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Abstract—In the textile industry, the flat knitting machine 

plays a crucial role as a production tool, and the quality of its 

weaving path is closely related to the overall product quality and 

production efficiency. Seeking to improve and optimize the 

knitting path to improve product effectiveness and productivity 

has become an urgent concern for the textile industry. This article 

elegantly streamlines and enhances the intricate weaving process 

of fabrics, harnessing the formidable power of reinforcement 

learning to achieve unparalleled optimization of weaving paths on 

a flat knitting machine. By ingeniously integrating reinforcement 

learning technology into the fabric production realm, we aspire to 

elevate both the quality and production efficiency of textiles to new 

heights. The core of our approach lies in meticulously defining a 

state space, action space, and a tailored reward function, each 

meticulously crafted to mirror the intricacies of the knitting 

process. This model serves as the cornerstone upon which we 

construct an innovative knitting pathway optimization algorithm, 

deeply rooted in the principles of reinforcement learning. Our 

algorithm embodies a relentless pursuit of excellence, learning 

from its interactions with the dynamic environment, embracing a 

methodical trial-and-error approach, and continuously refining 

its decision-making strategy. Its ultimate goal: to maximize the 

long-term cumulative reward, ensuring that every stitch 

contributes to the overall optimization of the weaving process. In 

essence, we have forged a groundbreaking collaboration between 

the traditional art of fabric weaving and the cutting-edge science 

of reinforcement learning, ushering in a new era of intelligent and 

efficient textile production. Through this process of iterative 

optimization, the agent can gradually learn the optimal knitting 

path. To verify the effectiveness of the algorithm, we performed 

extensive experimental validation. The experimental results show 

that reinforcement learning can significantly improve knitting 

efficiency, improve the appearance and feel of fabrics. Compared 

with traditional methods, the method proposed in this article has 

a higher level of automation and better adaptability, achieving 

more efficient and intelligent knitting production, with a 10% 

increase in production efficiency. 
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I. INTRODUCTION 

In today's booming textile industry, the flat knitting machine 
stands as the cornerstone equipment, its performance being a 
direct determinant of both production efficiency and product 
quality. Notably, the selection of the knitting path holds 
immense significance, as it critically shapes the final product's 
appearance, hand feel, and overall production efficiency [1, 2]. 
However, traditional knitting path optimization methods are 
heavily reliant on manual expertise and repetitive trials, making 
them inefficient and unable to keep pace with the escalating 

complexity of knitting requirements. Consequently, the textile 
industry faces a pressing need to explore novel optimization 
techniques that can enhance the performance of flat knitting 
machines. 

In recent years, the swift advancements in artificial 
intelligence technology have offered an efficacious solution for 
enhancing the operational optimization of microgrids. Notably, 
the reinforcement learning algorithm stands out as a prominent 
tool, as it transcends the reliance on historical data and pre-
defined labels. Instead, it actively engages with the environment 
through iterative learning, fostering a dynamic and adaptive 
approach. Traditionally, the optimization of power system 
operations entailed modeling the intricate system mechanisms 
and subsequently solving these models under stringent 
constraints. However, reinforcement learning disrupts this 
paradigm by eliminating the need for an explicit physical model 
of the system. It possesses the remarkable ability to discern and 
refine the operational model purely from the available data, 
thereby significantly accelerating the learning process and 
enhancing the efficiency of modeling the system's operations. 
This shift underscores the transformative potential of 
reinforcement learning in driving the future of microgrid 
optimization. At the same time, based on the "trial and error" 
behavior of reinforcement learning, continuous learning can be 
carried out through interaction with the environment, and the 
accuracy of the model and the optimization of parameters can be 
continuously improved. Therefore, compared with the 
traditional micro-grid control mode, reinforcement learning can 
organically connect the components of the system, interact and 
cooperate with each other, and complete complex optimization 
work with a small amount of prior information, improving the 
operation ability and efficiency of the micro-grid. At the same 
time, the practical application and improvement of the algorithm 
in different scenarios can also effectively improve the 
application effect of reinforcement learning. 

The rapid advancements in artificial intelligence have 
ushered in reinforcement learning as a groundbreaking machine 
learning technology. Extensively applied to various 
optimization challenges, reinforcement learning leverages the 
interactive learning process between an agent and its 
environment to autonomously discover optimal decision 
strategies. This approach offers a promising solution for tackling 
intricate problems, making it a compelling candidate for 
revolutionizing knitting path optimization in the textile industry. 
In this context, this paper will discuss the knitting path 
optimization method of flat knitting machine based on 
reinforcement learning to improve the knitting efficiency and 
product quality. 

*Corresponding Author. 
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II. MULTI-AXIAL WARP KNITTED FABRIC PRODUCTION 

EQUIPMENT AND TECHNOLOGY 

A. Fibrous Raw Materials 

The range of raw materials for warp knitted multi-axial 
fabrics is very wide. The lining usually adopts high performance 
fibers with good mechanical properties, such as glass fiber (GF), 
carbon fiber (CF), Kevlar fiber, ultra-high molecular weight 
polyethylene fiber (UHMW. PE), etc. It can be a low twist 
flexible staple yarn or a non-robbing high performance filament 
yarn. When used as reinforcing yarns, high-performance 
untwisted filaments are generally used, and sometimes the yarns 
can be slightly twisted for ease of weaving. Yarns are generally 
thick, up to about 2500tex. 

Polyester low elastic yarn, glass fiber yarn, etc. can be used 
for ground weave yarn. When polyester yarn is used for ground 
weave more than glass fiber, due to the high requirements for 
yarn fineness and bending stiffness, the technical parameters of 
wire drawing are improved, and thus the cost is greatly 
increased. Therefore, in actual production, raw materials should 
be selected according to the requirements of composite material 
properties and applications. 

Glass Fiber (Glass Fiber) is a new type of engineering 
material, which is made of inorganic glass added with silica 
oxides such as calcium, boron, sodium, iron and aluminum. The 
molecular arrangement is a three-dimensional network structure, 
so the properties of glass fiber are homogeneous [3]. It has 
excellent properties such as non-combustible, corrosion-
resistant, high-temperature resistance, low moisture absorption, 
and small elongation. It also has excellent characteristics in 
electrical, mechanical, chemical, and optical aspects, but the 
disadvantages are brittleness and poor wear resistance. 

1) Production process of glass fiber: The production of 

glass fiber has a long history, and there are two main types at 

present: one is the method of replacing platinum to increase the 

pot to make glass into balls, and put the balls into the crucible 

furnace made of platinum pound alloy to make a leak plate, and 

the glass melt flows out of many leaks on the leak plate, and is 

wound on the high-speed rotating wire winding Jane; The 

second is the pool method: the glass powder is directly put into 

the pool cellar to melt, and the glass melt flows out through the 

leaky plates and nozzles installed on several sub-channels. The 

wire drawing method is the same as before. Glass fibers are 

generally 3-10 um in diameter, and more recently 13um, 15um, 

24um monofilament yarns have been used. Due to the 

characteristics of glass fiber in structure, performance, 

processing technology, price, etc., it has always occupied an 

important position in the composite material manufacturing 

industry. 

2) Types of glass fibers: Based on their distinct raw 

materials, glass fibers can be categorized into the following 

types: 
C glass fiber, alternatively known as medium-alkali glass, 

possesses characteristics that lie between E glass fiber and A 
glass fiber. While it excels in chemical resistance, its electrical 
performance is inadequate. Furthermore, its mechanical strength 
falls short by 10% to 20% compared to alkali-free glass fiber. 

In overseas markets, medium-alkali glass fiber is 
predominantly utilized for the production of corrosion-resistant 
glass fiber products. Conversely, in China, this type of glass 
fiber holds a prominent share, exceeding 60% of the total glass 
fiber output, and finds extensive applications. It is widely 
employed as reinforcement in Fiber Reinforced Polymers 
(FRP), as well as in the manufacture of filter fabrics and 
wrapping materials. This prevalence stems from its cost-
effectiveness, offering a significant price advantage over alkali-
free glass fiber, thereby fostering robust competitiveness in the 
domestic market. 

High-strength glass fiber: It is characterized by high strength 
and high modulus. It is mostly used in military industry, space, 
bulletproof armor and sports equipment. However, due to the 
high price, it cannot be promoted in civilian use at present, and 
the world output is only about a few thousand tons. 

E-CR glass. This is an enhanced boron-free and alkali-free 
glass that is utilized to craft glass fibers exhibiting exceptional 
acid and water resistance. Specifically, its water resistance 
surpasses alkali-free glass fiber by a remarkable seven to eight 
times, while its acid resistance significantly outperforms that of 
medium-alkali glass fiber. It is a new variety specially developed 
for underground pipelines, storage tanks, etc. 

B. The Basic Properties of the Polymer Optical Fibers 

The application of optical fiber to luminescent fabric must 
take into account the necessary properties of luminescent fabric 
and the performance characteristics of optical fiber. The 
necessary attributes of luminescent fabric include soft, light, 
durable and safe for use, high and uniform luminescent 
brightness, and good performance. The most prominent feature 
of the luminous fabric is the luminous brightness and flower 
pattern effect in the dark. The luminous brightness refers to the 
light flux per unit projected area. Factors such as fabric 
stretching, fabric type [4], fabric density, number of optical 
fibers, fiber bending radius, fiber bending loss [5]. 

The mechanical properties of optical fibers affect their 
weaving properties [6]. The collusion strength of optical fiber is 
low, poor elasticity and tolerance, so the optical fiber is easy to 
break in the process of weaving. Quartz fiber and glass fiber 
bending performance is poor, polymer fiber fracture tensile rate 
is larger, good toughness, good bending performance [7], 
bending radius, but the bending radius of polymer fiber and 
weaving process when the yarn bending radius is inconsistent, 
and polymer fiber bending rigidity, not conducive to fiber 
bending into circles. Therefore, it is difficult to weave polymer 
optical fiber into circles, and it is easier to weave through the 
form of floating line. Polymer fiber flexibility, flexure and 
elongation, good, easy to process and use [8]. 

Fig. 1 shows knitting path optimization process under the 
framework of reinforcement learning. The thermal performance 
of optical fiber affects the dyeing and shaping of optical fiber 
luminous fabric. Quartz fiber and glass fiber have good heat 
resistance, polymer fiber has poor heat resistance, low melting 
point, poor thermal stability [9], and it is easy to damage the 
fiber in the case of acute heat or cold, increasing the loss of 
polymer fiber. The working temperature of PS core and PMMA 
core polymer fiber is less than 80℃, and the working 
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temperature of PC core polymer fiber is less than 150℃. The 
heat-resistant polymer fiber can be used in the range of 100℃-

200℃ [10, 11], so it is difficult for the polymer fiber fabric to 
iron, dye, shape, etc. 

 

Fig. 1. Knitting path optimization process under the framework of reinforcement learning. 

The chemical performance of optical fiber generally depends 
on its raw materials. For instance, the performance of glass fiber 
closely resembles that of glass, while the chemical properties of 
polymer fiber align with those of plastics. However, the unique 
structure of optical fiber itself can also significantly influence its 
chemical properties. Specifically, the large surface area of 
optical fiber facilitates the absorption of moisture and 
susceptibility to corrosion, thereby diminishing its compressive 
resistance and light transmittance. While polymer optical fiber 
exhibits robust acid and alkali resistance, strong corrosion 
resistance, and aging resistance, it is prone to corrosion by 
acetone, hexane, acetone mixed reagents, ethyl acetate, and 
other reagents. 

Optical fibers exhibit distinct optical properties, 
encompassing both light conduction and scattering, which 
directly impact luminescence brightness, visual effects, and 
intricate floral pattern manifestations. Notably, polymer fibers 
are characterized by pronounced dispersion, a high refractive 
index, and substantial optical transmission attenuation, 
particularly pronounced in the ultraviolet and infrared spectra. 
However, within the visible light spectrum, polymer fibers boast 
high transmittance, making them ideally suited for applications 
in the realm of decorative lighting, where their unique properties 
can be harnessed to create captivating visual displays. 

In summary, the mechanical properties of polymer optical 
fiber directly influence its weaving capabilities. Additionally, 
the mechanical properties of the fiber after exposure to chemical 
reagents are also impacted, thereby affecting its weaving 
properties. Therefore, it is crucial to extensively test the 
mechanical properties of polymer optical fiber, particularly in 
the context of its weaving performance. 

1) Technological parameters of multi-axial fabrics: In 
practical manufacturing, it is often observed that the rationality 
of the process arrangement for multi-axial warp knitted fabrics 
significantly influences the weft yarn structure within the fabric 
and the overall process flow. This can manifest in issues such as 
the weft yarn not being securely fixed within the ground weave 
or the fabric surface lacking weft yarn. These conditions often 
have repercussions on the tensile properties of the fabrics, as 
well as the mechanical properties of the composites post-
molding. The weft-laying process primarily involves factors like 
fabric weight, weft yarn fineness, weft-laying angle, and the 
number of weft-laying layers. The processing parameters for 
multi-axial warp knitted fabrics encompass the fabric's gram 

weight, the gram weight of each weft layer, the density of each 
weft layer, the stitch pattern of the multi-axial fabric (i.e., the 
density of the stitching yarn), and the fineness of the stitching 
yarn and weave. The weight and density of the weft are 
determined by the weft laying process, which plays a pivotal role 
in the weaving of multi-axial fabrics. Unless there are specific 
requirements, the gram weight of each layer in a multi-axial 
fabric is typically calculated by dividing the total gram weight 
per square meter by the number of yarn layers [12, 13]. The weft 
density and fineness are key parameters in controlling fabric 
weight during the weft insertion process. 

In actual production, the determination of these two 
parameters is mainly determined according to the weight per 
square meter required by customers. When producing axial warp 
knitted fabrics in more than two directions, when the total square 
meter gram weight of the fabric is given, the square meter gram 
weight of each layer of yarn must be determined first. The basis 
for the determination is that when the axial fabric is made into a 
composite material, without considering the force requirements 
in special directions, it is generally believed that only when the 
fabric as a reinforcing material has various similarities in 
structure, the composite material can jointly bear the load in all 
directions and exert the best performance of each component in 
the material [14, 15]. Therefore, when there is no special 
requirement, the square meter gram weight of each layer of yarn 
must be determined by dividing the total square meter gram 
weight by the average value obtained by the number of layers of 
yarn as a benchmark. After determining the weight of the next 
square meter, the specific process parameters are determined 
according to the calculation method of the weight of the square 
meter. 

For example, in the actual production of biaxial fabrics, in 
order to make the force bearing capacity in the direction of 0° 
and 90° equivalent, generally under the condition that the square 
meter gram weight of the fabric is given, the square meter gram 
weight of the warp yarn and the square meter gram weight of the 
weft yarn are allocated according to half of the square meter 
gram weight of the fabric. Similarly, for multi-axial fabrics, if 
there are yarns inserted in directions other than 0° and 90°, such 
as: +45°, the forces in all directions should be considered to 
determine the yarn parameters [16, 17]. 

For warp-knitted axial fabrics, the parallel and straight 
alignment of yarns within the fabric structure ensures minimal 
fiber bending. As such, the calculation of the square meter gram 
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weight for yarn in any layer direction of these fabrics is 
straightforward: simply multiply the gram weight of a one-
meter-long yarn segment by the total number of yarns present 
within that one-meter length. This method accurately reflects the 
yarn content and density, crucial for assessing fabric quality and 
suitability in various applications. 

III. INTRODUCTION TO REINFORCEMENT LEARNING 

A. Basic Theory of Reinforcement Learning 

Under the background of new power system construction, 
the participants of micro-grid are becoming more and more 
diverse, and the power generation output and load are in a state 
of random fluctuations, making the operating environment and 

mechanism more and more complex. The traditional energy 
management and scheduling methods are affected by the 
dynamics of the system and the intermittence of new energy 
sources, so it is difficult to establish an accurate mathematical 
model. Concurrently, it is imperative to estimate and fine-tune 
numerous parameters, encompassing load forecasting, energy 
supply, and price forecasting, among others. The computational 
complexity of these tasks is considerable, often rendering it 
challenging to fully satisfy the demands of practical scenarios. 
Furthermore, the majority of optimization challenges 
encountered in actual production processes are non-
deterministic polynomial problems, posing certain difficulties in 
their resolution. Fig. 2 shows knit fabric quality changes over 
time. 

 

Fig. 2. Knit fabric quality changes over time. 

Reinforcement learning evaluates the action based on the 
reinforcement signals provided by the environment, without 
determining in advance how the reinforcement learning system 
will form the correct action. Considering the limited information 
provided by the external environment, the reinforcement 
learning system must rely on its own continuous experience to 
continuously learn [18, 19]. Based on this model, reinforcement 
learning continuously acquires knowledge in an "action-
evaluation" environment, and continuously optimizes action 
plans to adapt to the environment. The problems faced in the 
process of reinforcement learning have been widely discussed in 
biological learning, cybernetics, game theory and other fields. 
They are used to explain the equilibrium state under the 
condition of bounded rationality, and are also used to design 
intelligent interactive systems and unmanned adaptive systems. 
In recent years, reinforcement learning algorithms that integrate 
deep learning, transfer learning and other methods have the 
ability to solve complex problems in the real world, and have 
reached or surpassed the human level in many fields such as 
computer games, intelligence competition, automatic driving, 
intelligent question answering, and industrial production, 
showing extraordinary application prospects. With the 
continuous development of algorithms, its application range will 
become more and more extensive. 

B. Technical Features of Reinforcement Learning 

Reinforcement learning is known as the three major machine 
learning technologies together with supervised learning and 
unsupervised learning because of its powerful exploratory 
ability and autonomous learning ability. Compared with 

supervised learning and unsupervised learning, reinforcement 
learning has great differences in many aspects such as data 
acquisition, learning methods, and decision-making methods. 
Supervised learning has a clear label on each data sample, which 
corresponds to the reinforcement learning task, which means 
that every action that should be taken in a certain state has a clear 
label. This does not match the typical scenario of reinforcement 
learning. Unsupervised learning does not label the data, and the 
main purpose is to discover the distribution law of the data. 
Compared with unsupervised learning, reinforcement learning 
provides certain "labeling" (that is, reward signals), which can 
be regarded as a kind of weak labeling learning. Although this 
mark is a weak mark for a specific action, it is very clear for the 
entire learning task and directly marks the success or failure of 
the task. The decision-making process of reinforcement learning 
is continuous, and at each time step, the agent takes action 
through interaction with the environment and obtains reward 
signals. Reinforcement learning is a goal-driven active learning 
method, which generates learning samples through interaction 
between initiative and environment. In reinforcement learning, 
agents need to try new strategies to obtain higher rewards, and 
at the same time need to use known strategies to maximize 
known rewards. Therefore, how to improve the quality of 
interaction (exploration and utilization) is a key core of 
reinforcement learning. Exploration may lead to too many 
useless attempts, resulting in a large amount of resources being 
wasted, and too much use may miss better choices due to too 
much trust in current experience. However, due to the delayed 
nature of reinforcement learning rewards, agents must learn how 
to evaluate the long-term impact of current decisions, that is, 
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actions made at current moments may affect rewards at multiple 
future moments [20]. Reinforcement learning usually does not 
require prior knowledge or environment models, which makes 
reinforcement learning very useful in dealing with unknown 

environments. Therefore, it has good scalability and 
adaptability, and can deal with problems such as multi-agent, 
uncertain and dynamic environments. Fig. 3 shows efficiency 
comparison before and after knitting path optimization. 

 

Fig. 3. Efficiency comparison before and after knitting path optimization. 

Reinforcement learning embodies a continuous decision-
making and strategy optimization process, leveraging intricate 
internal data structures and algorithms to maximize cumulative 
rewards through the dynamic interplay between agents and their 
environment. Initially, the agent engages with the environment 
guided by a formulated policy, observing and perceiving the 
current state of the environment after each interaction. Based on 
this state, the agent selects an action, triggering corresponding 
rewards or benefits. Over numerous interactions, the agent 
explores diverse action plans, gradually learning the optimal 
strategy for executing the most suitable action within a given 
environment, thereby maximizing overall gain. Presently, 
reinforcement learning encompasses three core methodologies: 
the value function algorithm, the policy gradient algorithm, and 
the "action-evaluation" algorithm, each contributing to the 
agent's capacity for learning and adaptability. 

C. Algorithmic Flow of Reinforcement Learning 

Reinforcement learning is widely used in model 
optimization in automatic control, engineering construction and 
other fields. Its core is that the agent can obtain the cumulative 
maximum return or achieve a specific goal through its own 
learning ability in the process of interacting with the 
environment, so that the agent has the ability to make the best 
decision under the current environment. In order to simplify the 
modeling problem of reinforcement learning, Markov decision 
process is used to describe and construct the process of 
reinforcement learning, considering the complexity of the 
transformation process between environments of reinforcement 
learning. Fig. 4 shows kit path optimization and model 
evaluation process. 

 

Fig. 4. Kit path optimization and model evaluation process. 

Agent: A hypothetical entity that performs actions in an 
environment for some reward Environment: The scene in which 
the agent is located. 

State: Refers to the current state returned by the environment 

The goal of reinforcement learning is to maximize 
cumulative rewards, and future trends of rewards need to be 
considered when calculating rewards. Cumulative rewards are 
defined as the weighted sum of rewards from time t to the end 
of the learning process, represented as shown in Eq. (1). 
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Where yE[0, 1] is a constant called the discount factor, used 
to assess the impact of future rewards on cumulative rewards. 
The state action function Q (s, a) represents the execution of 
action a in the current process and loops to the end of learning 
according to strategy π. The cumulative gain of the agent is 
shown in Eq. (2). 

( , ) [ | , , ]t t tQ s a E R s s a a        (2) 

Where s and a represent the current state and action. For all 
sets of state actions, if the expected returns of a strategy are 
greater than or equal to the expected returns of other strategies, 
the strategy is the optimal strategy. In fact, multiple optimal 
strategies may use the same state action function. Its 
mathematical expression is shown in Eq. (3). 

( , ) max [ | , , ]t t tQ s a E R s s a a


     (3) 

Meanwhile, the action function follows the Bellmann 
optimal equation to form the optimal state action function as 
shown in Eq. (4) 

( , ) [ ( , ) | , ]
s s

Q s a E r maxQ s a s a
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




   (4) 

Where s denotes the subsequent state and a represents the 
action corresponding to s, the optimal value function can 
theoretically be derived through iterative application of the 
Bellman equation. However, in practical scenarios, due to the 
complexity of real-world environments, neural networks, linear 
functions, and other approximation techniques are frequently 
employed to estimate state-action value functions. This 
integration of deep learning and reinforcement learning not only 
enables the accurate approximation of intricate value functions 
but also fosters the rapid advancement and widespread adoption 
of reinforcement learning methodologies. 

IV. STUDY ON TENSILE PROPERTIES OF MULTIAXIAL 

FABRIC BY TECHNOLOGICAL PARAMETERS 

In the actual production, it is often found that whether the 
arrangement of weft insertion and knitting technology of multi-
axial warp knitted fabrics is reasonable or not will directly affect 
the structure of weft in the fabric and the progress of the process, 
such as causing the weft not to be well fixed in the ground weave 
or causing the fabric surface to lack weft. Because these 
conditions often affect the tensile properties of fabrics, this 
chapter mainly studies the effects of different production 
processes on the tensile properties of multiaxial fabrics from the 
perspective of weft laying and knitting processes through 
experimental testing methods [21]. The weft laying process 
mainly refers to the gram weight of the fabric and the fineness 
of the weft yarn, and the knitting process mainly refers to the 
weave structure, needle density, and let-off of the warp knitted 
yarn (bundled yarn). Because the multi-axial warp knitted fabric 
is a new material, there is no uniform standard about the 
performance test of the fabric. In this paper, the fabric tensile 
test is carried out by GB/T7689.5-2001 standard. The state 
transition probability formula and the reward function formula 
are shown in Eq. (5) and Eq. (6). 
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A. Methods and Conditions for Tensile Testing of Fabrics 

Utilize an appropriate instrument to stretch fabric strips until 
rupture, thereby assessing their breaking strength and elongation 
at break. Both the breaking strength and elongation values can 
be directly discerned from the instrument's indicator device, or 
alternatively, derived from the automatically recorded stress-
strain curve. Table I comprehensively outlines the pertinent test 
parameters employed in this analysis. 

TABLE I. TEST PARAMETERS 

 Unit Sample parameter 

Specimen length mm 350 

Width of specimen (unrimmed) mm 65 

Initial effective length mm 200 

Width of trimmed specimen mm 50 

Tensile speed mm/min 100 

In a humidity-controlled environment adhering to standard 
conditions of 23°C ± 2°C temperature and 50% ± 10% relative 
humidity, the sample undergoes a 16-hour humidity acclimation 
period. Subsequently, the testing is conducted in an identical 
environmental setting. 

Based on the fabric type, adjust the upper and lower fixtures 
to achieve the desired effective length of the sample between 
them, ensuring they are parallel. Position the specimen in a jig 
with its longitudinal central axis aligning with the jig's leading-
edge center. Cut cardboard or similar material along a direction 
perpendicular to the specimen's central axis. Apply a uniform 
pretension across the entire width of the specimen, and then 
securely tighten the other jig. 

1) Start the movable fixture and tensile the sample until it 

is destroyed. The Q-value function update and policy gradient 

theorem formulas are shown in Eq. (7) and Eq. (8). 

0( , ) ( ) ( )i ih t x h t x   (7) 

( ) ( ( ))
T

h

qk
SA z v

K
   (8) 

2) Record the final breaking strength. Unless otherwise 

agreed, when the fabric breaks in more than two stages, such as 

double-layer or more complex fabrics, the maximum strength 

at the break of the first set of yarns is recorded and used as the 

tensile breaking strength of the fabric. 

3) Record elongation at break, accurate to 1 mm. 

4) If a specimen is broken within 10mm of the contact line 

of either of the two fixtures, the phenomenon will be recorded, 

but the breaking strength and breaking elongation will not be 
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calculated in the results, and the new specimen will be re-tested 

[22]. 

The reasons for coating resin on the clamping end are: 

The surface of carbon and glass fibers is very smooth, and 
the direct clamping will cause slippage, which will affect the 
accuracy of the test. The value function iterations and the 
Bellmann equation formulas are shown in Eq. (9) and Eq. (10). 
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The brittleness of carbon and glass fibers is large, and if the 
clamping force is too large, the sample at the clamping end will 
be damaged, making the glass fibers at the clamping end of the 
sample break first under the strong force, resulting in the 
phenomenon of breaking the clamping head, and then making 
the test invalid. After coating resin at both ends, the above 
problems can be effectively solved. The friction between the 
resin and the collet is much higher than that between the glass 

fiber and the collet, which effectively solves the problem of 
slipping. In addition, after coating the clamping end, the fibers 
in the clamping part are soaked in the resin. Under the protection 
of the resin, the glass fiber at the clamping end will be subject to 
a very small shear force, so that the problem of fiber brittleness 
can be effectively solved [23]. 

B. Experimental Data Analysis 

In the tensile test, during the tensile load process of the fabric 
held by the clamp, the yarn in the fabric has obvious different 
breakage characteristics, which can be accurately judged from 
the sound produced when the yarn breaks. To some extent, the 
strength of the yarn in the fabric cannot be fully utilized in the 
process of application. 

Fig. 5 shows reward changes during the iteration of 
reinforcement learning. The tensile strength of the fabrics with 
two different weave structures, No. 1 and No. 2, was tested in 
the direction of yarn 0. Five specimens were tested for each 
fabric. The action selection strategy and the advantage function 
calculation formula are shown in Eq. (11) and Eq. (12). 
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Fig. 5. Reward changes during the iteration of reinforcement learning. 

It can be seen from the figure that the tensile properties of 
the fabrics with Promat as the weave structure are slightly higher 
than those of the same fabrics with tricot as the weave structure, 

and the difference in the tensile strength of the fabrics with tricot 
as the weave structure is small. Fig. 6 shows effect of learning 
rate on the effect of path optimization. 

 

Fig. 6. Effect of learning rate on the effect of path optimization. 
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As depicted in Fig. 6, the fabric exhibiting the lowest stitch 
density boasts the highest average tensile strength. However, it 
is apparent that as the stitch density rises, the subsequent 
variations in tensile strength compared to this baseline fabric 
remain relatively modest. The results show that the increase of 

stitch density in the range of common stitch density increases 
the probability of fiber damage caused by needle penetrating 
yarn, but it has no obvious effect on the strength of fabric. Fig. 
7 shows exploration-exploit the effect of trade-offs on pathway 
search. 

 

Fig. 7. Exploration-exploit the effect of trade-offs on pathway search. 

As depicted in Fig. 7, the tensile strength of the fabric does 
not exhibit a regular pattern with variations in let-off amount. 
This is primarily attributed to the consistent weft insertion 
process and the maintenance of yarn count per unit length. Given 
the same stitch density, the likelihood of fiber damage within the 
yarn remains largely unchanged, resulting in insignificant 
variations in the fabric's ultimate strength. The target network 
update and knitting model are shown in Eq. (13) and Eq. (14). 
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It is imperative to emphasize that warp-knitted yarn 
commands a premium price, thus, any augmentation in let-off 
volume directly correlates with an equivalent surge in costs. 
Conversely, maintaining excessively low let-off values 
introduces heightened tension within the yarn, which not only 
accelerates the wear and tear of knitting needles but also poses 
the risk of yarn breakage, ultimately hindering overall 
production efficiency. Therefore, for the actual production, we 
should choose the appropriate let-off amount [24]. The gradient 
descent optimization formula and the entropy regularization 
term formula are shown in Eq. (15) and Eq. (16). 
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C. Effect of Gram Weight of Fabric on Tensile Properties of 

Fabric 

By increasing the gram weight of the 0° yarn layer, we 
measured the tensile strength of Fabrics No. 2 and No. 4 in the 
0° direction. Specifically, Fabric No. 2 had a 0° yarn layer gram 
weight of 291.4 g/m2, while Fabric No. 4 boasted a gram weight 
of 582.7 g/m2. Notably, the gram weight of the 45° glass yarn 
layer remained unaltered, and all other process parameters were 
kept consistent. Fig. 8 shows optimize the comparison of before 
and after paths. 

As Fig. 8 illustrates, as the fabric's gram weight increased, 
so did its breaking strength in the tensile direction. This 
phenomenon is primarily attributed to the increased density of 
the fabric, specifically the augmentation in the density of the 0° 
yarn. As the density of 0° yarns rises, the count of 0° yarns per 
unit length correspondingly increases. Consequently, when the 
fabric undergoes stress, the yarn's force-bearing capacity per 
unit area intensifies, ultimately contributing to a significant 
enhancement in the fabric's overall strength. 

 

Fig. 8. Optimize the comparison of before and after paths. 
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By increasing the gram weight of the 45° glass fiber yarn 
layer, we measured the tensile strength of Fabrics No. 3 and No. 
4 in the 0° direction. Specifically, Fabric No. 3 had a 45° yarn 
layer gram weight of 601.2 g/m2, while Fabric No. 4's 0° yarn 
layer gram weight stood at 300.6 g/m2. The gram weight of the 
0° carbon fiber layer remained constant, and all other process 
parameters remained unchanged [25]. The importance sampling 
weights and discount factor influence formulas are shown in Eq. 
(17) and Eq. (18). 
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Fig. 9 shows effect of environmental state changes on path 
planning. As evident in Fig. 9, despite an increase in fabric gram 
weight, the breaking strength in the tensile direction experienced 
a marginal increase. The primary reason for this is that the 45° 
glass yarn does not significantly contribute to the tensile strength 
in the 0° direction. However, it does play a role in enhancing the 
fabric's pressure resistance and shares the load, thereby 
contributing to an increase in fabric strength, albeit not 
significantly. 

 

Fig. 9. Effect of environmental state changes on path planning. 

At the same time, it can also be observed that the tensile 
strength of No. 3 fabric fluctuates very little while that of No. 4 
fabric fluctuates greatly. The reason is that the weft density of 
No. 4 fabric is too small (4.5 ends/inch), resulting in uneven weft 
laying and lack of weft. If there is uneven weft laying in the 
fabric, if the sample is taken in the area of lack of weft during 
the experiment, the strength value obtained from the test should 
be low . If the sample is taken in the place where the weft is 
densely laid, the strength value obtained from the test is very 
high. As a result, the performance of different parts of the same 
fabric varies greatly. The multistep return estimation and model 
prediction error are calculated as in Eq. (19) and Eq. (20). 
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With the fabric's weight kept constant, we varied the density 
of the 45° glass yarn and conducted tensile strength tests on 
Fabrics No. 4 (45° glass yarn density of 4.5 pieces/inch) and No. 
5 (±45° glass yarn density of 2.25 pieces/inch). 

Moreover, it becomes apparent that Fabric No. 5 
demonstrates pronounced strength variations, primarily 
stemming from its exceptionally low weft laying density and 
irregular yarn positioning. This underscores the notion that, 
under consistent weight conditions, an increase in weft density 
fosters a direct enhancement in the fabric's tensile properties, as 
evidenced by prior studies. 

 

Fig. 10. Frequency of path updates during real-time learning. 

0 5 1510
0

10

20

30

P
a
th

 o
p
ti

m
iz

a
ti

o
n

 e
ff

e
c
t

fm + fd Clutter
Tag

Compressive 

resistance

load-sharing

Environmental state

0 20 40 60 80

30

40

50

60

N
u

m
b
e
r 

o
f 

p
a
th

 u
p
d
a
te

s

70

80

90

100

Std/2 | LTE DL 12

mean | LTE DL 12

Std/2 | LTE UL 12

mean | LTE UL 12
0

10

20

Std/2 | LTE TDD 41

mean | LTE TDD 41

0 10 20 30 40

30

40

Times

50

60

0

20

10

Times

N
u

m
b
e
r 

o
f 

p
a
th

 u
p
d
a
te

s



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

408 | P a g e  

www.ijacsa.thesai.org 

However, it is worth noting that as the weft laying density 
increases, the linear density of the weft yarn decreases. Given 
that the current market prices of glass and carbon fibers rise as 
their linear density diminishes, it is imperative to 
comprehensively consider various factors, including fabric 
requirements, while setting the weft laying process to determine 
the optimal weft laying density. Fig. 10 shows frequency of path 
updates during real-time learning. 

V. SUMMARY AND PROSPECT 

With textile technology's advancement, flat knitting 
machines are crucial in the industry, with knitting efficiency and 
product quality as key performance metrics. Recently, 
reinforcement learning, an advanced ML technique, has been 
widely applied to optimization problems. This paper delves into 
utilizing Reinforcement Learning as a means to optimize 
knitting paths for flat knitting fabrics, with the ultimate goal of 
elevating both production efficiency and quality. The selection 
of knitting paths holds paramount importance, as it directly 
influences the aesthetic appeal, tactile sensation, and overall 
efficiency of the end product. Traditional optimization 
techniques, reliant on manual expertise and a cumbersome trial-
and-error process, prove inefficient and inadequate for 
addressing intricate requirements. In contrast, RL facilitates the 
autonomous discovery of optimal paths through the dynamic 
interplay between the agent and its environment, thereby 
significantly advancing knitting efficiency and quality. We 
introduce an RL model specifically designed for optimizing 
knitting paths on flat knitting machines, meticulously defining 
state, action, and reward functions to capture the intricate 
nuances of the knitting process. By employing a reinforcement 
learning algorithm, our agent learns and explores within a 
simulated environment, progressively uncovering the optimal 
weaving path. Through a large number of experimental 
verifications, we prove that the knitting path optimization 
method based on reinforcement learning can significantly 
improve the knitting efficiency and product quality. In addition, 
the application effect of different reinforcement learning 
algorithms in knitting path optimization of flat knitting machine 
is discussed, and the key factors affecting the optimization effect 
are analyzed. We find that choosing appropriate algorithm 
parameters and reward functions is crucial to improve the 
optimization effect. Furthermore, we acknowledge the 
limitations of our current research and propose future directions 
for exploration. In summary, the reinforcement learning-based 
knitting path optimization for flat knitted fabrics holds immense 
potential. With continued research, we aim to further enhance 
knitting efficiency and product quality of flat knitting machines, 
ultimately contributing significantly to the textile industry's 
advancement. 
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