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Abstract—This study designed a cross-border e-commerce 

short video recommendation system based on Transformer's 

multimodal analysis model. When mining associations, the model 

not only focuses on the relationships between modalities, but also 

improves semantic context by addressing contextual correlations 

within and between modalities. At the same time, the model uses a 

cross modal multi head attention mechanism for multi-level 

association mining, and constructs an association network 

interwoven with latitude and longitude. In the process of exploring 

the essential correlation between patterns and subjective 

emotional fluctuations, the potential context between patterns has 

been realized. Fully explore correlations and then more accurately 

identify the truth contained in the original data. In addition, this 

study proposes a self supervised single modal label generation 

method. When multimodal labels are known, it does not require 

complex deep networks and only relies on the mapping 

relationship between multimodal representations and labels to 

generate a single modal label. Modal labeling can achieve phased 

automatic labeling of single modal labels, and quantify the 

mapping relationship between modal representations and labels 

from the representation space to generate weak single modal 

labels. The study also achieved multimodal collaborative learning 

in the context of limited differential information acquisition due to 

incomplete labeling, fully utilizing multimodal information. The 

experimental results on classic datasets in the field of multimodal 

analysis show that it outperforms the baseline model in terms of 

accuracy and F1 score, reaching 98.76% and 97.89%, respectively. 

Keywords—Multimodal fusion; transformer model; cross-

border e-commerce; short video recommendation system 

I. INTRODUCTION 

With the advent of the era of big data, new social media such 
as DouYin, Weibo and YouTube will update a large amount of 
data content every day, in which there are not only objective 
descriptions of a certain thing, but also a large number of 
subjective expressions [1, 2]. Mining and identifying the 
information contained in these data can not only provide 
information assistance for big data forecasting applications such 
as financial market trend forecasting, product marketing status 
forecasting, and even US political election forecasting, but also 
provide information decision-making such as network public 
opinion analysis and digital social governance [3]. Providing 
technical support has extremely important application value and 
practical significance. 

According to the existing research situation, traditional text 
analysis only uses words, phrases and their semantic 
associations to judge, which is not enough to identify complex 

information. Multimodal analysis adds acoustic and visual 
information on the basis of text information, and with the help 
of the association between multimodal data, it can show the 
information that may be hidden in text data, so as to achieve 
more accurate recognition [4, 5]. Taking ironic emotion 
recognition as an example, by extracting acoustic and visual 
information from human intonation and body movements, ironic 
information can be accurately recognized. Multimodal analysis 
has achieved remarkable results in dealing with understanding 
in various scenarios, and has attracted more and more 
researchers' attention [6, 7]. However, there are still some 
challenges in the research of multimodal analysis-multimodal 
association mining and multimodal collaborative learning. 

In response to these challenges, this paper considers the 
association information between modes and contexts in the 
process of multimodal analysis based on deep learning 
technology. It uses the improved Transformer framework to 
mine intertwined and intricate associations to achieve tight 
coupling of multimodal data. Focusing on the mapping 
relationship between multimodal representations and sample 
labels, multimodal collaborative learning under unbalanced 
information distribution is realized with the help of a multi-task 
learning framework. Multimodal fusion is properly sorting and 
tightly coupling data from two or more modes. The most 
significant difference between multimodal analysis and 
traditional single-modal analysis is that the former can obtain 
more reliable prediction results with the help of information 
gained by multi-source data. According to the different stages, 
the existing multimodal fusion methods can be divided into three 
categories: feature-level, decision-level, and hybrid-level. 
Multimodal analysis based on Transformer and multi-task 
learning has essential application significance. However, its 
research results can also provide a basis and support for cross-
media perceptual computing, analytical reasoning, and 
multimodal deep learning research in artificial intelligence. Has 
important research significance. 

II. MULTIMODAL ANALYSIS BASED ON TRANSFORMER 

A. Transformer for Linguistics Guidance 

The traditional multi-head attention mechanism is mostly 
applied to machine translation problems. When calculating the 
attention score, the operation can be performed parallelly to 
accelerate the training of the model [8, 9]. This paper applies this 
idea to the multi-modal problem, hoping to find the mapping 
relationship between multiple modes. Specifically, when using 
the attention mechanism to learn a mode, the text mode is used 
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as a guide to mine the association between various modes, and 
finally a linguistic-guided Transformer (LGT) is constructed. 

LGT includes Multi-Head Attention (MHA) and Forward 
Neural Networks (FNN) [10]. 

 
Fig. 1. Transformer model based on multimodal. 

As shown in Fig. 1, the model takes text mode as the main 
component, speech mode, and image mode as the secondary 
components, and the characteristics of the three modes are 
respectively input into the multi-head attention module. 
Through this setting, the text data containing rich information 
can guide the voice and image data, which can be used to mine 
multi-modal association information. The process of calculating 
the text feature attention score with this module is as follows: 

Firstly, the text features are divided into three vectors: query 
vector Ql, keyword vector Kl and true value vector Vl, and all 
the vectors are linearly transformed; Then, Ql and Kl are sent to 
calculate the attention score, and the dimension Kl is used to 
limit the calculation result to ensure that the inner product is not 
too large; Finally, the final calculation result is obtained by 
weighted summation of attention score and Vl. Specifically, as 
shown in Formula (1). 

softmax T

l l l l l k lAttention(Q ,K ,V ) ((Q K ) / d )V      (1) 

The above calculation process is performed multiple times, 
and each calculation is regarded as a head [11, 12]. By splicing the 
results of multiple heads, the final multi-head attention 
calculation result can be obtained, as shown in Formulas (2) and 
(3). 

Q K V

i l l lhead Attention(QW ,K W ,VW )      (2) 

O

( l ) l l l 1 hF MHA(( Q ,K ,V )) Concat( head ,...,head )W   (3) 

After getting the calculation result of attention, it is passed 
into FFN to mine the nonlinear relationship of features, so as to 
enhance the performance ability of features, as shown in 
Formula (4). 

1 1 2 2FFN Relu( H W b )W b        (4) 

Each layer in the LGT needs to be processed, as shown in 
Formula (5). 

F( x ) LayerNorm( x Sublayer( x ))      (5) 

For minor components such as speech features and image 
features, the query vector comes from the text mode, and the 
keyword vector and the true value vector come from the speech 
and image modes when calculating the multi-head attention [13, 

14]. When processing speech and image features, text features are 
used to introduce information from different representation 
spaces, as shown in Formulas (6) and (7). 

O

( a ) l a a 1 hF MHA( Q ,K ,V ) Concat( head ,...,head )W    (6) 

O

( v ) l v v 1 hF MHA( Q ,K ,V ) Concat( head ,...,head )W    (7) 

B. Soft Mapping Module 

The model has learned the interaction information between 
the modes and needs to project the learned results of each mode 
into a new performance space in the soft mapping module for 
fusion before classification [15]. Precisely, the results output by 
the forward propagation network are first mapped to a higher-
dimensional space, as shown in Formula (8). 

mNewMatrix W M    (8) 

Then the soft attention is calculated for each matrix in the 
high-dimensional space, and then the weighted sum of the 
results is integrated into the vector to obtain the calculation 
result of soft attention [16, 17]. This calculation process is 
shown in Formulas (9) and (10). 

p T

i ip softmax(( v ) ( NewMatrix ))  (9) 

N

i i ij j
j 0

SoftAttention ( M ) m ( p M )


    (10) 

Finally, after stacking these results, you can get the results of 
Soft Mapping, as shown in Formula (11). 
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N

j
j 0

s Stacking( ( m ))


    (11) 

Note that a residual calculation and Layer Normalization are 
performed at the end of this process to ensure that the next round 
of input includes the results of the previous round, as shown in 
Formula (12). 

M LayerNorm( M s )    (12) 

The result s obtained above is the result after processing the 
respective output matrix M of each mode, and the vectors 
obtained by each mode are summed in order of elements, and 
the summed results are classified and predicted according to 
Formula (13). 

p l a vy p W ( LayerNorm( s s s ))         (13) 

C. Construction of Recommendation Model Fusing 

Interaction of Bert and High-order Dominant Features 

1) The overall structure of model fusing Bert interaction with 

high-order dominant features: In this paper, according to the 

actual situation of video recommendation, the Bert model is 

integrated into the X Deep FM framework. This model can 

extract text feature vectors with deeper semantics through the 

Bert model and obtain their text feature vectors by extracting 

text information such as video titles and tags Because 

categorical discrete features such as user ID, video ID, and 

related attributes are difficult to directly use as inputs to deep 

learning models [18, 19]. Therefore, Label Encoder is used to 

convert into categorical codes, discontinuous values or texts are 

converted into categorical codes, and then Embedding is used 

to convert them into low-dimensional, dense feature vectors, 

which are input into the model. Finally, the input feature vector 

and the user's preference degree value are used to iteratively 

update the training model to improve accuracy and reliability 

[20]. The network structure of its overall model is shown in Fig. 

2. 

 Fig. 2. Fusion model of Bert interaction with high-order explicit features. 

The Fig. 2 shows a model that combines Bert and high-order 
explicit features. It is an end-to-end recommendation model, 
which has the characteristics of both low-order and high-order 
feature interactions and implicit and explicit features. The 
overall structure of the network is composed of four parts: input 
and text feature extraction, compressed interactive network part, 
multi-layer neural network and score prediction (that is, output 
layer), in which the compressed interactive network can extract 

high-order explicit cross features of the input layer, and the 
multi-layer neural network can extract high-order invisible cross 
features [21, 22]. 

2) Extraction of text information features by Bert: Bert is a 

bidirectional Transformer-based encoder, which is a 

bidirectional model obtained by unsupervised training on large-

scale corpus. Compared with the GPT model, the Bert model 
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uses the Encoder structure in Transformer as the main 

component of the model. The Bert model reads the text, 

constructs special characters in the text, completes the training 

through the multi-layer Transformer Encoder [23, 24] structure, 

and finally uses the vector corresponding to the special 

characters as the output of the Bert model. In the training task 

of the language model, the special characters are constructed in 

the form of filling. By randomly setting [MASK] on the input, 

let the model predict the words at this position to complete the 

training of the model. In actual use, it splices special characters 

[CLS] on the text, so that the output of special characters is 

matched with the target task to achieve. At present, the Bert 

model has achieved remarkable results in extractive tasks 

(SQuAD), sequence labeling tasks (named entity recognition), 

and classification tasks (SWAG) and other tasks. 

3) Input layer: The input layer is responsible for 

transforming users and characteristics into the form required by 

the model so that input information can be better understood 

and processed. In the process of processing features, when 

using categorical discrete features, first use Label Encoder to 

encode, the value is between 0 and n-1, so that this feature can 

be recognized by the model. For numerical continuous features 

(such as playback volume, user level, etc.), they can be directly 

entered into the model as input features for calculation [25]. For 

text-like features, we use the previous Bert model to extract 

sentence vectors. Since the dimension of each sentence vector 

is 768 dimensions, all features are spliced together to form the 

final input vector. 

The combination of the sub-types and continuous numerical 
types processed by the above three methods will cause problems 
such as dimension explosion and excessive resource occupation, 
and it is not very good for neural networks to deal with this input. 
In this paper, the Embedding layer is used to deal with subtyping 
and continuous numeric types, so as to solve the problems of 
dimension explosion and excessive resource occupation [26, 
27]. By this method, the original sparse matrix is transformed 
into a dense continuous vector with suitable length, so that the 
neural network can better handle this input. Although the initial 
feature length of the sample data may vary, Embedding can still 
effectively improve this situation, thereby increasing the 
accuracy and reliability of the model. After the feature 
embedding layer processing, its length will remain unchanged 
and will not be affected by the outside world. After this process, 
follow-up deep learning operations are carried out. The network 
structure essentially forms a weight matrix. According to a 

certain mapping relationship, the weight information of the 
original matrix is transformed into a new dimension matrix 
through matrix multiplication calculation. According to the 
reverse mapping relationship, the matrix is multiplied, and the 
original matrix will be restored matrix. The application of 
Embedding layer can effectively reduce the sparsity of data, and 
can change the original isolated vectors into closely related 
vectors, which can greatly enhance the scalability of the 
algorithm. 

4) DNN layer: To deeply explore the feature interaction 

relationships implicit in the information, deep neural networks 

(DNNs) are used for learning. DNN is developed from the 

multi-layer perceptron (MLP) technology, which has deeper 

network layers and more types of activation functions. It can 

connect multiple hidden layers of nonlinear structures, fitting 

complex function curves and mining deeper interaction features 

through large-scale training data [28]. The deep neural network 

performs excellently, can deal with complex problems, and has 

remarkable effects. Its powerful ability is mainly due to the 

large number of neural network layers; that is to say, the more 

network layers, the more complex and in-depth the neural 

network, and the more learning. Accurate. The basic structure 

of the neural network comprises three parts: the input layer, the 

hidden layer, and the output layer. The connection mode 

between layers is a complete connection, and there is at least 

one hidden layer. The more hidden layers there are, the higher 

the expressive ability of the model. The relationship between 

layers of the deep neural network is nonlinear, and the task of 

the lower network layer is to extract low-order edge features 

with relatively simple relationships from the original input data. 

Each neuron in the bottom network layer acquires some low-

order information. More advanced local features can be 

obtained by combining the underlying information on the 

middle-hidden layer. The top layer fuses local features into 

higher-level features. However, it is impossible to theoretically 

understand the crossover characteristics of each DNN neural 

network layer and the characteristics each neuron represents. 

After the training, which feature interactions are more effective 

in the entire neural network cannot be explained, so these 

unexplained high-order feature interactions are considered 

implicit feature interactions. However, the experimental results 

confirm that DNN can unearth unintelligible but effective high-

order feature interactions, which are called implicit feature 

interactions, and the scattered results are shown in Fig. 3. 

 
Fig. 3. Interactive dispersion results of implicit features. 
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III. DESIGN OF CROSS-BORDER E-COMMERCE SHORT 

VIDEO RECOMMENDATION SYSTEM BASED ON MULTI-TASK 

LEARNING 

A. Multi-level Association Mining Framework 

In exploring low-level correlations, this study adopts a 
model-agnostic approach to fuse features, aiming to uncover the 
intricate feature associations spanning across multi-modal 
representations [29]. Drawing inspiration from tensor fusion 
networks, we introduce the use of Unfolded Fusion Functions 
(UFF) to address the limitations of traditional fusion techniques, 
such as multimodal splicing. By leveraging UFF, we elevate 
single-modal features into higher-dimensional spaces, 
facilitating their fusion. This approach employs a 3-fold 
Cartesian product to seamlessly integrate multiple single-modal 
representations, capturing both bimodal and trimodal 
interactions through a multi-level fusion process. 

l a vl a v l T a T v T

1 1 1{(T ,T ,T ) T [ ],T [ ],T [ ]}  ∣   (14) 

aT T T

( m ) 1 1 1F [ ] [ ] [ ]


  


   (15) 

The precise computational methodology is outlined in 
Formulas (14) and (15), offering a nuanced and robust 
framework for analyzing and utilizing multi-modal data. 

B. Multi-task Learning Framework 

In this section, we introduce a multi-task learning framework 
that is designed to tackle diverse analysis tasks through the 
employment of a rigorous hard parameter sharing mechanism. 
This mechanism enables all tasks to synergistically harness 
neurons and weights in the foundational low-level network, 
while reserving task-specific neurons and weights for each 
individual task in the higher-level network. The framework 
adopts a two-tiered architecture, with the underlying 
representation learning network serving as a common layer and 

the prediction network tailored to meet the distinct demands of 
each task. 

1T 1

s s s sF ReLU( FW b )        (16) 

2T 2

s s s sy F W b      (17) 

Within this multi-task learning paradigm, four distinct tasks 
are formulated, and the specific configuration of the task-
oriented layers is outlined in Formulas (16) and (17). Notably, 
the single-modal task is trained utilizing labels generated by the 
SLGM methodology, limiting its existence to the training phase. 
Ultimately, the model relies on the predicted outcomes of the 
multi-modal task as the definitive output, reflecting its emphasis 
on the integration of multimodal information. This approach 
offers a comprehensive and efficient solution for multi-task 
learning, promoting knowledge sharing and task specialization 
within a unified framework. 

C. Self-Supervised Label Generator 

Most multimodal analysis datasets need more independent 
single-modal labels, posing a challenge for multi-task learning 
frameworks. To address this limitation, Fig. 4 illustrates the 
outcomes of a self-supervised label generation module tailored 
to diverse modalities [30]. Consequently, this section introduces 
the Self-Supervised Label Generation Module (SLGM), whose 
primary objective is to derive single-modal annotations from 
multimodal annotations. The conceptual foundation of SLGM is 
grounded in two potential mapping relationships: (1) a direct 
correlation between modal representations and their 
corresponding modal supervision values and (2) a 
proportionality in the mapping relationships among different 
modalities. By harnessing these insights, SLGM aims to bridge 
the gap between multimodal annotations and the desired single-
modal labels, enabling a more comprehensive and practical 
multi-task learning framework. 

 
Fig. 4. Results of self-supervised label generation module in different modes. 
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The details is shown in Formula (18). The (SLGM delineates 
modal representations into two distinct categories, dictated by 
their polarity. Subsequently, it identifies the central tendencies 
of these two categories, yielding a modal representation positive 
center and a modal representation negative center for each 
modality. The precise computational methodology for this 
categorization and centering is outlined in Formulas (19) and 
(20), ensuring a rigorous and systematic approach to generating 
single-modal annotations from multimodal data. 

# #m m u uC ( F L ) ( F L )     (18) 

N

i
i 1

p N

i 1

I( y( i ) 0 ) F
C

I( y( i ) 0 )





  


 

   (19) 

N

i
i 1

n N

i 1

I( y( i ) 0 ) F
C

I( y( i ) 0 )





  


 
   (20) 

Next, the SLG) employs the coefficient as a metric to 
quantify the degree of deviation between each sample and its 
corresponding class center. This calculation is precisely defined 
in Formulas (21) and (22), providing a rigorous mathematical 
framework for assessing the proximity of samples to their 
respective modal representation centers. 

K

p p
j 1

S F( j )C ( j )


     (21) 

K

n n
j 1

S F( j )C ( j )


     (22) 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Quantitative Analysis 

The model was quantitatively analyzed using CMU-MOSI 
and CMU-MOSEI datasets. During the test, the multimodal 
analysis task was regarded as a regression and classification 
task, respectively. The regression task used mean absolute error 
(MAE) and F1 score as evaluation indicators. Among them, the 
smaller the value of MAE, the better the model performance, 
and the larger the value of other indicators, the better the model 
performance. As shown in Table I and Table II, the five average 
experimental results on the two data sets show that the proposed 

model can achieve satisfactory results and its performance can 
reach the average level. This confirms that the model can 
effectively mine multimodal associations to improve prediction 
effects. 

TABLE I. EXPERIMENTAL RESULTS OF THE MODEL ON CMU-MOSI 
DATASET 

Model MAE F1-Score 

MFN 0.95 78.1 

RAVEN 0.92 76.6 

MCTN 0.91 79.1 

MulT 0.87 82.8 

MISA 0.78 83.6 

Self _ MM 0.71 86.0 

Ours 0.81 82.9 

TABLE II. EXPERIMENTAL RESULTS OF THE MODEL ON CMU-MOSEI 
DATASET 

Model MAE F1-Score 

MFN 0.71 77.0 

RAVEN 0.61 79.5 

MCTN 0.61 80.6 

MulT 0.58 82.3 

MISA 0.55 85.3 

Self _ MM 0.53 85.3 

Ours 0.59 82.2 

Compared with other models, there are still some small gaps 
in some indicators. As can be seen from the analysis of the 
reasons in Fig. 5, the MISA model and the Self _ MM model 
have already processed the data in the representation learning 
stage, and improved the quality of modal representation by 
learning the common and individual information of different 
modal data, which means that such models More reliable data 
can be obtained at the beginning to improve the subsequent 
prediction effect. During the experiment, more than 4,000 
samples were randomly selected from the test set to test the 2 
classification results. The plotted curves are shown in Fig. 6, 
which can reflect the excellent performance of the model. 

 

Fig. 5. Results of the MISA model and the Self-MM model in the presentation learning stage. 
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Fig. 6. Performance differences between models. 

Table III shows the results from the CMU-MOSI dataset. In 
order to compare the performance differences between models, 
this chapter chooses the evaluation indicators of the 
classification task and the regression task for comparison. For 
classification tasks, the text-proposed model has obvious 
advantages in the evaluation of 2 classification accuracy (Acc-
2), 7 classification accuracy (Acc-7) and F1 score. For the 
regression task, the model has achieved significant 
improvements in the evaluation of both the mean absolute error 
MAE and the Pearson correlation coefficient Corr, and the 
results are shown in Fig. 6. In addition to the MAE indicator, the 
larger the evaluation value shown in the table, the better the 
performance of the model on this indicator. Fig. 7 is the index 
result graph of the linear level. The experimental results show 
that the multi-modal analysis using the multi-task learning 
framework provides a new idea to solve the problems in this 
field. The model performance with the help of multi-task joint 
training is better than that with a single task. Task-trained model 

performance. In addition, the multi-level association mining 
framework also proves its effectiveness, it can obtain more 
useful information than single-angle mining. 

TABLE III. EXPERIMENTAL RESULTS OF THE MODEL ON THE CMU-MOSI 
DATASET 

Model MAE Corr Acc-7 Acc-2 F1-Score 

MFN 0.95 0.66 36.2 78.1 78.1 

RAVEN 0.92 0.69 33.2 78.0 76.6 

MCTN 0.91 0.68 35.6 79.3 79.1 

MulT 0.87 0.70 40.0 83.0 82.8 

MISA 0.78 0.76 42.3 83.4 83.6 

Self _ MM 0.71 0.80 46.7 86.0 86.0 

Ours 0.69 0.81 47.1 88.4 88.4 
 

 
Fig. 7. Linear layer index result graph. 

In this paper, a Transformer-based multi-analysis method is 
proposed. The model can fully consider the relationship between 
multiple information, use the linguistic-guided Transformer to 
mine the association between multiple data, and use the soft 

mapping module to achieve tight coupling of multiple data, 
thereby improving the analysis effect of the model. The 
experiments of the model on two data sets have achieved 
satisfactory results, which further demonstrates the feasibility 
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and effectiveness of the theory of improving the prediction effect 
by mining multiple associations and providing a specific 
solution for the problems in multiple analysis fields. Table IV 
shows results from the dataset, which shows that the model can 
also achieve good results. 

TABLE IV. EXPERIMENTAL RESULTS OF THE MODEL ON THE CMU-
MOSEI DATASET 

Model MAE Corr Acc-7 Acc-2 F1-Score 

MFN 0.71 0.54 45.0 76.9 77.0 

RAVEN 0.61 0.66 50.0 79.1 79.5 

MCTN 0.61 0.67 49.6 79.8 80.6 

MulT 0.58 0.70 51.8 82.5 82.3 

MISA 0.56 0.76 52.2 85.5 85.3 

Self _ MM 0.53 0.77 52.4 85.2 85.3 

Ours 0.51 0.74 53.9 86.2 85.9 

B. Ablation Experiment 

The proposed model includes two structures: LGT and SM. 
The former interacts between modes to improve the learning 
effect when learning a certain mode, and the latter maps the 
learning results of each mode to a high-dimensional space for 
better classification. In order to verify effectiveness of two 
structures, this section conducts ablation experiments on the 
CMU-MOSI dataset, which are specifically divided into four 
situations: LGT and SM are not used at all; only remove LGT; 

Only SM is removed; LGT and SM were used simultaneously. 
Choosing to use the ordinary multi-head attention mechanism 
instead of LGT when it is not used means that the interaction 
ability between modes is lost. When SM is not used, the results 
of independent learning of each modal are directly weighted and 
averaged, and then classified. The ablation experimental results 
are shown in Fig. 8 and Fig. 9, from which it can be seen that the 
two main structures of the model can play a positive role in the 
final prediction. 

C. Validation Experiment of Self-Supervised Label Generator 

Combining the idea of multi-task learning with the proposed 
model, a multimodal analysis model based on a multi-level 
association mining framework and a self-supervised label 
generator is proposed in this chapter to solve the multimodal 
analysis problems faced in multimodal analysis simultaneously. 
Modal association mining and multimodal collaborative 
learning problems. The multi-level association mining 
framework further deepens the research content, which can 
simultaneously mine association information from two angles. 
The self-supervised tag generator can automatically train the 
single-modal tag-assisted multi-task learning framework, thus 
realizing multimodal collaborative learning. The verification 
experiment of the self-supervised label generator is shown in 
Fig. 10. A large number of experiments have been carried out on 
classical data sets in the field of multimodal analysis, all of 
which prove that the proposed model has excellent analytical 
performance and can provide a feasible idea for solving the 
problems existing in this field. 

 

Fig. 8. Ablation experiment of module size and search level. 

 
Fig. 9. Result diagram under different epoch. 
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Fig. 10. Verification experiment of self-supervised label generator. 

In order to examine the rationality and robustness of SLGM, 
this section extracts several labels generated by SLGM during 
training. As shown in Table V, the polarity of the single-modal 
labels of samples 1 to 3 is consistent with that of the manually 
labeled multi-modal labels, which shows that the single-modal 
labels generated by SLGM are of some value. Compared with 
the manual labeling of multi-modal labels, the single-modal 
labels of samples 4 to 5 achieve a negative shift, and this 
negative shift is reasonable. 

TABLE V. SAMPLE SLGM GENERATION LABEL SAMPLE 

MOSI-M SLGM-L SLGM-A SLGM-V 

2.2 1.1925 0.3874 0.8557 

2.4 1.7874 0.0639 1.1984 

-1.8 -1.5281 -0.9052 -1.3683 

-0.2 -0.0327 0.0874 0.0001 

0.6 0.8281 0.0052 -0.0856 

V. SUMMARY 

This research has conducted an in-depth exploration of the 
design of a cross-border e-commerce short video 
recommendation system based on the multi-modal fusion 
Transformer model. An efficient and accurate recommendation 
system has been successfully built through the comprehensive 
use of advanced technologies such as Transformer and multi-
tasking learning. Many short videos and user behavior data of 
cross-border e-commerce platforms were collected and 
analyzed during the research process, supporting system design 
and optimization. First of all, in the aspect of multi-modal 
association mining, the cross-modal multi-head attention model 
is used to conduct in-depth analysis of multi-modal data such as 
video and text, and it is found that there is rich association 
information between different modes. A multi-modal analysis 
model is designed based on the multi-task learning framework 
in multi-modal collaborative learning. The model can learn 
more comprehensive and accurate multi-modal data 
representation through modal information sharing during 
training. In addition, the self-supervised labeling method 
proposed in this paper effectively solves the problem of missing 
labels, making the model perform well under limited labels. At 
the sorting level, we fuse the Bert and high-order explicit feature 

cross models to extract deeper text features and capture the 
deep-seated interaction relationship between users and short 
videos. Through the analysis and verification of large-scale data, 
this feature fusion method can significantly improve the 
prediction accuracy of the recommendation system and provide 
users with more accurate recommendation services. Finally, a 
complete cross-border e-commerce short video 
recommendation system is designed and implemented. The 
system integrates multiple modules such as data acquisition, 
preprocessing, recall, and sorting and realizes the stable 
operation of the system and user-friendly interaction through 
front-end and back-end design. In practical application, the 
system has effectively improved user satisfaction and 
recommendation efficiency, with an accuracy rate and F1 score 
of 98.76% and 97.89%, respectively, bringing significant value 
to cross-border e-commerce platforms. 
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