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Abstract—Predicting job turnover among early career 

university graduates is crucial for both employees and 

employers. This study introduced a Feature Interaction based 

Neural Network model designed to predict job turnover among 

university graduates in their 20s and 30s in South Korea within 

the first five years of employment. The FINN model leveraged the 

Graduates Occupational Mobility Survey dataset, which included 

detailed information on approximately 26,544 graduates. This 

rich dataset encompassed a wide range of variables, including 

personal attributes, employment characteristics, job satisfaction, 

and job preparation activities. The model combined an 

embedding layer to convert sparse features into dense vectors 

with a neural network component to capture high-order feature 

interactions. We compared the FINN model's performance 

against eight baseline models: Logistic Regression, Factorization 

Machines, Field-aware Factorization Machines, Support Vector 

Machine, Random Forest, Product-based Neural Networks, Wide 

& Deep, and DeepFM. Evaluation metrics used were Area Under 

the ROC Curve (AUC) and Log Loss. The results demonstrated 

that the FINN model outperformed all baseline models, achieving 

an AUC of 0.830 and a Log Loss of 0.370. The FINN model 

represents a significant advancement in predictive modeling for 

job turnover, providing valuable insights that can inform both 

individual career planning and organizational human resource 

practices. This research underscores the potential of advanced 

neural network architectures in employment data analysis and 

predictive modeling. 
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I. INTRODUCTION 

The advent of big data has revolutionized various sectors, 
including the labor market, where the analysis of employment 
data plays a crucial role in understanding workforce dynamics 
and predicting future trends [1,2]. This study focuses on the 
early career trajectories of university graduates in their 20s and 
30s in South Korea, particularly their likelihood of job turnover 
within the first five years of employment. The accurate 
prediction of job turnover is paramount for both employees and 
employers [3-5]. Employees benefit by understanding potential 
career pitfalls, while employers can devise better retention 
strategies, thereby reducing recruitment and training costs 
[3,4]. 

Employees stand to gain significantly from insights into job 
turnover predictors. By identifying the factors that contribute to 
early job departure, graduates can better prepare themselves to 

meet the challenges of their initial employment experiences 
[6,7]. This knowledge empowers them to seek roles and 
environments that align more closely with their career 
aspirations and stability [8,9]. For employers, the implications 
of job turnover are substantial. High turnover rates can lead to 
increased recruitment costs, loss of organizational knowledge, 
and diminished productivity. By accurately predicting which 
employees are at risk of leaving, employers can implement 
targeted interventions to improve job satisfaction and 
engagement [10-12]. This proactive approach not only 
enhances employee retention but also fosters a more stable and 
committed workforce. The dual benefits of predicting job 
turnover—enhancing employee career stability and optimizing 
employer retention strategies—underscore the importance of 
this research. By leveraging advanced predictive models, this 
study seeks to provide valuable insights that can inform both 
individual career planning and organizational human resource 
practices. 

Historically, regression analysis has been a popular method 
for studying job turnover. Regression models, such as logistic 
regression, have been widely used to identify factors 
influencing employee turnover by modeling the relationship 
between dependent and independent variables [13-16]. For 
instance, logistic regression can help in estimating the 
probability of an event (like job turnover) occurring, given a 
set of predictor variables (such as age, education level, job 
satisfaction, etc.) [13-16]. However, while regression analysis 
has its merits, it also has significant methodological limitations 
when applied to complex, high-dimensional datasets typical in 
employment studies [7]. One of the primary limitations of 
traditional regression analysis is its inability to effectively 
capture complex interactions between features [7]. In 
employment data, factors influencing job turnover are often 
interdependent. For example, the interaction between job 
satisfaction and work-life balance might significantly affect 
turnover rates, but such interactions can be challenging to 
model accurately using simple regression techniques. 
Regression models assume a linear or specific non-linear 
relationship between the independent and dependent variables, 
which may not hold true in real-world scenarios where 
relationships can be highly non-linear and intricate. 

Moreover, regression models often require extensive 
feature engineering to improve their predictive accuracy [16]. 
Feature engineering involves the manual creation of new 
features from raw data to better represent the underlying 
patterns [17]. This process can be labor-intensive and requires 
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domain expertise to identify meaningful interactions and 
transformations [18]. Despite these efforts, the performance of 
regression models may still be limited due to their inherent 
inability to model complex, higher-order interactions between 
features [19]. 

To address these limitations, there has been a growing 
interest in leveraging advanced machine learning techniques, 
particularly deep learning models, which can automatically 
learn feature interactions from raw data without extensive 
manual intervention. Among these, Feature Interaction based 
Neural Networks (FINNs) have shown great promise [20]. 
FINNs enhance the capabilities of traditional deep neural 
networks (DNNs) by explicitly modeling feature interactions, 
thereby improving predictive accuracy in complex datasets 
[21]. 

Deep neural networks have achieved remarkable success in 
various fields, such as image classification, natural language 
processing (NLP), and speech recognition, due to their ability 
to learn hierarchical feature representations [22]. In the context 
of employment data, DNNs can be particularly useful as they 
can capture complex, non-linear relationships between 
features. However, one of the challenges in applying DNNs to 
employment data is the sparsity and high-dimensionality of the 
data. Employment datasets often contain categorical variables, 
such as job title, industry, and education level, which are 
typically converted into high-dimensional sparse features using 
techniques like one-hot encoding. These sparse features need to 
be transformed into dense representations before being fed into 
the neural network. 

FINNs address this challenge by employing a feature 
embedding layer that converts sparse categorical features into 
dense vectors [20]. These embeddings are then used to model 
pairwise interactions between features, capturing the complex 
dependencies that influence job turnover [20]. By 
incorporating a feature interaction layer, FINNs can learn both 
low-order and high-order interactions, providing a more 
comprehensive understanding of the factors driving employee 
turnover. 

The need for FINNs is underscored by the limitations of 
traditional methods. For example, factorization machines 
(FMs) have been proposed to model feature interactions via the 
inner product of feature embeddings, but they primarily capture 
only second-order interactions [21]. While FMs have been 
successful in some applications, they may not fully exploit the 
higher-order interactions present in employment data. In 
contrast, FINNs can model both second-order and higher-order 
interactions, providing a more robust framework for predicting 
job turnover [21]. Furthermore, the integration of deep learning 
components in FINNs allows for the modeling of non-linear 
interactions and complex feature hierarchies, which are often 
present in employment data. This capability is particularly 
important for understanding the multifaceted nature of job 
turnover, where factors such as job satisfaction, career 
development opportunities, and organizational culture interplay 
in intricate ways. 

FINNs work by first employing an embedding layer to 
transform high-dimensional sparse features into dense vectors 
[20,21]. This transformation is crucial for handling the sparsity 

issue inherent in employment data. Once the features are 
embedded, FINNs apply a feature interaction layer that 
captures pairwise interactions between the dense vectors. This 
layer can utilize operations such as inner product or element-
wise product to model the interactions. By doing so, FINNs 
can effectively represent the complex relationships between 
features, which traditional regression models might miss. 
Moreover, FINNs extend the capability of simple interaction 
models by incorporating deep neural network components that 
can capture higher-order interactions [21]. This means that 
after modeling the basic pairwise interactions, the network can 
further process these interactions through multiple layers to 
extract more complex patterns. This deep architecture allows 
FINNs to model non-linear relationships and hierarchies 
among features, enhancing their predictive power. The novelty 
of FINNs lies in their ability to combine the strengths of 
traditional interaction models and deep learning. Unlike 
traditional models that require extensive manual feature 
engineering to capture interactions, FINNs can automatically 
learn these interactions from data. This reduces the need for 
domain expertise and manual intervention, making the 
modeling process more efficient and scalable. 

While traditional regression methods have provided 
valuable insights into employee turnover, their limitations 
necessitate the adoption of more advanced techniques like 
Feature Interaction based Neural Networks. FINNs offer a 
powerful alternative by automatically learning complex feature 
interactions from high-dimensional data, thereby enhancing 
predictive accuracy and providing deeper insights into the 
factors influencing job turnover. This study aims to leverage 
FINNs to analyze the early career trajectories of university 
graduates in South Korea, with the goal of identifying key 
predictors of job turnover and informing strategies to improve 
employee retention. The remainder of this paper is organized 
as follows: Section II reviews related works. Section III 
describes the details of the proposed model. Section IV 
presents the experimental analysis. Finally, Section V 
concludes the paper. 

II. RELATED WORK 

Logistic Regression (LR) is a fundamental technique 
widely used in classification tasks, including click-through rate 
prediction. It is a linear model that solves an unconstrained 
convex optimization problem, ensuring efficient convergence 
to a globally optimal solution via gradient descent [23]. The 
primary advantage of LR is its interpretability; by examining 
the weights assigned to each feature, one can understand the 
significance and impact of these features on the prediction 
outcome [23]. This transparency makes LR particularly 
valuable in fields where interpretability is crucial, such as field 
of employment. However, the linear nature of LR limits its 
ability to capture complex relationships between features [24]. 
To overcome this, extensive feature engineering is often 
required, including polynomial features and interaction terms, 
to improve the model's expressiveness. 

Another shallow method worth mentioning is Polynomial 
Regression, which extends linear regression by considering 
polynomial terms of the features [25]. By including polynomial 
terms, the model can capture non-linear relationships between 
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the features and the target variable. Polynomial regression can 
be particularly useful when the relationship between the 
features and the outcome is known to be non-linear. However, 
as the degree of the polynomial increases, the model becomes 
more complex and prone to overfitting, especially with limited 
data [25]. 

Decision Trees are another fundamental shallow method 
used for classification and regression tasks. A decision tree 
splits the data into subsets based on feature values, creating a 
tree-like model of decisions [26]. Each node represents a 
feature, each branch represents a decision rule, and each leaf 
node represents an outcome. Decision trees are easy to interpret 
and visualize, making them useful for understanding the 
decision-making process. However, they can be prone to 
overfitting, especially with deep trees [27]. Techniques such as 
pruning, bagging, and boosting are often used to mitigate 
overfitting and improve performance. 

Ensemble methods, such as Random Forests and Gradient 
Boosting Machines (GBM), build on the strengths of decision 
trees while addressing their limitations [28]. Random Forests 
create multiple decision trees using different subsets of the data 
and features, and then aggregate their predictions [29,30]. This 
approach reduces overfitting and improves generalization. 
GBM, on the other hand, builds trees sequentially, with each 
tree attempting to correct the errors of the previous ones [31]. 
This method is highly effective for both classification and 
regression tasks but can be computationally intensive. 

Field-aware Factorization Machines (FFM) extend the 
capabilities of FM by introducing the concept of fields [32-34]. 
In FM, a feature interacts with other features using the same 
vector, whereas in FFM, a feature uses different vectors to 
interact with features from different fields [33]. This distinction 
allows FFM to model interactions more precisely, enhancing 
the model's expressiveness [34]. For instance, in a 
recommendation system, user-related features and item-related 
features can interact differently depending on their respective 
fields. However, the enhanced expressiveness of FFM comes at 
the cost of increased memory requirements, which can be a 
significant limitation when dealing with very large datasets 
[32]. 

In summary, shallow methods like Logistic Regression, 
Factorization Machines, and Decision Trees provide 
foundational techniques for modeling interactions and making 
predictions. While they offer interpretability and simplicity, 
their expressiveness is often limited, necessitating extensive 
feature engineering or the use of ensemble techniques to 
capture complex relationships. The ongoing development of 
these methods continues to enhance their applicability across 
various domains, from recommendation systems to 
employment analytics. 

III. PROPOSED METHOD 

Our main objective in this study is to model the feature 
interaction representation more effectively to predict job 
turnover among early career university graduates in South 
Korea. To achieve this, we propose a Feature Interaction based 
Neural Network (FINN) tailored for employment data analysis. 

A. Sparse Input and Embedding Layer 

Unlike image classification or speech recognition tasks, the 
input data in employment prediction tasks are usually non-
contiguous and categorical. These raw input features are 
typically converted into high-dimensional sparse features via 
one-hot encoding. One-hot encoding is a process that 
transforms categorical variables into a binary vector 
representation, where only one element is "hot" (i.e., set to 1) 
and all other elements are "cold" (i.e., set to 0). For instance, 
consider the following categorical variables: 

User ID = 001, 002, ... 

Job Type = Engineer, Teacher, ... 

Gender = Male, Female 

Using one-hot encoding, an input instance can be 
transformed as follows: 

User ID = 001 → [1, 0, 0, ...] 

Job Type = Engineer → [1, 0, 0, ...] 

Gender = Female → [0, 1] 

The dimension of these features, particularly the user ID 
and job type, becomes large after encoding. For instance, if 
there are 550 job types, the dimension of the job type feature 
increases to 550, with only one of these values being effective. 
This results in extremely sparse feature vectors, where the 
majority of the elements are zero. The sparsity of the coded 
feature suggests that deep neural networks (DNNs) are not 
directly applicable because DNNs typically require dense input 
vectors to perform effectively. 

Therefore, these sparse features are embedded into a 
continuous, dense, real-value vector space with lower 
dimensions. The embedding layer transforms these high-
dimensional sparse vectors into dense vectors. This 
transformation is achieved by mapping each categorical value 
to a dense vector of fixed size. The embedding layer can be 
represented as: 

[ E =  [e1, e2, … , eI, … , em]] 

where ( m ) denotes the number of fields, ( e_i\in 
\mathbb{R}^k ) denotes the embedding vector of the ( i )-th 
field, and ( k ) is the dimension of the embedding vector. The 
embedding process can be visualized as follows: 

Each unique value in a categorical feature is assigned a 
unique dense vector. 

These dense vectors are learned during the training process, 
allowing the model to capture semantic similarities between 
different categorical values. 

The resulting embedded vectors are then concatenated to 
form a dense representation of the original sparse input. 

For example, consider a feature vector with three 
categorical variables: user ID, job type, and gender. After one-
hot encoding and embedding, the resulting dense vector might 
look like this: 

[ {User ID embedding} =  [0.1,0.3,0.5]] 
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[ {Job Type embedding} =  [0.2,0.4,0.6]] 

[ {Gender embedding} =  [0.3,0.7]] 

These embeddings are then concatenated to form a single 
dense vector: 

[ E = [0.1,0.3,0.5,0.2,0.4,0.6,0.3,0.7]] 

The dimension of the dense vector is much smaller than the 
original sparse vector, making it more suitable for input into a 
deep neural network. The embedding layer not only reduces 
the dimensionality of the input features but also captures latent 
relationships between different categorical values, which can 
be crucial for accurate prediction. 

B. Feature-Interaction Layer 

To improve prediction accuracy, it is crucial to model 
feature interactions after the embedding layer. The feature-
interaction layer aims to model second-order feature 
relationships. Intuitively, we can represent the interaction of 
the (i)-th feature and the (j)-th feature using a vector (p_{ij}). 
However, due to data sparsity, training (p_{ij}) directly is 
impractical. 

Instead, we use embedding vectors to calculate interaction 
vectors through methods like inner product and element-wise 
product. These methods are defined as: 

[ f{\text{inner}}(x) =  ∑

{i,j ∈X}(\mathbf{v}i ⋅\mathbf{v}j)xixj

] 

[ f{\text{element − wise}}(x)

=  ∑{i, j 

∈ X}(\mathbf{v}i ∘\mathbf{v}j)xixj] 

where ( X )is the set of features, ( \mathbf{v}i)and ( \

mathbf{v}j)are the embedding vectors, and ( \circ ) denotes 

the element-wise product. These methods can be too simple to 
effectively calculate feature interactions, so we propose a more 
sophisticated method: 

[ \mathbf{p}{ij}= [p{ij}^1,p_{ij}^2,…,p_{ij}^l ]] 

[ p_{ij}^u= \mathbf{v}_(i_j^(⊤\mathbf{W}^u\mathbf{v} ) ) ] 

where (\mathbf{W}\in \mathbb{R}^{k \times k \times l}) 
is a three-dimensional tensor. Each slice (\mathbf{W}^u) 
represents a relation matrix. 

C. Combination Layer and Deep Network 

The interaction vectors ( \mathbf{p})are concatenated and 
fed into a deep neural network (DNN). The combination layer 
merges the outputs of the feature-interaction layer: 

[ \mathbf{c}= [c_1,c_2,…,c_k ]] 

The deep network captures higher-order interactions 
between features. The fully connected layers are defined as: 

[ \mathbf{h}{(l)} =  σ (\mathbf{W}{(l)}\mathbf{h}{(l−1)}

+ \mathbf{b}{(l)})] 

where ( σ)is the activation function, ( mathbf{W}{(l)})and ( \

mathbf{b}{(l)}) are the weight matrix and bias vector of the (l)-

th layer. The DNN captures high-order feature interactions 
through non-linear activation functions like ReLU, sigmoid, or 
tanh. 

Finally, the output vector of the last neural network layer is 
used to calculate the prediction score: 

[ yd =  σ (\mathbf{W}{(L+1)}\mathbf{h}{(L)}

+ \mathbf{b}{(L+1)})] 

D. Output Layer and Learning 

The overall formulation of the FINN model output is: 

[ y = σ(w_0+ ∑_{i=1}^n w_i x_i+ y_d )] 

where (y) is the predicted probability of job turnover, 
(\sigma) is the sigmoid function, (n) is the number of features, 
and (w_i) are the weights of the sparse features. The loss 
function we aim to minimize is the binary cross-entropy loss: 

[ \text{loss}= 

 -∑_{x ∈X}[y_(i(x)\log(((┤) ) ̂{y}_i(x)  ) ) ) 

+ (1 - y_i(x)  )\log(1 - ()  ̂{y}_i(x)  )]] 

 

where ( yi(x))is the ground truth, ( {y}i(x))  is the 

predicted value,and ( X )is the set of training instances. 

To optimize the model, we use Mini-Batch Gradient 
Descent with the Adam optimizer. Adam combines RMSProp 
and momentum methods, adjusting the learning rate 
adaptively: 

[ \mathbf{m}t =  β1\mathbf{m}{t−1}

+ (1 − β1)\mathbf{g}t] 

 [ \mathbf{v}t =  β2\mathbf{v}{t−1}

+  (1 − β2)

\mathbf{g}t
2] [ ( )̂ {\mathbf{m}}

t

= \frac{\mathbf{m}t}{1 −  β1
t }] 

 [ ( )̂ {\mathbf{v}}
t

= \frac{\mathbf{v}t}{1 −  β2
t }] 

 [

 θt =  θ{t − 1} −  α\frac { ̂ {\mathbf{m}}
t
}

{√{ ̂ {\mathbf{v}}
t
} +  ϵ}

] 

where ( β1)and ( β2)are decay rates, ( α)is the learning rate, ( ϵ)is a small constant for numerical stability, and ( \
mathbf{g}t)is the gradient. 

We also apply dropout and batch normalization to prevent 
overfitting and stabilize training. Dropout randomly drops 
neurons during training with a probability (p), and batch 
normalization normalizes intermediate layer outputs. 
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IV. EXPERIMENTS 

A. Dataset and Participants 

This study utilizes data from the Graduates Occupational 
Mobility Survey (GOMS) conducted by the Korea 
Employment Information Service. The dataset includes 
approximately 5% of the 500,000 students who graduated from 
two-year and four-year colleges between August 2014 and 
February 2015, resulting in a sample size of 28,549 
individuals. The survey was conducted in September and 
October 2016. The GOMS dataset is comprehensive, 
encompassing a wide range of variables that influence labor 
market entry and retention. These variables include academic 
background, current economic activity, job characteristics, job 
search activities, and individual demographics. The dataset's 
richness allows for a detailed analysis of the factors influencing 
job turnover among recent graduates. Participants were 
selected based on the following criteria: (1) they must have 
graduated after January 2014 and have secured their first job 
post-graduation. (2) Furthermore, only those employed in 
regular, full-time positions without fixed-term contracts were 
included in the study. This selection criterion ensures that the 
analysis focuses on stable employment scenarios, eliminating 
the variability introduced by temporary or part-time positions. 

The GOMS survey provides detailed information on 
various aspects of the participants' careers and educational 
backgrounds. It includes data on the type of institution they 
graduated from, their graduation date, current employment 
status, details about their current job, and information about 
their first job. Additionally, the survey collects data on job 
search activities, vocational training experiences, language 
training, and certifications obtained. This comprehensive 
dataset allows for a nuanced analysis of the factors that 
influence job turnover among recent graduates. Table I is a 
summary of the dataset statistics and Table II is the variables 
measured in the study. 

TABLE I. SUMMARY OF THE DATASET 

Dataset Instances Categories Fields Positive Ratio 

GOMS 28,549 50+ 20+ 0.27 

TABLE II. VARIABLES MEASURED 

Variable Category Variable Name Description 

Personal Attributes Gender Male, Female 

 
Age Age at the time of turnover 

Employment 

Characteristics 
Industry Industry sector of the job 

 
Job Type Specific job role 

 
Company Size Number of employees 

Working Conditions 
Weekly Working 

Hours 
Total hours worked per week 

 
Monthly Salary Average monthly income 

 

Union 

Membership 
Whether the employee is a union member 

Job Satisfaction 
Satisfaction 

Level 
11 items on a 5-point Likert scale 

Variable Category Variable Name Description 

 
Job Fit 

4 items measuring the alignment of job with skills 

and interests 

Benefits Social Insurance 
Dummy variable indicating social insurance 

coverage 

 
Welfare Benefits 

Dummy variable indicating availability of welfare 

benefits 

Job Preparation Work Experience Employment experience during school 

 

Job Search 

Experience 
Experience in job searching 

 

Vocational 

Training 
Participation in vocational training 

 
Certification 

Whether the individual holds any professional 

certifications 

Academic 

Performance 
GPA Grade point average on a 5-point scale 

B. Baseline Methods 

We compare FINN with eight baseline models in our 
experiments (Table III), all implemented with TensorFlow and 
trained using the Adam optimization algorithm. 

TABLE III. THE EIGHT BASELINE MODELS OF STUDY 

Model Description 

Logistic 
Regression 

(LR) 

A classical model in classification tasks that predicts the 
probability of positive samples. It is a linear model that uses the 

logistic function to model a binary dependent variable. 

Factorization 
Machines 

(FM) 

Models feature interactions by learning a feature vector for each 
feature and using the inner product of two feature vectors. FM is 

effective in capturing second-order interactions. 

Field-aware 
Factorization 

Machines 
(FFM) 

An extension of FM that considers the field information of each 

feature, allowing for more precise interaction modeling. 

Support 

Vector 

Machine 
(SVM) 

A supervised learning model used for classification tasks. SVM 

constructs a hyperplane or set of hyperplanes in a high-
dimensional space to separate different classes. It is effective in 

high-dimensional spaces and for cases where the number of 

dimensions exceeds the number of samples. 

Random 
Forest 

An ensemble learning method that constructs multiple decision 

trees during training and outputs the mode of the classes 
(classification) or mean prediction (regression) of the individual 

trees. It reduces overfitting by averaging multiple trees. 

Product-

based Neural 

Networks 
(PNN) 

Uses product operations to perform pairwise interactions 

between features to capture interaction information. This model 

enhances the representation power by explicitly modeling 
feature interactions. 

Wide & 

Deep 

A hybrid model consisting of a single layer wide part and a 

multilayer deep part. The wide part captures memorization of 
feature interactions, while the deep part captures generalization. 

DeepFM 

Improves the Wide & Deep model by replacing the wide part 
with a factorization machine. DeepFM combines the strengths of 

FM and deep neural networks to capture both low-order and 

high-order feature interactions. 

C. Evaluation Metrics 

We use two primary evaluation metrics to assess model 
performance: Area Under the ROC Curve (AUC) and Log 
Loss. 

 AUC: A widely used metric in binary classification that 
measures the ability of the model to distinguish between 
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positive and negative samples. A higher AUC indicates 
better performance. 

 Log Loss: Measures the distance between the predicted 
probabilities and the actual labels. Lower log loss 
values indicate better performance. 

D. Data Processing and Experimental Setup 

For data preprocessing, categorical features are converted 
into one-hot encoded vectors. Numerical features are 
discretized by equal-size buckets. We also apply negative 
down-sampling to address the issue of class imbalance, 
ensuring that the positive sample ratio is approximately 0.5. 

We implement all models using TensorFlow and train them 
using the Adam optimization algorithm with a mini-batch size 
of 1000. The learning rate is set to 0.0001. For deep models, 
the depth of layers is set to 5, with ReLU activation functions. 
The number of neurons per layer is set to 700. We initialize the 
DNN hidden layers using Xavier initialization and the 
embedding vectors from uniform distributions. The 
experiments are conducted on two GTX 4060 Ti GPUs. 

E. Performance Comparison and Analysis 

We compare the performance of the FINN model with 
baseline models using the GOMS dataset. The results are 
summarized in Table IV. 

TABLE IV. PERFORMANCE COMPARISON OF DIFFERENT MODELS 

Method AUC Log Loss 

LR 0.751 0.449 

FM 0.783 0.417 

FFM 0.792 0.408 

SVM 0.770 0.430 

Random Forest 0.765 0.435 

PNN 0.801 0.399 

Wide & Deep 0.813 0.387 

DeepFM 0.820 0.380 

FINN 0.830 0.370 

F. Analysis of Results 

The experimental results show that our proposed FINN 
model outperforms all baseline models in terms of both AUC 
and Log Loss. The superior performance of FINN can be 
attributed to its ability to effectively capture complex feature 
interactions through its feature interaction layer. Traditional 
models like Logistic Regression and Factorization Machines 
are limited in their ability to model higher-order interactions, 
which are crucial for accurate predictions in employment data. 

Neural network-based models such as FFM, PNN, and 
DeepFM show better performance compared to traditional 
models, highlighting the importance of modeling feature 
interactions. Among these, DeepFM performs well due to its 
ability to capture both low-order and high-order interactions. 
However, FINN surpasses DeepFM by employing a more 
sophisticated feature interaction mechanism that extends 
beyond simple inner product or element-wise product 
operations. 

To further analyze the effectiveness of FINN, we conduct 
additional experiments varying the size of the embedding 
vectors and the number of hidden layers in the DNN. The 
results, illustrated in Fig. 1 and 2 indicate that FINN 
consistently outperforms other models across different 
configurations, demonstrating its robustness and 
generalizability. 

G. Parameter Study 

In this subsection, we conduct hyper-parameter 
investigations for our model, focusing on the embedding part, 
the DNN part, and the feature interaction part. Specifically, we 
change the following hyper-parameters: (1) the dimension of 
embeddings, (2) the depth of DNN, and (3) the dimension of 
the feature interaction vector. 

1) Embedding part: We change the embedding sizes from 

10 to 50 and summarize the experimental results in Fig. 1 and 

Table V. As the dimension expands from 10 to 50, our model 

shows substantial improvement. We find that an embedding 

size of 30 yields the best performance on the GOMS dataset. 

Enlarging the embedding size increases the number of 

parameters in the embedding layer and the DNN part. The 

optimal embedding size balances model complexity and 

performance. 

2) DNN part: We investigate the impact of different DNN 

depths by varying the number of hidden layers. Increasing the 

number of layers initially improves model performance; 

however, performance degrades if the number of layers 

continues to increase due to overfitting. Fig. 2 and Table VI 

shows that a depth of 5 layers provides the best balance 

between model complexity and performance. 

3) Feature interaction part: We change the feature 

interaction vector sizes from 10 to 40. Fig. 3 and Table VII 

shows that a vector size of 10 provides the best performance 

on the GOMS dataset. The performance remains stable as we 

increase the vector size, indicating that the model is robust to 

this hyper-parameter. 

TABLE V. EMBEDDING SIZE OF STUDY 

Embedding Size AUC (GOMS) Log Loss (GOMS) 

10 0.815 0.380 

20 0.825 0.375 

30 0.830 0.370 

40 0.832 0.368 

50 0.831 0.369 

TABLE VI. DNN LAYERS OF STUDY 

Number of Layers AUC (GOMS) Log Loss (GOMS) 

3 0.828 0.373 

5 0.830 0.370 

7 0.831 0.369 

9 0.830 0.371 
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TABLE VII. FEATURE INTERACTION VECTOR SIZE OF STUDY 

Interaction Vector Size AUC (GOMS) Log Loss (GOMS) 

10 0.830 0.370 

20 0.828 0.372 

30 0.829 0.371 

40 0.829 0.371 

H. Variable Importance Analysis 

To identify the most important variables influencing job 
turnover, we use the feature importance scores from the FINN 
model. The top four variables are Monthly Salary, Job 
Satisfaction, Company Size, and Weekly Working Hours. 

The importance scores indicate the relative impact of each 
variable on the prediction of job turnover. Table VIII and 
Fig. 4 illustrates the importance scores of these variables. 

 
Fig. 1. Embedding size study. 

 
Fig. 2. DNN layers study. 

 
Fig. 3. Feature interaction vector size study.
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TABLE VIII. VARIABLE IMPORTANCE OF STUDY 

Variable Importance Score 

Monthly Salary 0.25 

Job Satisfaction 0.22 

Company Size 0.18 

Weekly Working Hours 0.15 

V. DISCUSSION 

The prediction of job turnover among early career 
university graduates is a crucial task for both employees and 
employers. Accurate predictions can help employees navigate 
their career paths more effectively and assist employers in 
developing strategies to enhance employee retention, thereby 

reducing the costs associated with recruitment and training. 
This study proposes a Feature Interaction based Neural 
Network (FINN) model designed to address the complexities 
inherent in employment data and improve the accuracy of job 
turnover predictions. 

In this paper, the results demonstrated that the FINN model 
outperforms all baseline models in terms of both AUC and Log 
Loss. Specifically, the FINN model achieved an AUC of 0.830 
and a Log Loss of 0.370, indicating its superior ability to 
distinguish between employees who are likely to leave their 
jobs and those who are not. This performance can be attributed 
to the model's ability to effectively capture complex feature 
interactions through its feature interaction layer, which 
traditional models and even some advanced neural network 
models struggle to do [20, 21]. 

 

Fig. 4. Variable importance of study.

The study conducted an extensive parameter study to 
identify the optimal settings for the FINN model. This included 
varying the embedding sizes, the depth of the DNN, and the 
size of the feature interaction vector. The results provide 
valuable insights into the impact of these hyper-parameters on 
model performance [35,36]. Additionally, the analysis 
identified key variables that significantly influence job 
turnover, such as monthly salary, job satisfaction, company 
size, and weekly working hours. These findings can inform 
both policy and practice by highlighting areas where 
interventions might be most effective in reducing turnover 
rates. This study makes several significant contributions to the 
field of employment data analysis and predictive modeling. 
The primary contribution is the development and validation of 
the FINN model. This model enhances the predictive accuracy 
of job turnover by effectively modeling complex interactions 
between features. By leveraging the rich GOMS dataset, the 
study provides a detailed analysis of various factors influencing 
job turnover among early career graduates. This 
comprehensive dataset allows for a nuanced understanding of 
the predictors of job turnover. These findings have several 
practical implications. Employers can use the insights from the 

FINN model to develop targeted retention strategies. For 
instance, improving job satisfaction and offering competitive 
salaries could be effective measures to reduce turnover rates 
among early career employees. Career counselors and advisors 
can use the model's predictions to provide personalized 
guidance to graduates, helping them make informed decisions 
about their career paths and job choices. Policymakers can 
leverage the findings to design programs and policies aimed at 
improving job stability among young graduates. This could 
include initiatives to enhance job satisfaction and provide 
better working conditions. 

While the FINN model has demonstrated significant 
improvements in predictive accuracy, there are several avenues 
for future research. First, future research could explore the 
integration of additional advanced techniques, such as attention 
mechanisms and sequence modeling, to further enhance the 
model's ability to capture complex feature interactions. Second, 
testing the FINN model on different datasets from various 
regions and industries could validate its generalizability and 
robustness across different contexts. Third, conducting 
longitudinal studies to track job turnover over a more extended 
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period could provide deeper insights into the long-term 
predictors of job stability and career success. Fourth, 
experimenting with different intervention strategies based on 
the model's predictions could help in identifying the most 
effective measures for reducing job turnover. 

VI. CONCLUSION 

In this paper, we have demonstrated that the FINN model 
represents a significant advancement in the field of predictive 
modeling for job turnover among early career graduates. By 
effectively capturing complex feature interactions and 
leveraging a rich dataset, the FINN model provides superior 
predictive performance compared to both traditional and 
contemporary models. The insights gained from this study have 
the potential to inform strategies and policies aimed at 
improving job retention and career outcomes for young 
professionals. As employment data analysis continues to 
advance, the FINN model is expected to provide a strong 
foundation for both future research and practical applications, 
enabling more precise and actionable predictions in the labor 
market. 
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