal images 
and the performance of the algorithms is better at a higher 
number of input temporal image frames. 

TABLE II. TRAINING PARAMETER SETTINGS 

Project Parameter 

Learning rate 0.0001 

Optimizer Adam 

Dropout 0.2 

Batch size 20 

Number of training samples 5000 

Number of training rounds 200 

Training time 9h 
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Fig. 9. Changes in training error loss function for different input image sequences. 
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Fig. 10. MSE values under different input timing image frames. 
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Fig. 11. Steering wheel angle prediction results of different driving behaviour learning methods based on time series information. 

To evidence the function of the CNN-LSTM-GPR 
algorithm, the study further compares the steering wheel corner 
prediction outcomes of various driving behaviour learning 
methods with temporal information on the test set, and the 
research findings are indicated in Fig. 11. From Fig. 11, the 
CNN-LSTM-GPR based driving behaviour learning model can 
simulate human driving behaviour better compared to the CNN-
LSTM model. It’s learned driving actions are smoother, the 
coherence between actions is more solid, and the learning error 
is smaller, which outperforms the CNN-LSTM model. It can 
also be seen that when five consecutive frames of images are 
input, the driving behaviours simulated by the CNN-LSTM-
GPR-based driving behaviour learning model fluctuate less and 
the movements are more coherent. This further confirms that 
introducing more temporal information helps to improve the 
performance of driving behaviour learning. 

Further research was conducted to verify the computational 
efficiency of the CNN-LSTM-GPR algorithm, using CNN-
LSTM algorithm, Extreme Gradient Boosting (XGBoost) 
algorithm, and Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model for performance comparison. The 
calculation time for different algorithms in predicting driving 
behavior is shown in the table. According to the table, the 
computation time of the CNN-LSTM-GPR algorithm is only 
0.5213 seconds, which is lower compared to the XGBoost and 
SARIMA algorithms. The computation time of the CNN-LSTM 
algorithm is slightly lower than that of the CNN-LSTM-GPR 
algorithm, because the algorithm integrates Gaussian Process 
Regression to handle uncertainty, thereby increasing 
computation time. However, overall, the CNN-LSTM-GPR 
algorithm has better predictive performance. 

TABLE III. CALCULATION TIME FOR DIFFERENT ALGORITHMS 

Algorithm Runtime (s) 

CNN-LSTM 0.4926 

XGBoost 1.6397 

SARIMA 15.3969 

CNN-LSTM-GPR 0.5213 

V. DISCUSSION 

An improved Bagging GPR method has been proposed for 
intelligent protection in intelligent transportation systems. The 
results showed that in the scenario of overtaking on a straight 
line, the MAE, RMSE, and MAXE of the improved Bagging 
GPR method were 0.5241, 0.9547, and 10.7705, respectively. 
Meanwhile, in the scenario of obstacle avoidance on curves, the 
MAE, RMSE, and MAXE of the improved Bagging GPR 
method are 0.6527, 0.9436, and 14.7531, respectively. 
Compared to the multi-layer BP algorithm, its various indicators 
have decreased by 1.383, 1.8274, and 12.8996, respectively. 
ZHONG Q et al. proposed a tool wear prediction method based 
on maximum information coefficient and improved Bagging 
GPR. The results show that this method has significant 
advantages in predictive performance [21]. The Bagging GPR 
method demonstrates high prediction accuracy in all aspects. 
The reason is that the improved Bagging GPR method integrates 
multiple GPR models, each trained with a different subset of 
data, and then averages or weights their prediction results, 
thereby reducing the variance of the model. At the same time, 
this method increases the attention of the base learner to samples 
with large training errors, further reducing the maximum 
prediction error and improving the overall performance of the 
ensemble regressor. 

In the effectiveness verification experiment of the CNN-
LSTM-GPR algorithm, the driving behavior learning model 
based on CNN-LSTM-GPR can better simulate human driving 
behavior compared to the CNN-LSTM model. The driving 
actions it learns are smoother, with stronger coherence between 
actions and smaller learning errors, and its performance is better 
than that of the CNN-LSTM model. When five consecutive 
frames of images are input, the driving behavior learning model 
based on CNN-LSTM-GPR simulates less fluctuation and more 
coherent actions. Chen H and other researchers proposed a 
CNN-GPR method for driving behavior learning, which 
addresses the problems of low learning accuracy and poor 
generalization performance in traditional driving behavior 
learning methods. They also introduced LSTM and proposed a 
CNN-LSTM-GPR method for driving behavior learning using 
time-series images. The results show that the proposed CNN-
LSTM-GPR method can fully utilize the temporal information 
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of the image, resulting in smaller simulation errors [22]. 
Compared with the CNN-LSTM method, this method can 
further improve learning accuracy and exhibit better 
generalization performance. This is similar to the research 
findings. The reason is that the CNN-LSTM-GPR method can 
effectively utilize temporal image information. Temporal 
information includes the temporal sequence of consecutive 
frame images, which helps capture dynamic changes and 
coherence in driving behavior. By introducing the GPR 
(Gaussian Process Regression) model, it is possible to more 
accurately model the spatiotemporal dynamics of driving 
behavior, thereby making the learned driving actions smoother 
and more coherent. 

VI. CONCLUSION 

Intelligent vehicle safety protection in intelligent transport 
systems is of great significance. For intelligent protection in 
intelligent transportation systems, the study successively 
introduces an improved Bagging GPR=driving behaviour 
modelling method and a feature extraction method with CNN-
LSTM-GPR algorithm. The findings denoted that compared 
with the remaining three modelling methods, the driving 
behaviour modelling method of the improved Bagging GPR has 
better fitting performance with the actual steering wheel angle 
and higher matching accuracy. Whereas, the multi-layer BP 
algorithm has the largest deviation from the actual steering 
wheel angle, which represents its worst modelling performance. 
Meanwhile, when the input image sequence of the CNN-LSTM 
network is 3, the MSE of the test set converges to 0.0415 at about 
25 iterations, which is an improvement of 0.014 compared to the 
case when the input image sequence is 5. In addition, compared 
to the CNN-LSTM model, the driving behaviour learning model 
with CNN-LSTM-GPR can more accurately simulate human 
driving behaviour. Its learned driving actions are smoother, the 
articulation between actions is more natural, and its learning 
error is relatively smaller, so the whole effect is better than that 
of the CNN-LSTM model. In addition, when five consecutive 
frames of images are input, the driving behaviours simulated by 
the CNN-LSTM-GPR-based driving behaviour learning model 
show less fluctuation and more coherent movements. It shows 
that the improved Bagging GPR method and CNN-LSTM-GPR 
feature extraction method can provide more accurate and smooth 
driving behaviour modelling and learning schemes for 
intelligent vehicles in ITS. However, the drawback of this study 
is that it only focuses on specific scenarios and environments, 
which may limit the universality and scalability of the proposed 
technology in a wider range of driving conditions and challenges. 
Future research needs to expand its scope to cover more diverse 
scenarios, road conditions, and driving behaviours to ensure the 
effectiveness and robustness of the developed models in real-
world applications. 
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