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Abstract—The transportation of fresh agricultural products is 

not conducted along a sufficiently precise route, resulting in an 

extended transportation time for vehicles and a consequent 

deterioration in product freshness. Therefore, the study proposes 

an agricultural product transportation path optimization model 

based on an optimized adaptive large neighborhood search 

algorithm. The Solomon standard test case is used for the 

experiment, and the algorithm before and after optimization is 

compared. From the results, the optimized method was effective 

for the distribution model C201, R201, and CR201 sets after 

conducting case analysis. The total cost of the R201 transportation 

set was the lowest, while C101 had the highest total cost. The 

lowest vehicle cost consumption was R201 at 600, and the highest 

was C101 at 2220. The C101 algorithm took 145 s to calculate, and 

R201 took 199 s. All values of CR201 were average, with high fault 

tolerance. The proposed method was used to address the optimal 

operator solution. The C201 example took 244 s to calculate 2350 

objective function values. The R201 example took 239 s to obtain 

657 objective function values. The CR201 example took 233 s to 

obtain 764 objective function values. This indicates that the 

designed method has a significant effect on optimizing the 

distribution path of agricultural products. Compared with the 

unimproved algorithm, it has more accurate search ability and 

lower transportation costs. This algorithm provides path 

optimization ideas for the agricultural product transportation 

industry. 
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I. INTRODUCTION 

In a rapidly developing society, the demand for fresh 
agricultural and related products among urban residents is 
increasing day by day. In recent years, the e-commerce industry 
has developed rapidly. Online ordering of fresh agricultural and 
related products has become one of the main consumption 
channels that is widely popular among consumers [1]. The 
distribution task of agricultural products in urban areas is also 
increasing due to low distribution efficiency, which greatly 
affects the industrial development. As fresh agricultural and 
related products themselves have short freshness and shelf life, 
they are prone to deterioration over time. Once the freshness is 
too low, they lose their nutritional value and appearance as 
products for sale. Therefore, how to ensure product freshness 
during transportation is the main issue that needs to be urgently 
addressed in the logistics of the entire supply chain. This poses 
a challenge to the timeliness of logistics transportation and the 

cold chain level of transport vehicles [2]. The competition for 
Fresh Agricultural Products (FAP) to stand out is the entire 
supply chain. The circulation mode of FAP refers to the transfer 
mode from the place of origin to the dining table, including 
various elements involved in the circulation of agricultural 
products [3]. For the supply chain, it is crucial to increase 
agricultural product enterprises, production and suppliers of raw 
materials in the middle and upper reaches, such as vegetables, 
seedlings and pigs. In addition to being responsible for sowing, 
picking, breeding, slaughtering and packaging FAP, enterprises 
must also directly supply raw processed agricultural products to 
wholesale or retail companies [4, 5]. The supply chain has 
drawbacks such as high loss, untimely delivery and lack of trust. 
The reason for this is that certain fresh ingredients that require 
strict time and storage conditions have increased cold chain 
transportation pressures and transportation costs. 

More and more scholars have noticed that the transformation 
of agricultural supply chains requires strong technical support. 
Yu and Rehman proposed an evolutionary game model on the 
basis of the relationship between agricultural product suppliers 
and urban residents. This model applied evolutionary game 
theory to analyze the financing game model. The results 
indicated that the model could effectively improve the 
operational capability of agricultural product platforms [6]. Fu 
et al. introduced contract and trust mechanisms to control the 
uncertainty. Therefore, a digital system coupling relationship 
between blockchain and FAP supply chain was proposed. The 
results indicated that the blockchain-based digital system could 
help the agricultural supply chain achieve significant industrial 
transformation [7]. Syofya et al. proposed a value-added 
approach through transparent methods and supply chain 
management among commercial actors to address the impact of 
the Clincy coffee agricultural supply chain on the agricultural 
economic added value in Chambe Province. The results showed 
that this method effectively increased the yield of coffee 
agricultural products [8]. Mukherjee et al. established a 
decentralized, data-immutable, smart contract supply chain, 
transparency, and shared database for blockchain technology in 
complex multi-electronic supply chain. The results indicated 
that the supply chain provided deep significance for potential 
practitioners [9]. Luckstead et al. discussed the impact of the 
pandemic on workers in the food supply chain accepting 
important job decisions. The study analyzed the attitudes of low-
skilled workers towards the processing plant industry during the 
epidemic. The results showed that gender, current agricultural 
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workers, and information about COVID-19 and agricultural 
workers affected respondents' answers [10]. 

The optimization of supply chain transportation paths cannot 
be achieved without search algorithms. Prymachenko et al. 
proposed a method for evaluating multi-modal transportation in 
transportation enterprises based on the multi-modal 
transportation route network model. The results indicated that 
this method could minimize the supply cost [11]. Chang et al. 
found that there were problems with the route planning of freight 
buses in urban distribution systems. Therefore, a mixed integer 
linear programming model was established, and an Adaptive 
Large Neighborhood Search (ALNS) was developed. The 
results showed that the correlation of the mathematical model 
and the model effectiveness was demonstrated through 
numerical experiments [12]. Hu et al. found that fast online route 
decisions must be made to fulfill offline retail service 
commitments. Therefore, a vehicle path optimization method 
combining an open architecture ALNS algorithm was proposed. 
The results indicated that this method could achieve offline 
training of neural network models to generate almost immediate 
solutions online [13]. Relying on the two levels and multiple 
centers in the urban logistics joint distribution system, Li et al. 
analyzed the two-level joint delivery path. An ALNS algorithm 
was proposed to solve models with multiple deletion and 
insertion operators. The ALNS algorithm was faster and more 
effective [14]. Nikzad et al. established a two-stage stochastic 
mathematical model for asset protection routing under wildfires. 
This model used the ALNS algorithm to determine routing 
decisions. The results showed that numerical analysis confirmed 
the effectiveness [15]. 

In summary, domestic and foreign researchers have also 
introduced the ALNS algorithm for the optimization of 
transportation paths in agricultural supply chains, but few 
scholars have improved and applied the ALNS algorithm. In 
response to this issue, a FAP distribution path optimization 
model is constructed for supply chain decision-making, aiming 
to improve transportation efficiency. The innovation lies in the 
ALNS algorithm, which is adapted from the Solomon standard 
test case for experimental testing. This algorithm fully meets the 
characteristics of fresh time limit requirements during 
agricultural product transportation, which benefits to optimize 
the delivery efficiency of fresh agricultural and sideline product 
distribution enterprises. 

II. METHODS AND MATERIALS 

Aiming at optimizing the distribution path of agricultural 
product supply chain, an improved ALNS is designed. Firstly, 
the transportation vehicle routing problem is introduced, and the 
freshness calculation of agricultural products at each stage of 
transportation is explained. Secondly, the operational 
framework of the ALSN algorithm and the transportation 
process and cost of cold chain vehicles are introduced. Finally, 
an improved ALSN algorithm model framework is proposed. 

A. Distribution Cost of Agricultural Product Supply Chain 

Ground on Improved ALNS Algorithm 

The urban transportation stage of the fresh agricultural and 
sideline product supply chain, which is the transportation stage 
of delivering goods from the supply location to the consumer's 

ordering location [16]. During transportation, agricultural 
products have the characteristics of high storage difficulty, high 
distribution cost, freshness requirements, and irreversibility, as 
well as high timeliness requirements [17]. In accordance with 
the features of agricultural products, the supply chain 
distribution path problem is reasonably optimized. Vehicle path 
refers to the transportation path optimized by the logistics 
distribution center that meets the delivery requirements under 
certain dispatching conditions [18]. When planning the vehicle 
routing problem, it is necessary to cover constraints such as 
customer needs, location selection of logistics centers, number 
of transportation vehicles dispatched on different routes, and 
characteristics of agricultural products. The vehicle routing 
problem is displayed in Fig. 1. 

Distribution 

Center

 

Fig. 1. Sketch map of vehicle routing problem. 

Due to their strict freshness requirements, FAP lose their 
selling and purchasing value once they exceed the optimal 
freshness period. However, any fresh or similar product has the 
freshness loss during transportation, so freshness requirements 
must be an important constraint in planning and optimizing 
delivery routes. At present, many transportation enterprises and 
scholars in related fields have attached great importance to the 
freshness changes during the transportation of agricultural and 
sideline products. Various prediction algorithms have been 
proposed, among which linear decreasing functions can be used 
to represent the freshness reduction. Combining the decreasing 
functions, transport vehicles depart at time A, the vehicle arrived 

at time B, and the freshness at random time  t A t B   is 

shown in Eq. (1). 

  1
t A

t
B A




 
                  (1) 

In Eq. (1),   signifies the freshness at time t . The 

maximum freshness time limit T of the product after 

transportation time  0t t T   is shown in Eq. (2). 
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In Eq. (2), 
2

2
1

t

T
  represents the freshness factor of a 

monotonic continuous decreasing function. The freshness 
changes during the transportation after time t are shown in 
Eq. (3). 

  0

tt e   
             (3) 

In Eq. (3), 
0  is the product freshness just picked. t  

signifies the decreasing freshness index of FAP. To ensure that 
agricultural products can exhibit clear changes under the 
common constraints of time and preservation costs, a three 
parameter Weil function is used for prediction. The freshness 
variation of agricultural products constructed by the three 
parameter Weil function is shown in Eq. (4). 

    
0

f r t
t


 

 


              (4) 

In Eq. (4),   is the decay rate during transportation 

calculated by the three parameter Weil function.  f r  

represents the cost of preservation investment. FAP is also 
divided into different categories. To predict the freshness 
changes of different products, the Arrhenius function is used to 
construct the freshness changes, as shown in Eq. (5). 

 
 

0

0

0

exp 1

t if
t

t if

  


  

 
 

             (5) 

In Eq. (5), 


 represents the reaction level of FAP. In 
addition to the inherent freshness characteristics, transportation 

efficiency is also affected by the traffic congestion in different 
regions, the number of residents traveling at different time 
points, and license plate restrictions. Search models can 
effectively improve uncertainty factors. ALNS is an algorithm 
based on large-scale neighborhood search. The solution process 
of this algorithm is to first calculate the global optimal solution, 
then move and insert this optimal solution to iteratively calculate 
and obtain more domain optimal solutions near the optimal 
solution range [19]. The optimal solution for insertion and 
removal in this algorithm can represent the planned consumer 
ordering location in the transportation path. When different 
transportation routes pass through this location, the nearby better 
route is searched again and closely associated with the nearest 
transportation point. The removal and insertion processes of the 
ALNS algorithm are shown in Fig. 2. 

The ALNS algorithm is affected by the weight values of the 
insertion and removal operators during the iterative calculation 
process, resulting in the inability to select the optimal path 
reasonably when there are too many paths to select. Therefore, 
it is necessary to determine in advance the effectiveness and 
necessity of the optimal solution calculation for the operators to 
be removed and inserted, and make adjustments when the 
optimization conditions are met. The ALNS algorithm must 
continuously eliminate bad paths and paths with constant 
distances by adaptively adjusting the adjustable values, which 
can continuously improve the accuracy of the algorithm's 
prediction. The ALNS algorithm has been discovered and used 
by logistics companies for transportation path optimization 
problems due to its advantages such as wide applicability and 
large macro search range. The flowchart of the ALNS algorithm 
is shown in Fig. 3. 
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Fig. 2. Process diagram of ALNS algorithm's removal and insertion operations. 
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Fig. 3. ALNS algorithm flowchart. 
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B. Construction of Distribution Route Optimization Model for 

Agricultural Product Supply Chain Decision Management 

The ALNS algorithm optimizes the transportation path, but 
the transportation mode also has an important impact on the 
quality of agricultural products. Cold chain transport vehicles 
can maintain freshness through refrigeration, which is consistent 
with the principle of refrigeration in refrigerators, ensuring the 
freshness of agricultural products to the greatest extent possible 
and reducing the spoilage rate. However, cold chain 
transportation requires a large amount of energy to cool, 
resulting in high costs and carbon emissions, which leads to 
high-cost consumption for logistics enterprises. Therefore, the 
unit time fuel consumption of the refrigeration unit of the cold 
chain truck is predicted, as shown in Eq. (6). 

  * 0

0

max

c

R R
f g R g

Q


 

           (6) 

In Eq. (6), 
cf  represents the fuel consumption rate. 

0R  is 

the fuel consumption per unit time when the vehicle is unloaded, 

and 
*R  is the fuel consumption at full load. g  is the maximum 

load of the cold chain truck. The fuel consumption of the 
refrigeration unit generator is displayed in Eq. (7). 

  * 0

0

max

ij ij ijk

R R
F g R g T

Q

 
  
 

       (7) 

In Equation (7), ijkT
 represents the total time traveled. 

 ,i j
 

represents the path traveled. 
 ijF g

 signifies the fuel 
consumption of the refrigeration unit generator in the cold chain 
vehicle. In light of the considerable variation in the loads of 
different cold chain vehicles and the marked differences in the 
fuel consumption of refrigeration units at different times of year, 

the calculation method of fuel consumption is subjected to 
rigorous and comprehensive analysis. Numbers 1 to 4 represent 
prefabricated cold, in delivery, loading and unloading, and 
returning after completion. Cold chain truck transportation is 
shown in Fig. 4. 

Cold chain vehicles need to be placed in the logistics center's 
cold storage for full refrigeration before the delivery task 
departs. It can effectively avoid the aggravation of agricultural 
product spoilage caused by filling effects [20]. The research 
assumes that the time required for a single cold chain vehicle to 

enter the warehouse for refrigeration is pT
. Moreover, the fuel 

consumption calculation of the unloaded cold chain vehicle 
refrigeration unit at this time is shown in Eq. (8). 

1 0

1

K

k p

k

F R Z T



              (8) 

In Eq. (8), 1F
 is the fuel consumption of the refrigeration 

unit. After the final stage of service, the delivery unit needs to 
be shut down to save energy. At this time, the cold chain truck 
is in an unloaded state. The fuel consumption calculation for the 
journey back to the logistics center is shown in Eq. (9). 

  2 0

1

, ,
K

ijk c ij ijk j k

k

F i j N i j X f g T T


    
    (9) 

In Eq. (9), 2F
 represents the fuel consumption of the cold 

chain vehicle when the refrigeration unit is turned off and 
unloaded. Therefore, it can be inferred that the economic cost of 
refrigeration fuel is calculated, as shown in Eq. (10). 

 21 2 1 2C P F F 
         (10) 
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Fig. 4. Cold chain vehicle delivery process diagram. 
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In Eq. (10), 21C
 represents the economic cost of 

refrigeration fuel. The fuel consumption and carbon dioxide 
emissions of delivery vehicles during the delivery process are 
calculated, as shown in Eq. (11). 

 

 

2

d i

d
FeNeVe d v

fuel v

d G G






 
  

 
             (11) 

In Eq. (11), 
fuel

 represents the fuel consumption of the 

delivery vehicle. v  represents the return speed. d  represents 
the distance between the location of the last delivery task and the 

logistics center. Fe  represents the friction index. Ne  

represents the engine speed of the cold chain vehicle. Ve  

represents the carbon emissions of cold chain vehicles. dG
 

represents the weight of the cold chain vehicle during the return 

journey. iG
 represents the cold chain vehicle load. The research 

takes into account the distribution costs generated during the 
distribution process. The final constructed agricultural product 
distribution path optimization model is shown in Eq. (12). 
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   
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c x f c x e
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    

   

 

 
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 

 



   

   
      (12) 

In Eq. (12), pc
 represents the cost of dispatching. tc

 

represents the cost of transportation labor. ia
 signifies the time 

when the delivery vehicle arrives at customer i . iw
 signifies 

the waiting time before the vehicle starts transportation. ijkx
 

represents the transportation vehicle k  traveling from node i  

to customer 
j

. fc
 represents the fuel consumption cost. ec

 
represents the carbon emissions cost. To ensure that the 
freshness of agricultural products received by consumers 
exceeds the expected requirements, the calculation is shown in 
Eq. (13). 

,i r i V    
         (13) 

In Eq. (13), i  represents that the agricultural products are 

within the freshness expected by consumer i . r  represents the 
minimum freshness that consumers can accept. The waiting time 
for the delivery vehicle of agricultural products to consumers is 
shown in Eq. (14). 

,i i iw b a i V    
          (14) 

In Eq. (14), iw
 represents the waiting time before the 

delivery vehicle starts transportation. ib
 represents the time 

when consumer i  started being served. The time for the 
consumer to confirm receipt, the delivery vehicle to leave the 
delivery point, and proceed to the next service point is displayed 
in Eq. (15). 

,i i ib s i V    
           (15) 

In Eq. (15), i  signifies the time when the delivery vehicle 

leaves after completing the task. is
 represents the time when 

consumers accept agricultural products. The calculation results 
of the model constructed represent the set of distribution paths 
for cold chain vehicles. Meanwhile, the study enhances the 
ALNS algorithm by incorporating insertion and removal 
operators, specifically the ordering consumer. The improved 
ALNS algorithm is shown in Fig. 5. 
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Fig. 5. Optimized ALNS algorithm. 

The distribution of agricultural products exhibits regional 
characteristics, with a greater concentration observed in urban 
residential areas. The service distance for consumers in close 
proximity to one another is approximately equivalent [21,22]. 
The transportation path needs to meet various delivery 
conditions of the waybill, ensuring smooth driving, less 
congested road sections, and less freshness loss. Therefore, 
based on the density of distribution tasks, the supply chain hub 
is established. The distribution hub combined with the 
distribution path optimized by ALNS can ensure the freshness 
of agricultural products reaching consumers. Cold chain 
vehicles can also minimize consumption. The red dots represent 
the points at which consumers are required to complete delivery 
tasks when placing orders. The black five-pointed stars represent 
the points at which supply chain hubs are constructed. The 
overview of distribution tasks and hub construction is shown in 
Fig. 6. 
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Fig. 6. Overview of distribution tasks and hub construction. 

III. RESULTS 

To display the effectiveness of the improved ALSN in 
optimizing the transportation path of agricultural products, a set 
of case studies were conducted. Firstly, a standard test case was 
constructed to compare the driving paths of cold chain vehicles. 
Next, C201, R201, and CR201 were used to conduct case studies 
to further validate the freshness and total cost of agricultural 
products. Finally, the path results before and after ALSN 
algorithm optimization were compared. 

A. Effectiveness of Distribution Route Optimization in 

Agricultural Product Supply Chain Decision Management 

Due to the high demand for freshness in agricultural 
products, a cold chain distribution route model for agricultural 
products was constructed. Relevant experimental data required 
for the model was supplemented. The Solomon standard test 
case was used to conduct numerical experiments on the adapted 
ALNS algorithm. The experiment adopted Windows 10, 64 bit 
operating system, and the processor uses Intel® Xeon® 
Platinum 8124 M, with 64 CB memory. The experiment was 
conducted using Solomon standard test cases adapted and 
downloaded from the website neo.lcc.uma.exe/vrp/solution 
methods/. An example of a set of 100 consumers was analyzed. 
Class C refers to densely distributed consumption points, Class 
R refers to dispersed consumption points, and CR refers to 
consumption points with cross distribution. The experiment 
mainly focused on C201, R201 and CR201 sets for example 
analysis. Therefore, the distribution path scheme of the six cold 
chain vehicles presents two states, as shown in Fig. 7. 

From Fig. 7(a), before the optimization of the distribution 
path, the path was relatively chaotic and cumbersome. Six cold 
chain vehicles crossed the central hub significantly, resulting in 
high transportation costs and low efficiency. Fig. 7(b) shows the 
optimized distribution route. The transportation of each cold 
chain truck was in an orderly manner. Among them, vehicles 3 
and 4 had a wider service range due to their larger capacity, 
while vehicle 5 had a narrower time window constraint and 
presented a narrow and short driving path due to its urgent 
service demand at consumer points. The cost of six vehicles and 
the freshness delivered to consumers are displayed in Table Ⅰ. 
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Fig. 7. Delivery path plan for cold chain vehicles. 

TABLE I.  THE CORRELATION EVALUATION COEFFICIENTS OF THE EXPERIMENT AND THE CALCULATED RESULTS 

Example 

number 
Total cost Vehicle cost 

Labor 

costs 

Fuel 

cost 
Low carbon cost 

Average 

freshness 

Medium speed 

driving ratio 

Algorithm 

running time 

CR101 1457 1540 23 35 8 90.96% 19.26% 153 s 

CR201 764 700 26 31 7 82.86% 21.17% 195 s 

R101 1676 1600 25 33 8 92.55% 22.19% 149 s 

R201 657 600 24 27 6 80.81% 20.72% 199 s 

C101 2533 2220 106 40 9 80.86% 21.66% 145 s 

C201 2350 2200 103 39 8 81.17% 19.31% 194 s 
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From Table Ⅰ, in order to evaluate more objective and 
accurate path optimization examples, the agricultural products 
delivered to consumers were all delivered with average 
freshness and moderate transportation speed. The lowest total 
cost for R201 transport set was 657. The highest total cost of 
C101 was 2533, with the lowest vehicle cost consumption of 
R201 at 600 and the highest consumption of C101 at 2220. The 
minimum running time of the algorithm was C101, taking 145 
s, and the maximum time was R201, with a total time of 199 s. 
All values of CR201 were average values, and the optimized 
delivery path was within this average value, with high fault 
tolerance, which could meet consumers' requirements for 
freshness of agricultural products, and the cost was also within 
a reasonable range. The ALNS algorithm used the following 
parameters when calculating the substitution example: 
maximum number of customers removed 15 (N), weight 

response coefficient 0.9 (ρ), weight score σ 1 (50), weight 

score σ 2 (20), weight score σ 3 (5), weight score σ 4 (0), and 

initial annealing temperature 5000 (Te). The numerical variation 
of the global optimal solution with specific values is shown in 
Fig. 8. 

In Fig. 8, C201 showed a downward trend before 200 
iterations, dropping from 3500 to around 2500. After 200 
iterations, the value remained constant at 2400, with small 
fluctuations. The overall trend of R201 values was roughly 
consistent with C201, with a decrease from the highest value of 
2300 before 250 iterations to 1600. After 250 iterations, the 
values fluctuated around 1600. CR201 showed significant 
fluctuations before 450 iterations, with values dropping from 
1200 to 700, but the overall change was flat. This indicated that 

as the iteration increases, the optimal solution converged, and 
the weights of the three sets of examples decreased. Operators 
were quickly stacked in the early stage, which maximized the 
probability of obtaining the global optimal solution. 

B. Analysis of Factors Influencing Delivery Routes based on 

Improved ALNS Algorithm 

In order to further analyze the ALNS algorithm, it was 
necessary to compare the weights of the insertion and removal 
operators in the actual optimization effects during solving. The 
study mainly analyzed the Worst Removal (WOR), Wait-time 
Related Removal operator (WRR), Regret Insertion operator 
(REI). The calculation example was validated to obtain the 
updated weight values and their adaptability as the number of 
iterations increased. The iteration is shown in Fig. 9. 
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Fig. 8. Objective function iteration diagram. 
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Fig. 9. Operator weights and usage iterations graph. 
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As shown in Fig. 9(a), the WOR operator had a higher 
iteration weight in example C201, which was much higher than 
WRR and REI. It had significant changes in the overall curve, 
with the highest weight value of 33 and the lowest weight value 
of 11. The WRR operator was in the middle, with a minimum 
weight value of 6 and a maximum weight value of 24. The 
weight values of the REI operator were the highest at 17 and the 
lowest at 7. In Fig. 9(b), the WRR operator had the highest 
weight of 35 and the lowest weight of 7. The overall curve 
position and most of the values were higher than the other two 
operators, which indicated that WRR had the highest proportion 
of weights. The WOR operator was the median curve, with a 
maximum weight of 34 and a minimum weight of 8. The 
maximum weight value of the REI operator curve was 19, and 
the minimum was 7. In Fig. 9(c), in the CR201 example, the 
weight values of the WOR operator were relatively stable in the 
later stage, with a maximum of 26 and a minimum of 9. The 
overall fluctuation of the WRR operator curve was uniform, 
with a maximum of 19 and a minimum of 7. The weight value 
curve of the REI operator had the smallest variation, with a 

maximum value of 17 and a minimum value of 6. This 
demonstrated that the improved algorithm yielded more accurate 
results. The running results before and after improvement is 
displayed in Fig. 10. 

In Fig. 10, the purple color represented the unimproved 
ALNS algorithm. Among them, C201 took 194 s to calculate 
2495 objective function values, R201 took 199 s to calculate 699 
objective function values, and CR201 took 195 s to calculate 768 
results. The green color represented the improved ALNS 
algorithm. Among them, C201 took 244 s to calculate 2350 
objective function values, and R201 took 239 s to calculate 657 
objective function values. The CR201 example took 233 s to 
attain 764 objective function values. This indicated that the 
improved ALNS algorithm had higher efficiency and less time 
consumption in the same number of iterations. The decay rate 
also affected the delivery quality of agricultural products. Based 
on a decay rate of 0.01, the study incorporated the rates of each 
stage of agricultural products into the improved ALNS 
algorithm for optimal solution calculation, as shown in Fig. 11. 
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Fig. 10. Comparison of running results before and after algorithm improvement. 
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Fig. 11(a) shows the number of transportation vehicles for 
agricultural products. At a decay rate of 75%, the maximum 
number of transport vehicles reached 11. In Fig. 11(b), the 
driving distance was the lowest at a speed of -75%, only 1510 
km. In Fig. 11(c), the delivery time was the highest at a 25% 
decay rate, reaching 3043 minutes, and the lowest at a 50% rate, 
reaching 2478 minutes. The total cost in Fig. 11(d) was directly 
proportional to the change in decay rate. In Fig. 11(e), when the 
decay rate was -75%, the freshness was as high as 91.89%. 
When the rate was 25%, the freshness remained the lowest at 
81.55%. In Fig. 11(f), when the decay rate was -75%, the 
freshness was as high as 91.89%. When the rate was 25%, the 
freshness remained the lowest at 81.55%. From this, in practical 
application, the optimized path for delivering agricultural 
products was faster and more efficient, with the lowest cost and 
the best freshness. 

IV. DISCUSSION 

As the demand for fresh produce delivery increases, 
consumers have demands for delivery times and product 
freshness. Therefore, the study proposes an improved ALNS 
algorithm for optimizing the cold chain distribution path of 
agricultural products, taking into account product characteristics 
comprehensively. The results showed that after analyzing the 
optimized distribution models C201, R201, and CR201, the total 
cost of the R201 transportation set was the lowest at 657 and the 
highest at 2533. The lowest vehicle cost consumption was 600 
for R201 and 2220 for C101. The minimum runtime of the 
algorithm was C101, taking 145 s. Moreover, the maximum 
runtime was R201, with a total runtime of 199 s. All values of 
CR201 were average, with high fault tolerance. The improved 
ALNS algorithm was used to solve the operator optimal solution, 
and the C201 case took 244 s to calculate 2350 objective 
function values. The R201 example took 239 s to obtain 657 
objective function values. The CR201 example took 233 s to 
obtain 764 objective function values. The study optimized the 
delivery path by combining the ALNS algorithm to ensure that 
the average freshness of agricultural products was above 80%. 
The lowest loss cost was achieved when the spoilage rate was 
between -25% and -75%. The higher the decay rate, the more 
cold chain vehicles were used, and the lower the decay rate, the 
shorter the driving distance. When the delivery time was at a 
decay rate of 25%, it took the most time, reaching 3043 minutes. 
Moreover, the lowest consumption was at a rate of 50%, 2478 
minutes. The improved ALNS algorithm proposed in the study 
has significant advantages in optimizing the cold chain 
distribution path of agricultural products and can provide a 
reference for path optimization in the agricultural product 
distribution industry. Nevertheless, research is predominantly 
grounded in historical empirical data, which limits its practical 
applicability. In the future, there is the potential for greater use 
of real-time data in research. 

V. CONCLUSION 

The research proposes an improved ALNS algorithm for 
optimizing the cold chain distribution path of agricultural 
products. By combining the ALNS algorithm to optimize the 
distribution path, the average freshness of agricultural products 
was ensured to be above 80%, and the lowest loss cost was 
achieved when the decay rate was between -25% and -75%. Ni 

C et al. also obtained similar data for the verification calculation 
of the freshness of cold chain vehicles, which proved that the 
higher the decay rate, the more cold chain vehicles were used, 
the lower the decay rate, and the shorter the driving distance [23]. 
When the decay rate was -75%, the freshness reached 91.89%. 
Moreover, when the rate was 25%, the freshness remained the 
lowest at 81.55%. Wofuru Nyenke O et al. also obtained similar 
data on freshness preservation under different decay rates, 
proving the effectiveness of the research experiment [24]. When 
the delivery time was at a decay rate of 25%, it took the most 
time, reaching 3043 minutes. Moreover, the lowest consumption 
was at a rate of 50%, 2478 minutes. Bao H et al. also obtained 
similar data in their experiment on the effect of cold chain truck 
delivery time on the spoilage rate of agricultural products [25]. 
This indicates that the improved ALNS algorithm proposed in 
the study has significant advantages in optimizing the cold chain 
distribution path of agricultural products and can provide a 
reference for path optimization in the agricultural product 
distribution industry. 
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