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Abstract—Effective natural language understanding is crucial 

for dialogue systems, requiring precise intent detection and slot 

filling to facilitate interactions. Traditionally, these subtasks have 

been addressed separately, but their interconnection suggests that 

joint solutions yield better results. Recent neural network-based 

approaches have shown significant performance in joint intent 

detection and slot filling tasks. The two primary neural network 

structures used are recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs). RNNs capture long-term 

dependencies and store previous information semantics in a fixed-

size vector, but their ability to extract global semantics is limited. 

CNNs can capture n-gram features using convolutional filters, but 

their performance is constrained by filter width. To leverage the 

strengths and mitigate the weaknesses of both networks, this paper 

proposes an attention-based joint learning classification for intent 

detection and slot filling using BiLSTM and CNNs (AJLISBC). 

The BiLSTM encodes input sequences in both forward and 

backward directions, producing high-dimensional 

representations. It applies scalar and vectorial attention to obtain 

multichannel representations, with scalar attention calculating 

word-level importance and vectorial attention assessing feature-

level importance. For classification, AJLISBC employs a CNN 

structure to capture word relations in the representations 

generated by the attention mechanism, effectively extracting n-

gram features. Experimental results on the benchmark Airline 

Travel Information System (ATIS) dataset demonstrate that 

AJLISBC outperforms state-of-the-art methods. 
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I. INTRODUCTION 

Owing to the integration of conversational agents into 
various applications, from virtual assistants to customer 
chatbots, the importance of accurately interpreting user inputs 
increases. In the field of Natural Language Understanding 
(NLU), two primary tasks are intent detection and slot filling 
[1, 2]. Intent detection is a classification problem involving the 
construction of features from a given utterance. These features 
are then subjected to a classification algorithm to predict the 
appropriate classes for utterances selected from the predefined 
classes [3]. 

Although intent detection is a classification problem, it 
differs from classical classification in that it addresses the 
spoken language. Therefore, engineered features must be 
oriented towards capturing the semantic meanings of these 

utterances [4]. This emphasis on semantics is crucial to 
understanding the underlying intent conveyed by the user. 
Recent approaches have expanded beyond the semantic content 
of individual words to internal aspects such as syntactic 
structures, word contextual relationships, and external 
information such as metadata [5]. 

Slot filling is a sequence-labeling problem that is used to 
identify the semantic constituents of a user’s utterance and 
assign a semantic label to each word. The purpose of these 
labels is to describe the type of semantic information carried by 
the token, which can help identify the intent of the user [6, 7]. 

Traditionally, intent detection and slot filling tasks have 
been treated separately and assembled to form an entire system 
[8]. This type of methodology provides conceptual clarity, with 
each component independently addressing its specific 
challenges. However, there are some limitations in separating 
these models. It fails to leverage the interaction between the 
intent detection task and slot filling task, and this interaction 
plays a role in enhancing the overall system performance [9, 
10]. Recent advances in Artificial Intelligence (AI), particularly 
deep learning, have opened the door to joint models. A joint 
model handles both intent detection and slot filling 
simultaneously by leveraging their interdependencies and 
shared representations to enhance overall performance and 
efficiency [11]. 

Encoder-decoder neural network architectures are generally 
used for the joint learning classification of intent detection and 
slot filling because of their powerful sequential processing 
capabilities. Early joint learning approaches were based on 
statistical models such as Support Vector Machines (SVMs) 
[12], maximum entropy models (MEM) [13], hidden Markov 
models (HMM) [14], and Conditional Random Fields (CRFs) 
[15], which require extensive feature engineering and struggle 
to capture the deep semantic nuances of language. The advent 
of deep learning has brought about a shift, enabling models to 
learn hierarchical representations from raw data. Convolutional 
Neural Networks (CNNs) [16], Recurrent Neural Networks 
(RNNs) [17], and transformer architecture [18] have been at the 
forefront of this revolution, offering powerful tools for 
sequence modeling. 

A Recurrent Neural Network (RNN) is a widely used 
architecture for Natural Language Processing (NLP) tasks 
owing to its ability to maintain memory and capture 
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dependencies and patterns over time. This memory is 
implemented using recurrent connections within the network, 
allowing information to persist and update when new inputs are 
processed [19]. RNNs are particularly effective for intent 
detection and slot-filling tasks [20]. For example, in intent 
detection, understanding a user’s intent requires considering the 
sequential nature of the dialogue. RNNs with recurrent 
connections can capture the context of previous words or 
phrases in a sentence, thereby enabling them to detect the intent 
of the user based on the entire input sequence. In slot-filling 
tasks, the presence and placement of entities within the input 
text are crucial for extracting slot values accurately [21]. RNNs 
can learn to recognize patterns in the sequential structure of 
sentences, allowing them to identify relevant slots based on 
their contextual relationships with other words or entities in a 
sentence [22]. Despite their capabilities, RNNs often face 
gradient vanishing or exploding issues. To address these 
challenges, Long Short-Term Memory (LSTM) networks and 
Gated Recurrent Units (GRUs) have been developed to improve 
memory handling. Another problem with RNNs is that long 
sentences tend to prioritize recent information over earlier 
information, which might be more significant. 

To address the problem of input element selection, an 
attention mechanism was introduced to assign different weights 
to the output of the RNNs. The essence of this mechanism is to 
allow RNNs to combine outputs according to their assigned 
importance and retain variable-length memory. Attention 
mechanisms have proven to be effective in joint learning tasks, 
where different parts of the input may be relevant to intent 
detection and slot filling. By assigning different weights to 
different parts of the input, attention mechanisms help models 
prioritize the information that is crucial for each task. However, 
it has limitations in terms of capturing the order of the input 
sequence, which is crucial for NLP tasks. For instance, the 
sentences “I want flight from Baltimore to Dallas” and “I want 
flight from Dallas to Baltimore” will have identical weighted 
sums despite having opposite meanings. 

Convolutional Neural Networks (CNNs) are another 
architecture for NLP tasks, known for their ability to learn 
spatial hierarchies and local correlations of features from input 
data using convolutional filters. For instance, 2-gram features 
can effectively be extracted from the given example such as 
“from Baltimore” and “from Dallas” likewise “to Dallas” and 
“to Baltimore” using CNNs. This type of representation 
provides better information than the sum of the RNN hidden 
states in the input sequence. Several studies have demonstrated 
the importance of CNNs for NLP tasks. In [23], it was 
demonstrated that a simple CNN consisting of a single 
convolutional layer applied to word vectors derived from an 
unsupervised neural language model achieved good 
performance in text classification. In addition, [24] illustrated 
that CNNs can be effectively utilized to extract morphological 
details such as word suffixes or prefixes and encode them into 
neural representations. However, CNNs are limited in 
preserving the sequential order [25]. 

Some researchers have developed hybrid frameworks that 
combine CNNs and RNNs to exploit their respective strengths. 
One such framework, the Recurrent Convolutional Neural 
Network (RCNN), captures contextual information using a 

recurrent convolutional structure [26]. Another framework, the 
Convolutional Recurrent Neural Network (CRNN), combines 
the benefits of both CNNs and RNNs to extract diverse 
linguistic features [27]. However, these hybrid models often fail 
to account for the varying semantic contributions of different 
words when treating all words with equal importance. 

Motivated by the abovementioned issues, this study 
proposes a joint learning classification model that leverages the 
strengths of RNN and CNN architectures, enhanced with scalar 
and vectorial attention mechanisms. The major contributions of 
the proposed model are summarized as follows: 

1) The model employs BiLSTM to encode the input 

sequence in both forward and backward directions, ensuring the 

retention of chronological features within sequences. 

2) An attention mechanism is introduced to generate multiple 

channels, simulating the diversity of the input information. 

Scalar attention assesses word-level importance, whereas 

vectorial attention evaluates feature level significance. This 

representation allows the model to learn multiple 

representations of the semantics of an input sequence. 

3) CNN is utilized to identify word relations using attention 

mechanisms rather than relying on weighted sum calculations. 

This approach enhances the ability of CNN to extract n-gram 

features. 

4) A series of experiments conducted on the Airline Travel 

Information System (ATIS) dataset demonstrated that the 

proposed approach outperformed baseline methods. 

The remainder of this paper is organized as follows: Section 
II reviews the related work, Section III outlines the 
methodology, Section IV describes the experimental setup, 
Section V discusses the experimental results, Section VI 
provides an in-depth analysis of the findings, and Section VII 
concludes the paper. 

II. RELATED WORK 

Joint learning for intent detection and slot filling has 
evolved from classical models, such as triangular-chain CRFs 
[28] and Maximum Entropy Models (MEM) combined with 
CRFs [29], to capture the dependencies between the intent and 
slots of an utterance. However, they face scalability and manual 
feature engineering challenges [5]. 

Deep learning approaches have emerged as more scalable 
alternatives. Recently, attention-based joint learning for intent 
detection and slot filling has gained popularity owing to its 
ability to enhance task performance by improving feature 
extraction and the flow of information between these two 
interdependent tasks. By focusing on the most relevant parts of 
the input sequences, attention mechanisms allow models to 
capture fine-grained contextual relationships, making them 
highly effective for natural language understanding. 

The research in [30] introduced an asynchronous joint 
extraction algorithm that combines a GRU network with a 
TextCNN-based feature representation layer. Their model 
incorporated a keyword attention mechanism to capture 
contextual semantics precisely, enhancing both intent detection 
and slot filling. Adding adversarial training further strengthens 
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the robustness of the model against adversarial attacks, thereby 
improving its reliability in real-world scenarios. 

The study in [31] proposed a joint model leveraging graph 
neural networks (GNNs) fused with external knowledge and a 
graph attention mechanism. This model significantly enhances 
the semantic representation by facilitating the exchange of 
information between slots and intents, resulting in superior task 
performance. Similarly, [32] emphasized bidirectional 
information flow within GNN-based models, improving 
information exchange and interaction between intent 
recognition and slot labeling processes. 

Using a different approach, [11] developed the JPIS model, 
which integrates user-specific profile information along with a 
slot-to-intent attention mechanism. This approach proved 
highly effective in scenarios where profile-based customization 
was required, substantially improving accuracy. 

The study in [8] also explored the efficiency of attention 
mechanisms by developing a Fast Attention Network tailored 
to edge devices. This model balances accuracy with latency by 
utilizing a refined attention module to enhance semantic 
accuracy, while maintaining fast response times in real-time 
applications. 

Although these models have demonstrated significant 
advancements in intent detection and slot filling, they highlight 
the need to balance model complexity with computational 
efficiency, especially for real-time applications. Enhanced 
scalar and vectorial attention mechanisms offer a potential 
solution by allowing the model to capture both the word- and 

feature-level importance in a more structured manner. Scalar 
attention assesses the significance of individual words, whereas 
vectorial attention evaluates feature-level relevance, enabling 
the model to generate multiple representations of input 
sequences that can be processed concurrently. This approach 
enhances the richness of the information captured, thereby 
improving the overall performance while maintaining the 
computational efficiency. Thus, the proposed enhanced scalar 
and vectorial attention mechanisms are justified by their ability 
to address these existing challenges while optimizing the 
interaction between intent detection and slot-filling tasks. 

III. METHODOLOGY 

The architecture of the proposed model is shown in Fig. 1. 
The proposed model comprises an input layer, a BiLSTM layer, 
a convolutional layer with subsequent max pooling, and two 
dense layers that implement softmax functions. These 
components jointly detect the intent of the user’s input 
utterance and the associated slots by assigning them with 
multiclass labels (B, I, O), where "I,” "O,” and "B" signify 
Inside, Outside, and Beginning of slots, respectively. Details of 
the model are described in the following subsections. 

A. Embedding Layer 

First, the dialog must be transformed into a feature vector 
matrix to serve as the input layer of the model. In the proposed 
model, Google’s word2vec [33] embedding technique is 
employed to translate each word feature into a word-embedding 
vector. As a result, dialog vectors are obtained as inputs 𝑋 =
 (𝑥1, 𝑥2, … , 𝑥𝑛). 

 
Fig. 1. The architecture of the proposed AJLISBC model. 

B. Long Short-Term Memory Network 

RNNs are widely used in NLP owing to their ability to 
handle sequential data and capture temporal dependencies. 
RNNs process a variable-length sequence at each time step t 
and updates its hidden state ℎ𝑡 based on the current input 𝑥𝑡 and 
previous hidden state ℎ𝑡−1: 

ℎ𝑡 = 𝑓(𝑊[ℎ𝑡−1, 𝑥𝑡] + 𝑏)        (1) 

where, 𝑊 is the weight matrix that combines the hidden states, 
and the current input vector and 𝑏 is the bias vector. 

However, basic RNNs have been avoided by researchers 
owing to issues such as the vanishing gradient problem. To 
address these problems, LSTM networks have been developed 
and have demonstrated good performance. 

To convert a sentence consisting of 𝑛 words, into a dense 
vector 𝑥𝑖, an embedding matrix is used first. BiLSTM is then 
applied to generate word annotations by processing the 
sentence in both forward and backward directions. The forward 

LSTM process the sequence from 𝑥𝑖 𝑡𝑜 𝑥𝑛 and produce ℎ𝑖
⃗⃗  ⃗ 

𝑖, 
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whereas backward LSTM processes the sequence from 𝑥𝑛 𝑡𝑜 𝑥𝑖 

and produce ℎ𝑖
⃖⃗⃗⃗  

ℎ𝑖
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑖 , ℎ𝑖−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  (2) 

ℎ𝑖
⃖⃗⃗⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑖 , ℎ𝑖−1

⃖⃗ ⃗⃗⃗⃗ ⃗⃗⃗ )  (3) 

ℎ𝑖 = 𝑊𝑖
⃗⃗⃗⃗ . ℎ𝑖

⃗⃗  ⃗ +  𝑊𝑖
⃖⃗ ⃗⃗⃗. ℎ𝑖

⃖⃗⃗⃗ + 𝑏      (4) 

The hidden states from the forward  ℎ𝑖
⃗⃗ ⃗⃗  𝑖 and backward ℎ𝑖

⃖⃗⃗⃗   
LSTMs are concatenated at each time step to provide a 
summary of the input sequence ℎ𝑖. 

C. Attention Mechanism 

In NLP tasks such as intent detection and slot filling, not all 
words have the same significance in representing the input 
sequence. To address this, an attention mechanism was 
introduced to highlight the importance of each word by 
assigning greater weights to the crucial elements in the final 
output. However, the traditional attention mechanism struggles 
to preserve temporal order information. To resolve this, 
attention mechanisms are incorporated into the hidden states of 
BiLSTM, and these states are combined into a matrix that 
maintains the order information instead of relying on the 
weighted sum of vectors. In addition, by employing scalar and 
vectorial attention, multiple matrices were created, serving as 
multichannel inputs to the CNN. 

1) Scalar attention mechanism: To determine the importance 

weights of all input sequences, scalar attention was employed. 

This attention is represented by a matrix 𝑀 which captures the 

relationships between words in the sequence. The value in the 

𝑖𝑡ℎ row and the 𝑗𝑡ℎ column of 𝑀 indicates the level of 

association between the word in 𝑖𝑡ℎ and 𝑗𝑡ℎ column. In each 

channel L, a mask matrix 𝑉 is applied, and the masked 

association matrix 𝑀𝑙𝑖, is calculated. 

𝑀𝑙𝑖,𝑗
= tanh([ℎ𝑖 ,𝑊𝑙 . ℎ𝑗] + 𝑏𝑙)  (5) 

The 𝑖𝑡ℎ  channel mask matrix 𝑉𝑙𝑖,𝑗
obeys binomial 

distribution and is defined as: 

𝑉𝑙𝑖,𝑗
 ~ 𝐵(1, 𝑝), 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑛]  (6) 

Given association matrix 𝑀𝑙𝑖,𝑗
 and mask matrix 𝑉𝑙𝑖,𝑗

, the 

channel is calculated as follows: 

𝐴𝑙 = 𝑀𝑙 ⊗ 𝑉𝑙   (7) 

𝑠𝑙𝑘
= ∑ 𝐴𝑙𝑥𝑘𝑥    (8) 

𝑝𝑘 = {0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
−99999,              𝑖𝑓  𝑥𝑘 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑝𝑎𝑑

  (9) 

𝑠𝑐𝑜𝑟𝑒𝑙𝑘
= 𝑝𝑘 + 𝑠𝑙𝑘

  (10) 

𝑎𝑙𝑘
= 

𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒𝑘)

∑ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒𝑖)
𝑛
𝑖

  (11) 

𝑐𝑙𝑖
= 𝑎𝑙𝑖

 . ℎ𝑖            (12) 

where, ⊗, 𝒄𝒍𝒊 , 𝒉𝒊, 𝒍
𝒕𝒉, 𝒑𝒌  denotes element wise 

multiplication, updated hidden state, channel and padded mask 
respectively. To ensure that the padding symbol contains nearly 

zero attention 𝒂𝒍𝒌
, scalar attention 𝒔𝒍𝒌

 is subtracted from 99999 

before applying the softmax function. 

2) Vectorial attention mechanism: In NLP, words and 

sentences are transformed into n-dimensional vector to capture 

their meanings in a format suitable for computational models. 

Each dimension within this vector encodes a different aspect of 

a word or sentence’s meaning, allowing for a rich and 

multifaceted representation of linguistic data. For example, 

consider the sentence “I want to book a flight from New York 

to Boston on July 20th”. In intent detection task, the model can 

easily identify the intent as “book a flight” by focusing on 

dimensions related to booking and travel. In slot-filling tasks, 

the model can accurately fill slots using dimensions related to 

locations and dates. 

A vectorial attention mechanism was proposed for the joint 
model based on the above assumptions. 

𝑠𝑐𝑜𝑟𝑒𝑙𝑖
= 𝑊𝑎

𝑇𝜎(𝑊𝑏 . ℎ𝑖 + 𝑏)       (13) 

𝑎𝑣𝑙𝑖
= 

𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒𝑙𝑖
)

∑ (𝑠𝑐𝑜𝑟𝑒𝑙𝑖
)𝑖

  (14) 

𝑐𝑣𝑙𝑖
= 𝑎𝑣𝑙𝑖

⊙ ℎ𝑖   (15) 

𝐶𝑙 = [𝑐𝑣𝑙1 , 𝑐𝑣𝑙2 , 𝑐𝑣𝑙3 … . , 𝑐𝑣𝑙𝑛]  (16) 

where 𝑊𝑎,𝑊𝑏  are weight matrices in the vectorial attention 
and b is the bias vector, ⊙ is the element wise multiplication 

𝑐𝑙𝑖
denotes the output of ℎ𝑖  in 𝑙𝑡ℎ  channel. Multichannel 

attention is generated by concatenating vector and scalar 
attention as follows: 

𝑐𝑙𝑖
= 𝑎𝑙𝑖

(𝑎𝑣𝑙𝑖
⊙ ℎ𝑖)  (17) 

Therefore, multichannel attention has the strengths of both 
vectorial attention and scalar attention. 

D. Convolutional Neural Network Layer 

To extract local features from the attention layer, 
convolution operations are employed on the combined attention 
layer. Typically, a zero-padding token is introduced before 
convolution to ensure uniform output sizes across different 
filters. Different filters and kernel sizes were applied to the 
multichannel attention 𝑐𝑙𝑖, to extract local features. 

𝐶 = [𝑐1, 𝑐2, … 𝑐𝑛]   (18) 

In the convolution operation, a filter 𝑚 𝜖 ℝ𝑙 ×𝑘 is applied to 
l consecutive words to generate a new feature. Here, 𝐶 𝜖 ℝ𝑛, 
where k and n are the embedded dimensions and input sequence 
length, respectively. 

𝑥𝑖 = 𝑓(𝑚. 𝑐𝑖:𝑖+𝑙−1 + 𝑏)  (19) 

where,  𝑐𝑖:𝑖+𝑙−1  is the concatenation of 𝑐𝑖 … 𝑐𝑖+𝑙−1, f is a 
nonlinear activation function such as RELU, and  𝑏 ∈  ℝ is the 
bias term. After the filter m slides across, a feature map can be 
obtained as, 

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛−𝑙+1]     (20) 
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Maxpooling is then applied to the feature map z to extract 
the most significant features for each filter m. To capture the 
different features of the input sequence, filters of various sizes 
are applied, resulting in a vector that is used at the output layer. 

E. Output Layer 

The proposed model consists of intent detection and slot 
filling outputs. The intent detection output is obtained using a 
fully connected layer with a softmax function to output the 
probability distribution over the intents. Therefore, the intent 
output vector is computed as follows: 

𝑦𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊. 𝑞 +  𝑏)     (21) 

For the slot-filling output, the feature vectors are passed to 
an LSTM decoder to capture the sequential nature of the slots 
and use the softmax function for the output. 

𝑑𝑖 = 𝐿𝑆𝑇𝑀(𝑞𝑖 , 𝑑𝑖−1)  (22) 

 𝑦𝑖
𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊. 𝑑𝑖 +  𝑏)        (23) 

where, 𝑦𝑠 is the slot label and  𝑊, 𝑏  are the transformation 
matrix and bias vectors, respectively. 

IV. EXPERIMENTAL STUDY 

This section describes the datasets used in the experiments 
followed by a detailed experimental methodology to assess the 
effectiveness of the proposed approach. A comparative analysis 
of the baseline methods is presented. The performance of the 
model was evaluated using the widely adopted metrics of 
accuracy for the intent detection task and the F1-score for the 
slot-filling task. 

A. Dataset 

To validate the proposed model, experiments were 
conducted using the Airline Travel Information System (ATIS) 
dataset, which is one of the most widely recognized and 
historically significant datasets in Natural Language 
Understanding (NLU) research. The ATIS dataset has been a 
benchmark for Spoken Language Understanding (SLU) tasks 
for over three decades, making it an ideal choice for evaluating 
advancements in the field. The dataset focuses specifically on 
air travel-related queries and provides information on flights, 
fares, airlines, airports, cities, and ground services. It features 
21 different intents and 128 slots, with a training set of 4478 
samples, test set of 893 samples, and validation set of 500 
samples [5]. 

The ATIS dataset presents several unique characteristics 
that support its use as a standard for model comparisons. One 
notable feature is the imbalanced distribution of intent types, 
with approximately 75% of intents belonging to a single class 
(atis_flight). This imbalance poses a challenge for intent 
detection models, making the dataset a rigorous test for the 
proposed approach. Moreover, the well-defined structure of the 
dataset allows for clear benchmarking and facilitates a direct 
comparison with existing models in the NLU domain. Its long-
standing use in research ensures that the performance of the 
proposed model can be contextualized within the vast body of 
prior work, further validating its efficacy. 

Table I gives an example of a semantic frame for an 
utterance from an ATIS dataset “I want fly from Baltimore to 
Dallas round trip.” The slots adhere to the widely used IOB (in-
out-begin) format for representing slot tags. This sentence 
pertains to airline travel with the intent of finding a flight. 
Notably, ‘Baltimore’ is tagged as departure city, ‘Dallas’ as 
arrival city and ‘round trip’ as round trip. 

TABLE I. AN EXAMPLE OF FRAME 

Entity slots Intent 

I O 

atis_flight 

want O 

to O 

fly O 

from O 

Baltimore B-fromloc.city_name 

to O 

Dallas B-toloc.city_name 

round B-round_trip 

trip I-round_trip 

B. Experimental Settings 

A grid search is employed to determine the optimal 
hyperparameters for the model. Specifically, three different 
filter sizes (2, 3, and 5) were tested and 128 feature maps were 
used. To prevent overfitting, a rate of 0.5 was applied to the 
feature maps. The shared encoder was configured with 200 
hidden units and a rectified linear unit activation function was 
used. Additionally, a dropout rate of 0.5 was applied after the 
shared encoder, randomly dropping units to improve training 
was applied after the shared encoder. For intent detection 
classification and slot filling outputs, L2 regularization with a 
value of 0.001 was applied to the weights of the dense layers 
using a softmax activation function. The Adam optimizer and 
categorical cross-entropy loss functions were employed during 
training. Accuracy metrics were used to evaluate intent 
detection, and the F1-score was used for slot filling. A batch 
size of 32 was selected for the study. The input sequence was 
padded to a fixed length to fit the convolutional layer with a 
maximum length of 45 for the ATIS dataset. In the proposed 
model, the weights of the embedding layer were initialized with 
publicly available word2vec vectors, whereas words not 
included in the pretrained set were initialized with values from 
a uniform distribution to maintain consistent variance across all 
word vectors. 

V. EXPERIMENTAL RESULTS 

The performance of the proposed model, AJLISBC-x, on 
the ATIS dataset is presented in Table I, where x represents the 
number of channels used during training. These channels 
enable the model to capture different representations of the 
input sequence, and the effectiveness of this multichannel 
representation is evident in the results. 

As illustrated in Table II, all proposed AJLISBC models 
outperformed the baseline models. Specifically, AJLISBC-2, 
which utilizes two channels, demonstrated the highest accuracy 
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and F1-score. Among the configurations tested, AJLISBC-1, 
which operates with a single channel, showed inferior results 
compared with the multichannel models. This indicates that 
increasing the number of channels positively influences the 
model performance, although there may be diminishing returns 
as the number of channels increases beyond two. 

TABLE II. COMPARISON OF AJLISBC WITH BASELINE RESULTS 

Model 
ATIS Dataset 

Accuracy F1-score 

Bi-GRU + feature [34] 97.76 97.93 

BiLSTM+Attention [35] 95.70 95.60 

BC [36] 97.20 96.34 

AJLISBC -1 97.89 98.32 

AJLISBC -2 98.19 98.61 

AJLISBC -3 97.99 98.38 

AJLISBC -4 98.09 98.45 

AJLISBC -5 97.89 98.56 

In addition to channel variations, the effects of the attention 
mechanisms were evaluated. Table III presents the performance 
of AJLISBC-2 when using scalar attention, vectorial attention, 
or a combination of both. Scalar attention, which assigns 
importance weights to all elements of the input sequence, yields 
a slightly better accuracy than vectorial attention. However, 
both types of attention achieve the same F1-score, 
demonstrating that either mechanism is effective at improving 
the performance for this task. When scalar and vectorial 
attention are combined, the model achieves its highest F1-score 
and improved accuracy compared with either mechanism alone. 

TABLE III. PROPOSED MODEL PERFORMANCE BASE ON ATTENTION 

MECHANISM 

Model Attention 
ATIS Dataset 

Accuracy F1-score 

AJLISBC -2 Scalar 97.09 98.42 

AJLISBC -2 Vector 96.99 98.42 

AJLISBC -2 Scalar + vector 97.89 98.56 

VI. DISCUSSION  

The results underscore the effectiveness of multichannel 
representation in enhancing the model performance. AJLISBC-
2's superior performance compared to AJLISBC-1 suggests that 
using multiple channels helps the model capture diverse 
patterns within the input sequence. This is particularly relevant 
for complex tasks such as intent detection and slot filling, where 
different dimensions of the input can provide complementary 
information. The use of a single channel in AJLISBC-1 limits 
the ability of the model to process and leverage multiple facets 
of the input, leading to inferior results. Therefore, multichannel 
representation appears to be an effective strategy for improving 
the model performance. 

However, it is worth noting that while increasing the 
number of channels generally improves the performance, the 

results show that the performance does not increase 
indefinitely. For example, AJLISBC-5 showed a slightly lower 
accuracy than AJLISBC-2, indicating that simply adding more 
channels may not necessarily result in better performance 
beyond a certain point. This may be due to the model 
encountering diminishing returns from the additional channels 
or because the increased complexity of the model requires more 
sophisticated optimization strategies. It is hypothesized that 
selecting the number of channels based on the number of 
informative words in a sentence can yield even better results, 
allowing the model to tailor the complexity of its representation 
to the specific needs of each input. 

In examining attention mechanisms, scalar attention proves 
to be particularly effective for accuracy because of its ability to 
calculate the importance of all elements in the input sequence. 
This helps to identify the most relevant parts of the sequence 
for intent detection, which may explain its superior 
performance in this regard. Scalar attention is particularly 
useful in scenarios where the relationship between different 
elements in a sequence plays a crucial role, such as in slot-
filling tasks. By contrast, vectorial attention selectively 
emphasizes features that are more relevant for specific tasks, 
thereby enhancing the robustness of the model. This 
mechanism introduces controlled perturbations in the hidden 
state, which allows the model to generalize more effectively to 
new inputs. 

The combination of scalar and vectorial attention 
mechanisms leads to the best performance because it capitalizes 
on the strengths of both methods. Scalar attention helps to 
compute the overall importance of elements in the input, 
whereas vectorial attention fine-tunes the focus to specific 
dimensions of the input. This dual approach results in better 
performance in both intent detection and slot-filling tasks. The 
synergy between these two mechanisms also enables the model 
to indirectly assign varying learning rates to different 
dimensions of the hidden state, allowing more informative 
dimensions to be updated more rapidly than less informative 
ones do. This dynamic adjustment contributes to the observed 
performance improvement when both types of attention are 
used together. 

VII. CONCLUSION 

This paper presents an attention-based joint learning 
classification model for intent detection and slot-filling that 
combines BiLSTM and CNN (AJLISBC). The BiLSTM 
architecture captures contextual information, whereas scalar 
and vectorial attention mechanisms generate multichannel 
representations of the input sequence semantics. CNNs are 
applied to these multichannel representations to extract n-gram 
features and enhance performance in both intent detection and 
slot-filling tasks. Experimental results on the ATIS dataset 
show that the model outperforms baseline models, 
demonstrating the effectiveness of combining BiLSTM, CNN, 
and attention mechanisms for natural language understanding 
tasks. Despite the promising results, several limitations of this 
study should be acknowledged, as they may impact the validity, 
reliability, and generalizability of the findings. One limitation 
is the exclusive use of the ATIS dataset, which is relatively 
small, domain-specific, and focuses on flight-related queries. 
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This limited scope raises concerns about the generalizability of 
the findings to other domains or to larger, more diverse datasets. 
The model's performance might have been overestimated 
owing to the homogeneity of the dataset. Future work will 
involve testing the model on diverse datasets from various 
domains to better assess its generalizability and robustness 
across different natural language processing tasks. Another 
limitation is the manual selection of the number of channels 
used for multichannel representations. Although multichannel 
representations have shown effectiveness, the process of 
determining the optimal number of channels is empirical and 
not rigorously optimized. This could affect the reliability and 
consistency of the performance of the model across different 
datasets or tasks, as it may not generalize well to varying 
sentence lengths or input complexities. Future work will 
explore automated methods for determining the optimal 
number of channels, such as incorporating adaptive 
mechanisms based on input-data characteristics. This approach 
ensures that the model adapts more flexibly and consistently to 
diverse input scenarios. Future studies will address these 
limitations to further validate the effectiveness of the model and 
enhance its adaptability and applicability to a broader range of 
natural language understanding tasks. 
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