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Abstract—Melanoma, the most severe type of skin cancer, 

ranks ninth among the most prevalent cancer types. Prolonged 

exposure to ultraviolet radiation triggers mutations in 

melanocytes, the pigment -producing cells responsible for 

melanin production. This excessive melanin secretion leads to the 

formation of dark-colored moles, which can evolve into 

cancerous tumors over time and metastasize rapidly. This 

research introduces a Vision Transformer, revolutionizes 

computer vision architecture by diverging from traditional 

convolutional neural networks, employing transformer models to 

handle images as sequences of flattened, spatially-structured 

patches. The dermoscopy images sourced from the Kaggle 

repository, an extensive online database known for its diverse 

collection of high-quality medical imagery is utilized in this 

study. This novel deep learning model for melanoma 

classification, aiming to enhance diagnostic accuracy and reduce 

reliance on expert interpretation. The model achieves an 

accuracy of 96.23%, indicating strong overall correctness in 

classifying both Benign and Malignant cases. Comparative 

simulation of the proposed method against other methods in skin 

cancer diagnosis reveal that the suggested approach attains 

superior accuracy. These findings underscore the efficacy of the 

system in advancing the field of skin cancer diagnosis, offering 

promising prospects for enhanced accuracy and efficacy in 

clinical settings. 
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I. INTRODUCTION 

Prevalence of skin-related diseases has surged in recent 
years surpassing common conditions like hypertension and 
obesity [1]. Skin disorders account for approximately 12.4% of 
cases, affecting roughly one in every three individuals [2]. A 
concerning trend, a yearly increase of 1-2% in recorded skin 
diseases. Among these, melanoma stands out as the most 
aggressive form of skin cancer, capable of metastasizing 
through the lymphatic system and bloodstream to distant parts 
of the body. Melanoma arises from melanocytes, pigment-
producing cells situated at the junction of the epidermis and 
dermis [3]. These cells are responsible for melanin production, 
when melanocytes undergo abnormal mutation, melanoma 
develops. This malignant condition poses a significant health 
risk due to its potential for rapid spread and invasive 
behaviour, underscoring the importance of early detection and 
effective treatment strategies. 

Melanoma, a relatively uncommon form of skin cancer, 
poses a significant threat to mortality rates [4]. Although 
imaging studies can detect metastatic spread, the disease 
frequently goes undiagnosed until it progresses to an advanced 
stage or spreads to the bloodstream or lymph nodes [5]. It is 
essential to develop efficient computational techniques for 
early melanoma diagnosis. The five main forms of melanoma 
are nodular, lentigo maligna, Acral lentiginous, Subungual, and 
superficial spreading [6]. Each has a unique set of symptoms, 
interestingly amelanotic melanoma is a distinct subtype that 
occurs in people of different skin tones. 

Conventional methods of melanoma diagnosis have 
limitations in terms of accuracy, accessibility, and scalability. 
Moreover, the increasing prevalence of melanoma underscores 
the urgent need for efficient and reliable diagnostic tools to 
address this public health challenge. In recent years, artificial 
intelligence (AI) and machine learning (ML) techniques have 
spurred the development of automated melanoma detection 
systems. These systems leverage computer vision algorithms, 
deep learning (DL) architectures, and large-scale datasets to 
analyze dermoscopy images and distinguish between benign 
and malignant lesions [7]. 

This paper aims to explore the current landscape of 
melanoma detection methodologies, highlighting the 
challenges and opportunities in this evolving field. 
Additionally, we present a comprehensive review of recent 
advancements in AI-based melanoma detection techniques, 
focusing on their strengths, limitations, and potential for 
clinical integration. The contributions of this work can be 
outlined as follows: 

 Development of classification model based on DL 
aimed at effectively detecting and classifying 
melanoma, with a focus on enhancing detection 
performance. 

 Assessment of the algorithm's performance using 
established benchmark metrics for evaluation. 

 To assess its efficacy and explore its methodological 
strengths, compare the proposed model with existing 
models. 

The rest of the paper is organized as follows: In Section II, 
a summary of literature is provided, highlighting areas that 
indicate a need for more investigation. In Section III, the 
methodology is explained in depth. Section IV goes into great 
detail about the results that the suggested strategy produced. A 
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discussion is provided in Section V and finally, a summary of 
the findings is included in Section VI, which gives a 
conclusion to the paper. 

II. LITERATURE REVIEW 

Melanoma detection has emerged as a significant global 
concern, drawing the interest of researchers worldwide who 
seek optimal methods for early identification of skin 
abnormalities to mitigate their progression. Numerous research 
endeavors have been initiated and continue to evolve in this 
field, aiming to improve patient outcomes and enhance the 
efficacy of medical interventions. This section provides a 
comprehensive overview of various research initiatives focused 
on melanoma detection. 

Adla et al. [8] proposed a DL model for skin lesion 
detection. Tsallis entropy was utilized to identify the affected 
lesion areas in the dermoscopy images. Capsule Network in 
conjunction with class attention layer and Adagrad optimizer 
was utilized to extract features from the segmented lesions. 
The Convolutional Sparse Autoencoder, which was based on 
the Swallow Swarm Optimization algorithm, did the 
classification. The detection method exhibited limitations, 
particularly in its performance when presented with noisy 
images. 

A CNN-based framework was presented by Shorfuzzaman 
et al. [9] to identify melanoma skin cancer. The final 
predictions were produced by a meta-learner, which 
incorporated all of the predictions from the sub models. The 
evaluation results demonstrated 95.76% accuracy in the 
ensemble model. A notable limitation of the paper lay in the 
extended duration necessitated for training, indicating a 
potential challenge in terms of resource allocation and 
efficiency within the framework. 

To categorize the image samples of skin lesions, a 
framework was proposed by Khan et al. [10], consisting of two 
modules—the categorization and the localization of skin 
lesions. Transfer learning was used in the classification module 
to retrain a pre-trained DenseNet201 model on the segmented 
lesion images. The distribution stochastic neighbor embedding 
technique was used to downsample the features that were 
retrieved from the two fully connected layers. Using a fused 
vector, the highest accuracy on the ISBI2017 was 95.26%. One 
significant limitation of the work was that the model's training 
on localized regions entailed longer time in comparison to 
training on raw dermoscopy images, potentially impeding the 
scalability and practicality of the proposed approach. 

Jiang et al. [11] introduced DRANet, a lightweight deep 
learning framework, for the classification of 11 types of skin 
diseases using real histopathological images. DRANet was the 
incorporation of a Squeeze Excitation Attention, which 
directed the framework's focus towards key areas crucial for 
identifying specific skin diseases. By employing stacked 
modules, the framework enhanced its capacity to learn from 
high-level features. Despite achieving an accuracy of 86.8%, 
the proposed approach was constrained by its inability to 
effectively diagnose images of poor quality. 

Yacin Sikkandar et al. [12] introduced a model for skin 
lesion diagnosis, with an Adaptive NeuroFuzzy classifier 

merging a GrabCut algorithm. The model underwent 
simulation utilizing a benchmark ISIC dataset. Two significant 
limitations of the paper were the prolonged training time and 
the demand for substantial computational resources. The 
method relied on a large volume of data, posing a challenge in 
terms of data acquisition and processing. 

Zghal et al. [13] sought to devise a straightforward model 
for detecting skin lesions from dermoscopy images, leveraging 
ABCD rules. Their approach consisted of five sequential 
stages: acquisition, pre-processing involving noise elimination 
and contrast enhancement techniques, and ultimately, 
classification via Total Dermoscopy Value computation. 
However, a notable constraint of their algorithm was its 
reliance on a substantial dataset for learning, which may not 
always be accessible. 

Alwakid et al. [14] proposed a DL method for extracting a 
lesion zone in skin cancer diagnosis. ESRGAN was utilized to 
enhance image quality by generating high-resolution versions 
of low-resolution images. Melanoma and non-cancerous 
lesions could be distinguished using a ViT-based architecture 
suggested by Cirrincione et al. [15]. Based on the ISIC dataset, 
the suggested predictive model was evaluated with an accuracy 
of 94.8%. 

An automated image-based method using ML classification 
techniques was presented by Inthiyaz et al. [16] for the 
diagnosis and classification of skin diseases. Their approach 
used the softmax classifier algorithm to identify images by 
leveraging Convolutional Neural Networks (CNNs). Six 
prevalent skin disorders were represented by images in the 
dataset, which showed different facial skin ailments. Their 
method showed significant effectiveness in skin condition 
detection and diagnosis with an obtained accuracy of 87%. 

A. Research Gap 

The research encounters challenges in performance 
attributed to the intricate visual attributes inherent in skin 
lesion images, characterized by diverse features and ambiguous 
boundaries. Detection accuracy notably diminishes for lesions 
smaller than 6mm, presenting a formidable hurdle in melanoma 
identification. Early melanoma symptoms often resemble 
benign skin conditions such as age spots and moles, 
underscoring deficiencies in early detection approaches. 
Furthermore, the subtle presentation of melanoma symptoms 
complicates early-stage detection for individuals, exacerbating 
gaps in effective detection strategies. Scarce access to medical 
data hampers algorithm development and training, highlighting 
deficiencies in data availability for research purposes. 
Moreover, the labor-intensive process of algorithmic 
development, validation, and deployment poses significant 
challenges, intensifying gaps in algorithmic implementation. 
The considerable variability in melanoma cases, including 
differences in size, shape, and color, poses a formidable 
obstacle for algorithms to achieve generalization, accentuating 
gaps in algorithmic robustness and adaptability. 

Many models, such as those relying on capsule networks or 
CNN-based frameworks, exhibit performance degradation 
when faced with noisy or low-quality images, which is a 
significant drawback given the intricate visual characteristics 
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of melanoma lesions. Furthermore, models that require 
extensive training times or high computational resources, such 
as those employing ensemble learning or transfer learning, are 
impractical for real-time clinical applications where efficiency 
and scalability are crucial. Additionally, approaches like those 
utilizing ABCD rules or other manual feature extraction 
methods are limited by their dependence on large datasets, 
which are often not readily available, especially in diverse 
clinical environments. These limitations hinder the ability to 
achieve accurate and robust melanoma detection, particularly 
in early stages where symptoms may resemble benign 
conditions, thereby exacerbating gaps in effective diagnostic 
strategies. Consequently, a model that can address these 
challenges by providing reliable performance across varied 
image qualities, minimizing training time, and reducing 
dependence on extensive datasets is essential for improving 
melanoma detection and diagnosis. These limitations highlight 
the need for a more robust, adaptable, and efficient model 
capable of overcoming these challenges to provide accurate 
and timely melanoma detection. 

III. MATERIALS AND METHODS 

The proposed methodology leverages the Vision 
Transformer (ViT) architecture as shown in Fig. 1, a cutting-
edge approach in computer vision [17]. The Vision 
Transformer model was chosen for this research due to its 
innovative approach to image processing, which marks a 
significant departure from conventional convolutional neural 
networks (CNNs).  ViT processes images by segmenting them 
into sequences of spatially-structured patches, which undergo 
linear embedding and positional encoding to preserve spatial 
information. This ability to handle complex, high-dimensional 
data makes ViT particularly well-suited for dermoscopy 
images, where subtle variations in color, texture, and structure 
are critical for accurate melanoma classification. These patches 
are then fed into a stack of transformer encoder blocks, 
allowing the model to capture global contextual dependencies 

and hierarchical features. Following this, the output undergoes 
global pooling to reduce spatial dimensions before being 
passed through a classification head comprising fully 
connected layers. 

The classification phase translates spatial information into 
class predictions using softmax activation. Key components of 
the ViT architecture include patch extraction, patch 
embedding, and transformer encoder blocks. The self-attention 
mechanism within transformer encoder blocks allows the 
model to focus on relevant features while suppressing 
irrelevant ones. Residual connections and layer normalization 
facilitate gradient flow and stabilize input to subsequent layers. 
The Multi-Layer Perceptron (MLP head), the final component 
of the model, transforms aggregated representations from 
transformer encoder blocks into class predictions through fully 
connected layers and activation functions. Regularization 
techniques such as dropout layers employed to prevent over 
fitting. Ultimately, the methodology aims to learn 
representations for diverse visual patterns, fostering scalability 
and interpretability in image classification tasks. 

A. Dataset 

The data is collected from the Kaggle repository [18]. The 
dataset comprises a balanced collection of images representing 
two distinct categories: benign skin moles and malignant skin 
moles. Each category is represented by a folder containing 
1800 images, with each image standardized to a size of 
224x244 pixels. The standardized image size simplifies pre-
processing tasks and ensures uniformity across the dataset, 
enabling straightforward integration into various ML pipelines. 
The balanced nature of the dataset ensures an equal 
representation of both benign and malignant cases, facilitating 
unbiased model training and evaluation. The inclusion of 
sample images, as depicted in the Fig. 2, provides a visual 
representation of the dataset contents, offering insight into the 
appearance and characteristics of both benign and malignant 
skin moles. 

 
Fig. 1. Block diagram of the proposed system. 
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Fig. 2. Sample images from the dataset. 

B. Pre-processing and Augmentation 

Pre-processing involves preparing the input images for the 
model by standardizing various aspects to ensure consistency. 
One of the first steps in pre-processing is normalization, which 
calculates the mean and variance of the pixel values in the 
training images. By scaling the pixel values to a standard 
range, normalization minimizes the impact of intensity 
variations between different images. This is particularly 
important in medical imaging, where lighting conditions and 
image acquisition settings can vary significantly. Ensuring a 
uniform pixel intensity range helps the model focus on the 
relevant features of the melanoma lesions rather than being 
influenced by extraneous variations. Another key pre-
processing step is resizing, where images are adjusted to a 
consistent size. This standardization ensures that all input 
images fit the model architecture requirements, making it 
easier for the model to process and analyze the images 
efficiently. Consistency in image dimensions also simplifies 
subsequent processing steps and improves the model's ability 
to learn from the data. 

Data augmentation complements pre-processing by 
artificially expanding the dataset and introducing controlled 
variations to enhance model generalization. For melanoma 
detection, this often includes techniques such as horizontal 
flipping, rotation, and zooming. Horizontal flipping creates 
mirrored versions of the original images, introducing 
variability in image orientation. This technique helps the model 
learn to recognize melanoma lesions from different angles, 
enhancing its ability to generalize to real-world scenarios 
where lesions might not always be perfectly oriented. Random 
rotations further enrich the dataset by changing the angle at 
which the images are presented, making the model more adept 
at identifying melanoma regardless of its orientation in the 
image. Random zooming, on the other hand, introduces 
variations in the scale of the images. By simulating different 
distances from the lesion, zooming helps the model become 
proficient in detecting melanoma at various sizes and levels of 
detail. 

C. Patch Generation 

Patch generation phase extract patches from input images, a 
crucial process for uncovering localized features vital for a 

spectrum of computer vision tasks, including image 
segmentation, object detection, and image classification. Patch 
parameterization offers adaptability to various task 
requirements, allowing for tailored patch extraction, dictating 
the dimensions of the patches to be extracted. Leveraging the 
information including batch size, height, width, and channels 
alongside the specified `patch_size`, computes the number of 
patches extractable in both height and width dimensions, 
ensuring exhaustive coverage of the image data. This 
meticulous extraction process ensures uniform and controlled 
patch extraction across diverse datasets. 

The extracted patches undergo reshaping process, 
transforming them into a 3D tensor format optimized for 
subsequent processing and analysis within the DL model. This 
transformation ensures seamless integration of patches into the 
larger computational framework, facilitating efficient feature 
extraction and model training. This serialization of patches is 
carried out to ensure consistency in patch generation across 
different model instances, facilitating seamless integration and 
reproducibility. Fig. 3 provides a visual comparison between a 
sample image and the corresponding image patches generated 
from it. 

 

Fig. 3. Sample image and generated image patches. 

D. Linear Projection and Positional Embedding 

Patch encoding phase encode patches extracted from input 
images, a critical process that enriches the representation of 
localized features. Since transformers operate on fixed-size 
sequences and lack inherent understanding of spatial 
relationships, positional encoding is performed. During the 
initialization step, two important parameters are determined: 
the number of patches retrieved from the input images and the 
dimensionality of the projected feature space to which the 
patches are mapped. The initialization phase establishes the 
foundation for effective feature extraction and spatial 
representation within the encoded patches. Within the 
initialization, two sub layers are instantiated to facilitate the 
encoding process. It plays a role in protecting the input patches 
into a higher-dimensional feature space, enabling robust feature 
extraction. 

The primary function of this layer is to provide position 
embeddings for every patch, thereby capturing essential spatial 
information within the encoded representation. By creating 
position indices for the patches, this technique makes sure that 
every patch is associated with a unique position. The input 
patches are then projected into the feature space that has more 
dimensions. The position embeddings generated are then added 
to the projected patches, effectively incorporating spatial 
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information into the encoded representation. The resulting 
encoded patches, enriched with both feature and positional 
information.  The transformer processes these embeddings 
through multiple layers of attention mechanisms and feed 
forward networks. 

The transformer encoder is a crucial component of the ViT 
architecture, responsible for processing and extracting features 
from input patches. It consists of several layers, each 
containing a set of modules such as Multi-Head Self-Attention 
Mechanism, Residual Connections and Layer Normalization, 
Feed forward Neural Network (MLP). The Fig. 4 illustrates the 
architectural framework of the ViT. 

The mechanism of Self-attention enables the model to 
assign varying weights to different input patch embeddings, 
prioritizing relevant information while disregarding irrelevant 
parts. The mechanism of self-attention in the model enables 
differential weighting of input patch embeddings, prioritizing 
relevant information while downplaying irrelevant aspects. 
Each patch embedding undergoes linear transformation into 
key, query, and value vectors, which are then utilized to 
compute attention score. These scores are derived from the 
product of query and key vector, and processed with softmax 
function to yield attention weights. These weights are 
subsequently applied to the values to generate the attention 
output. To aid in gradient flow during training, residual 
connections are introduced, merging the attention output with 
the input and subjecting it to layer normalization. This 
normalization process stabilizes the output of each attention 
block, maintaining a consistent input range for subsequent 
layers. Following the attention mechanism, the output traverses 
through MLP consisting of two fully connected layers. 

The MLP head within a ViT serves as the final stage of the 
model, responsible for converting the aggregated 

representations obtained from the transformer encoder blocks 
into class predictions. Typically, the MLP head comprises one 
or more fully connected layers, followed by an activation 
function. The input to this MLP head is the output derived 
from the last transformer encoder block, embodying the 
combined information extracted from the input image patches. 
Before being fed into the MLP head, these representations 
undergo flattening or global averaging. The resulting flattened 
or pooled representation is then passed through one or more 
dense layer, constituting the core of the MLP head. These 
layers enable the model to discern intricate non-linear 
relationships within the data. An activation function is applied 
after each fully connected layer to introduce non-linearity into 
the network. 

E. Hardware and Software Setup 

The research employed a computational setup that utilized 
a machine with powerful characteristics, including an Intel 
Core i7 processor. A powerful combination of 32GB RAM and 
the impressive NVIDIA GeForce GTX 1080Ti GPU. The 
model was implemented smoothly using the Keras library, 
which served as a prototype based on the Tensorflow 
architecture and executed using the flexible Python language. 
Keras, renowned for its intuitive interface and robust 
capabilities, played a crucial role in designing complex Neural 
Network structures. This framework guarantees optimal 
utilization of computational resources, effortlessly adapting to 
CPU, GPU, and TPU contexts. In order to take use of the 
powerful computational powers and optimise the process of 
training the model, the deployment was coordinated on Google 
Colab. Model training is made easier with this cloud-based 
Python notebook environment, which offers free access to 
powerful computing resources and supports interaction in 
development. 

 
Fig. 4. Architecture of the VI transformer. 
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Hyper parameters are crucial configuration parameters that 
determine the behavior and attributes of a machine learning 
framework during the training phase. In contrast to the model's 
parameters, which are determined by the data itself, the user 
sets the hyper parameters prior to training. The neural network 
model utilizes the Adam optimizer. The training process is 
directed by the binary cross-entropy loss function. During the 
training process, the model handles input data in batches 
consisting of 32 samples per iteration. The training is 
conducted for 25 epochs, which represents the number of times 
the model processes the complete training dataset. The hyper 
parameter selections, including the optimizer, loss function, 
batch size, and number of epochs, determine the setup for 
training the neural network model. The goal is to optimise its 
performance in detecting melanoma. The proposed method's 
model configuration is presented in Table I. 

TABLE I.  MODEL CONFIGURATIONS 

Parameters Value 

Learning rate 0.0001 

Weight decay 0.00001 

Image size 224 

Patch size 6 

Projection dimension 64 

num_heads 6 

transformer layers 6 

mlp_head_units [1024, 512] 

Batch Size 32 

Epochs 25 

IV. EXPERIMENTAL RESULTS 

The accuracy and loss plots are crucial for comprehending 
the performance and learning patterns of the proposed model. 
The accuracy plot visually depicts the model's ability to 
reliably predict data labels during training iterations on both 
the training and validation datasets. The alignment between the 
model's predictions and the actual labels is monitored to assess 
the model's performance throughout training. 

The accuracy plot demonstrates the model's efficacy in 
differentiating between images containing signs of melanoma 
and those without, throughout the training process. Ideally, 
throughout the early stages, both the training and validation 
accuracies ought to increase simultaneously, demonstrating the 
model's ability to apply its knowledge beyond the training data. 
The trend illustrated in Fig. 5 indicates that the model is 
acquiring knowledge of fundamental patterns rather than only 
memorizing the instances presented in the training dataset. 

The accuracy steadily increases from an initial value of 
approximately 0.8788 in the first epoch to around 0.9306 in the 
final epoch. This upward trajectory indicates that the model's 
performance improves over successive epochs as it learns from 
the training data. Notably, there are fluctuations in accuracy 
values throughout the training process, reflecting the dynamic 
nature of the optimization process and the model's adaptation 
to different patterns in the data. 

A loss plot illustrates the trend of the model's loss function 
over different iterations or epochs during training. Fig. 6 
illustrates the loss plot of the proposed model. The loss steadily 
decreases from an initial value of approximately 0.3062 in the 
first epoch to around 0.1707 in the final epoch. This downward 
trend signifies that the model's ability to minimize prediction 
errors improves over time. Lower loss values indicate better 
alignment between the model's predictions and the actual labels 
in the training data. Similar to accuracy, fluctuations in loss 
values are observed across epochs, reflecting the model's 
response to variations in the training data and optimization 
process. 

An excellent way to assess the accuracy of the suggested 
model in detecting melanoma is by employing a confusion 
matrix. Fig. 7 presents the confusion matrix generated by the 
proposed model. The matrix offers a systematic summary of 
the model's performance by contrasting its predictions with the 
real labels across several classes. Essentially, it arranges the 
results in a tabular structure, with the rows representing the 
actual labels and the columns representing the predicted labels. 
Every individual cell in the matrix represents the number of 
occurrences where the model's predictions match or differ from 
the actual labels. 

 
Fig. 5. Accuracy plot. 

 

Fig. 6. Loss plot. 
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Fig. 7. Confusion matrix. 

The confusion matrix is partitioned into four quadrants, 
where the items on the diagonal represent correct predictions 
and the elements off the diagonal represent cases of 
misclassification. This visual depiction allows for a 
comprehensive evaluation of the proposed model's efficacy in 
accurately detecting melanoma individuals. It reveals that the 
model accurately identifies 238 benign images as benign, but 
misclassifies 62 benign images as malignant. Similarly, it 
correctly identifies 258 malignant images as malignant, but 
erroneously classifies 42 malignant images as benign. 

Performance metrics derived from the confusion matrix 
offer a thorough evaluation of the proposed model's efficacy in 
detecting melanoma. In order to thoroughly evaluate the 
efficacy and operational efficiency of the proposed model, the 
F1-score, accuracy, precision, and recall are the four primary 
metrics utilized. These measures, which are based on the 
concepts of False Positive (FP), False Negative (FN), True 
Negative (TN), and True Positive (TP), are essential for 
assessing the model's performance. These performance 
parameters have mathematical formulations that are shown in 
Eq. (1), (2), (3), and (4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (4) 

The obtained performance metrics, as shown in Fig. 8, 
highlight the exceptional efficacy of the developed model. An 
accuracy of 96.23% indicates that the model correctly 
identifies melanoma cases and non-melanoma instances with a 
high degree of reliability. The precision of 96.63% 
demonstrates the model's capability to accurately predict true 
positive cases of melanoma, minimizing the rate of false 
positives. The recall, or sensitivity, at 96.98% reflects the 
model’s effectiveness in detecting almost all actual melanoma 
cases, ensuring a low rate of false negatives. The F1-Score, a 
harmonic mean of precision and recall, is 96.80%, 
underscoring the model's balanced performance in terms of 
both identifying true cases and excluding false alarms. These 
metrics collectively suggest that the model is robust and highly 
accurate, making it a reliable tool for the detection and 
classification of melanoma in clinical settings. 
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Fig. 8. Performance metrics. 

Fig. 9 shows the Classification Output of the proposed 
system. 

 
Fig. 9. Classification output of the system. 

V. DISCUSSION 

The proposed Vision Transformer (ViT)-based deep 
learning model marks a significant advancement in the field of 
skin cancer diagnosis, particularly in melanoma detection. By 
leveraging the innovative architecture of the Vision 
Transformer, which processes images as sequences of 
spatially-structured patches rather than relying solely on 
convolutional layers, the model exhibits superior accuracy and 
robustness. As demonstrated in the Table II and Fig. 10, the 
ViT-based model achieves an accuracy of 96.23%, notably 
surpassing the performance of other state-of-the-art 
methodologies. Jiang et al.'s DRANet achieves an accuracy of 

86.8%, while Shorfuzzaman et al.'s CNN-based stacked 
ensemble framework achieves a higher accuracy of 95.76%. 
Khan et al. employ DenseNet201 with transfer learning, 
achieving an accuracy of 95.26%. Inthiyaz et al.'s CNN method 
achieves an accuracy of 87%. This substantial improvement 
underscores the potential of the ViT-based model to enhance 
diagnostic accuracy, which is crucial for early detection and 
treatment of melanoma, ultimately contributing to better 
clinical outcomes. 

 
Fig. 10. Performance comparison. 
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The higher accuracy achieved by the ViT-based model is 
particularly noteworthy when considering the challenges 
associated with melanoma detection, including the complex 
and varied visual characteristics of skin lesions and the need 
for accurate differentiation between malignant and benign 
conditions. The model's ability to effectively handle these 
challenges, as evidenced by its outperformance of existing 
methods, highlights its robustness and adaptability. This 
advancement not only provides a powerful tool for clinicians 
but also addresses some of the key limitations of previous 
approaches, such as the extended training times, resource-
intensive computations, and reduced efficacy in noisy or poor-
quality images. The ViT-based model's success in overcoming 
these challenges and delivering high accuracy in skin cancer 
diagnosis positions it as a promising candidate for integration 
into clinical practice, where it could significantly improve the 
speed and accuracy of melanoma detection, ultimately saving 
lives through earlier and more precise intervention. 

TABLE II.  COMPARISON WITH EXISTING SYSTEM 

Author Methodology Accuracy 

Jiang et al DRANet 86.8% 

Shorfuzzaman et al 
CNN based stacked ensemble 

framework 
95.76% 

Khan et al DenseNet201 with transfer learning 95.26%. 

Inthiyaz et al CNN 87% 

Proposed model Vi transformer based deep learning 96.23% 

VI. CONCLUSION 

Melanoma, a form of skin cancer originating in 
melanocytes, presents a significant global health concern due 
to its aggressive nature and potential for metastasis. With its 
incidence steadily rising worldwide, melanoma detection and 
classification have become pivotal areas of research in the 
medical field. Early diagnosis plays a crucial role in improving 
patient outcomes, as timely intervention can significantly 
enhance treatment efficacy and prognosis. This research 
endeavours to develop a model capable of effectively detecting 
and classifying melanoma using publicly available datasets, 
with a focus on performance enhancement. The proposed 
approach introduces a Vision Transformer-based melanoma 
classification model adept at distinguishing between Benign 
and Malignant cases. With an accuracy of 96.23%, the model 
demonstrates a strong overall correctness in classification. 
These findings underscore the efficacy and potential of the 
proposed method in advancing the field of skin cancer 
diagnosis, offering promising prospects for enhanced accuracy 
and efficacy in clinical settings. These outcomes emphasize the 
effectiveness of the method in advancing skin cancer diagnosis, 
indicating promising prospects for heightened accuracy and 
efficacy in practical clinical settings. However, several avenues 
for future work could further advance the field. Future research 
could focus on expanding the dataset to include a more diverse 
range of skin types, lesion characteristics, and image quality 
conditions to improve the model's generalizability and 
robustness. Additionally, integrating the Vision Transformer 
with other advanced techniques, such as multi-modal data 

fusion or ensemble approaches, might enhance its performance 
further. 
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