
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

252 | P a g e

www.ijacsa.thesai.org

Dynamic Priority-Based Round Robin: An Advanced

Load Balancing Technique for Cloud Computing

Parupally Venu, Pachipala Yellamma*, Yama Rupesh, Yerrapothu Teja Naga Eswar, Maruboina Mahiddar Reddy

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,

Vaddeswaram, Guntur 522302, India

Abstract—An imbalance of load is an essential problem in

cloud computing where the division of work between virtual

machines is not well-optimized. Performance bottlenecks result

from this unequal resource allocation, which keeps the system

from operating at its full capability. Managing this load-balancing

issue becomes critical to improving overall efficiency, resource

utilization, and responsiveness as cloud infrastructures strive to

respond to changing workloads and scale dynamically. Crossing

the load-balancing landscape introduced a new strategy to

effectively improve the load-balancing factor and ways to improve

load-balancing performance by understanding how existing

algorithms work, an effective method of load balancing. The

"Dynamic Priority Based Round Robin" algorithm is a new

approach that combines three different algorithms to improve

cloud load balancing. This method improves load balancing by

taking the best aspects of previous algorithms and improving

them. It works remarkably well and responds quickly to

commands, greatly reducing processing time. This DPBRR

algorithm also plays an important role in improving cloud load

balancing in many ways, including improving resource

consumption, inefficiency, scalability, fault tolerance, cost

optimization, and other aspects. Since it is a combination of

algorithms, it may have its drawbacks, but its cloud computing

enhancements are very useful for doing many tasks quickly.

Strength and adaptability are quite effective, as is adaptability.

Keywords—Load balancer; traffic distribution; cloud

computing; resource utilization; scalability; Dynamic Priority Based

Round Robin (DPBRR)

I. INTRODUCTION

A cutting-edge paradigm in information technology, cloud
computing marks a radical shift in the direction of the
democratization of data access and decentralization of
computational capacity. This cutting-edge technical framework
breaks through conventional barriers by providing individuals
and businesses with access to an infinite resource, from
powerful computer power to endless storage. Cloud computing
is a fascinating and amazing computing era that has replaced
traditional methods. Cloud computing eliminates this necessity
and offers services based on user demand and usage, in contrast
to traditional computing, which requires users to maintain
internal infrastructure. Users are spared from having to buy and
maintain processing, storage, and other hardware. Through the
internet, data is accessed and stored [1]. These days, cloud
computing is essential because it offers pay-as-you-go on-
demand services. To provide high-quality services, suppliers
are taking advantage of service models like SaaS, PaaS, IaaS.
Over the past five years, the public cloud computing markets
have grown significantly, expanding by 21.5% [4].

Workload control is essential for load balancing problems
since job arrival patterns are unpredictable and cloud node
capacity varies. It also helps to preserve system stability.
Schemes for load balancing can be either static or dynamic,
depending on how essential System dynamics are [11]. Load
balancing is a technique used in distributed systems to
distribute the workload among multiple resources. As a result,
there is an increase in scalability and effective resource usage.
Multiple networked computing devices that collaborate are part
of distributed systems. The need for efficient resource
allocation grows as workload demand rises. This problem is
solved by load balancing, which divides up incoming requests
or tasks among the servers, virtual machines, or containers that
are available. The task load is typically divided among several
virtual machines (VM’s) when using the load balancing
technique. Without it, there could be SLA violations, assert
wastage, execution corruption, and uneven burdens during
server construction. Thus, employing an appropriate load
balancing technique can enhance server utilization and provide
more Quality of Service (QoS) assurance [12]. In a cloud
environment, load balancing is accomplished in two steps: first
the job is divided among the nodes; second, the virtual machine
is monitored, and load balancing activities are carried out using
task migration or virtual machine migration approach [5]. Load
balancing in the cloud occurs in two stages: first, at the level of
physical machines, where the load balancer distributes the load
among the VMs connected to each physical device and
manages the load of physical machines; second, at the level of
virtual machines, where the load balancer manages and
balances the load across all virtual machines using different LB
algorithms [9].

The paper's content is organized as follows: Section II offers
a comprehensive review of the literature on several key Load
Balancing methods. In Section III, we review the current state
of the art for the for DPBRR algorithm to enhance load
balancing and introduce our proposed approach, to distribute
tasks evenly among resources based on priority, the jobs with
higher priorities will become more significant. We discuss the
encryption process in detail. Section IV presents the results and
a comparative analysis of our recommended methodology. A
thorough explanation of the study paper's findings and closing
thoughts is provided in Section V.

II. LITERATURE REVIEW

The research paper titled “A Hybrid Algorithm for
Scheduling Scientific Workflows in Cloud Computing” by
Muhammad Tahir, Muhammad sardaraz in the year 2019 [1]
[10]. The authors put forth an algorithm that uses the PSO

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

253 | P a g e

www.ijacsa.thesai.org

algorithm to schedule scientific operations in two key stages:
task preparation and task scheduling [23]. Throughout the
scheduling process, the load balance of cloud resources is
tracked by this hybrid method.

The research paper titled “Load balancing in cloud
computing – A hierarchical taxonomical classification” by G
Kavitha, S Afzal in the year 2019 [2]. It primarily categorized
the many load balancing algorithm types with clarity and
supplied details about the technique employed, the complexity
of the algorithm, and its benefits and drawbacks. It primarily
demonstrates the functionality and complexity of the load
balancing algorithms, with task scheduling, virtual machine
scheduling, and resource scheduling serving as the primary
criteria. It also compares the algorithms' operational processes
and provides percentages to help readers understand the
algorithms, covering all the major LB algorithms.

The research paper titled “A Hybrid Bio-Inspired Algorithm
for Scheduling and Resource Management in Cloud
Environment” by Rajkumar Buyya, Ram Mohana Reddy G,
Shridhar G D in the year 2020[3]. By combining modified CSO
and PSO algorithms for job scheduling, the authors presented a
hybrid with a bio-effect method for asset allocation. Compared
to current scheduling and techniques, this algorithm aims to
increase response time, reliability and resource utilization.

The research paper titled “A Hybrid Model for Load
Balancing in Cloud Using File Type Formatting” by Adnan
Sohail, M Junaid, Ahmed, H Alhakami, Imran Ali Khan,
Abdullah Baz in the year 2020 [4]. The main goal is to use
support vector machine (SVM) technology, which looks at the
quantity and quality of files stored in the cloud. It works based
on how well it manages processing speed and SLA.

The research paper titled “Dynamic load balancing
algorithm for balancing the workload among virtual machines
in cloud computing” by S C Sharma, Mohit Kumar in the year
2017 [5]. Cloud computing technologies are used to reduce
waiting time and increase resource usage. Demonstrate that the
suggested approach outperforms current algorithms regarding
work allocation, workload monitoring and dynamic control.
Incoming tasks are also assigned to the most appropriate virtual
machine.

The research paper titled “A Load Balancing Algorithm for
the Data Centres to Optimize Cloud Computing Applications”
by Azween Abdullah, N Z Jhanjhi, M A Alzain, Dalia
Abdulkareem Shafiq in the year 2021[6]. Increase cloud asset
efficiency rate 78% relative to current traffic distribution
algorithms to achieve decent performance and improve metrics.
The proposed method prioritizes virtual machines (VMs) for
workload scheduling, underutilization, and quality of service
(QoS) balancing. The algorithm mainly focuses on optimizing
IaaS cloud models to ensure high performance and minimize
underload.

The research paper titled “Cloud Dynamic Load Balancing
and Reactive Fault Tolerance Techniques: A Systematic
Literature Review (SLR)” by A Yousif, M Bakri Bashir, T M
Tawfeeg, Alzubair Hassan, Samar M alqhtani, Awad Ali, Rafik

Hamza in the year 2022 [7]. To make cloud load balancing
more efficient, the authors of this study focus on implementing
fault management techniques along with real time workload
management. Adaptive load distribution jobs are dynamically
assigned to the virtual machine based on current state of the
system. (VMs). In addition, a reactive failover method reacts to
system failures to keep cloud services stable.

The research paper titled “Dynamic Resource Allocation
Using an Adaptive Multi-Objective Teaching-Learning Based
Optimization Algorithm in Cloud” by Mohammadreza
Ramezanpour, R Khorsand, Ali Moazeni in the year 2023 [8].
The authors recommend a dynamic resource allocation based
on the strategy of AMO-TLBO method. By dynamically
allocating resources based on application capacity, this strategy
saves costs and optimizes resource consumption. The algorithm
has been greatly improved using web-based technology. In
addition, the recommended strategy outperforms several
popular algorithms such as NSGA-II, MOPSO and TLBO.

The research paper titled “Load Balancing in Cloud
Environment: A State-of-the-Art Review” by Durgaprasad G,
Yogesh Lohumi, M Zubair Khan, Prakash Srivastava,
Abdulrahman in the year 2023 [9]. Efficiency, scalability and
performance are negatively affected by the load imbalance that
cloud computing constantly faces. This essay examines load
balancing and improving service quality in an on-demand
computing setting. In addition to explaining load balancing
solutions, the taxonomy and classification of load balancing
algorithms is discussed. A common well-solved problem was
server load imbalance.

Finally, a better answer to cloud computing load balancing
issues and resource allocation concerns is offered by load
balancing algorithms that integrate dynamic priority-based
round robin (DPBRR). Task distribution, resource allocation,
and workload modification are increasingly important
considerations when working with virtual machines. As a result
of the round robin process, which distributes jobs among the
available virtual machines in a cyclic fashion to give each VM
an equal chance, the priorities are dynamically changed in
response to workload patterns. Its fault tolerance and high
adaptability allow it to function as a reliable balancing load
technique in environments of cloud computing by dynamically
reallocating and redistributing resources to VMs with lower
priority when any VM becomes overwhelmed.

The table highlights the drawbacks of each methodology
and limitations. The proposed load balancing algorithm
combines the dynamic nature with a priority based round robin
algorithm offers a better solution for scalability, resource
allocation, task distribution, fault tolerance and more, this can
improve the balancing load in cloud environments.

The Table I provides a literature review on existing
methodologies for enhancing balancing of load in virtualized
computing environments. It provides a comparison of different
algorithms, including Improved WRR, PMHEFT, CMODLB,
Dynamic load balancing algorithms, SARM, MOABCQ and
more.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

254 | P a g e

www.ijacsa.thesai.org

TABLE I. LITERATURE REVIEW ON EXISTING METHODOLOGIES

S:NO AUTHORS TITLE
APPLIED

METHODOLGY
DRAWBACKS

1
A Pravin ,
N Manikandan

‘An Efficient Improved Weighted Round

Robin Load Balancing Algorithm in Cloud

Computing’ [13].

Improved WRR

For weight assignment, the updated WRR

mostly relies on static server specs. It may

not adapt to dynamic changes.

2 S C Jain , M Sohani

‘A Predictive Priority-Based Dynamic
Resource Provisioning Scheme With Load

Balancing in Heterogeneous Cloud

Computing’ [12].

PMHEFT

When the system gets bigger or there are

more jobs to complete, its scalability could
become an issue.

3

N Panwar, Sarita Negi , M M

Singh Rautham , V Kunwar

Singh

‘CMODLB: an efficient load balancing

approach in cloud computing environment’

[14].

CMODLB

There may be a large processing overhead

when several machine learning and

optimization techniques are used.

4
Xuqing Ke, Lingjun Zhong,
Wei Hou, Limin Meng,

‘Dynamic Load Balancing Algorithm
Based on Optimal Matching of Weighted

Bipartite Graph’ [15].

KUHN-MUNKRES
It can be more communication-intensive to
update the weighted bipartite graph

appropriately.

5
Fan Hong, Jiang Zhang, Tom
Peterka, H Guo,

Xiaoru Yuan

‘Dynamic Load Balancing Based on
Constrained K-D tree Decomposition for

Parallel Particle Tracing’ [16].

DECOMPOSITION

K-D TREE

The method might not be as flexible when it
comes to dynamic shifts in the workload

allocation or system attributes.

6

Sun-Yuan Hsich, Rajkumar
Buyya, Chih-Heng Ke, Albert

Y Zomaya, W-K Chung,

Yun Li

‘Dynamic Parallel Flow Algorithms With
Centralized Scheduling for Load

Balancing in Cloud Data Center Networks’

[17].

CDPFSMP & CDPFS

As a result of the centralization, the network

may experience a bottleneck or single point

of failure.

7 J-P Yang
‘Elastic Load Balancing Using Self-
Adaptive Replication Management’ [20].

SARM
It might rely on how well certain thresholds
and parameters are adjusted.

8
W Kimpan,

B kruekaew

‘Multi-Objective Task Scheduling

Optimization for Load Balancing in Cloud
Computing Environment Using Hybrid

Artificial Bee Colony Algorithm With

Reinforcement Learning’[21] [22].

MOABCQ

There may be trade-offs between objectives,

and these should be properly weighed.
Extended schedule periods due to slower

convergence can affect overall system

responsiveness and performance.

III. PROPOSED METHODOLOGY

In this section, we will go over how to enhance load
balancing to guarantee cloud computing in this section [18]
[19]. Improving application performance through faster
response times and lower network latency is the primary goal
shared by all users. The suggested method is applied to enhance
load balancing performance to resolve this issue. This section
describes the methods to make load balancing better.

In Fig. 1, the algorithm of load balancing starts by
initializing the distributed system and carefully determining the
nodes and their capacity as well as the tasks executed on every
node. The load balancing algorithm begins by setting up the
distributed system and then calculating the nodes and their
capacity together with the tasks that are on each node. When
the system detects the disparities in workload distribution load
balancing is activated before the activation of load balancing it
must meet the set of conditions or its threshold value. The
process of monitoring the task priorities, workloads and system
status continues with the emphasis on gathering information on
resource usage and other metrics. Tasks are distributed
according to predetermined standards, which can be critical or
urgent, which means that priority tasks are processed in
a balancing load procedure. An algorithm is then introduced to
analyze the workload of each node to account for prioritized
tasks and computing load. Considering the priorities of the tasks
and the general load of the system, the purpose of this decision
process is to compare the current state of the given system with
the set thresholds or requirements. Tasks are chosen for
migrations considering the current workload distribution and
task priorities, aiming to transfer less important tasks from
nodes with high load to nodes with low load. Tasks should be
selected for migration based on the current workload

distribution and task priorities so that less important tasks can
be moved from burdened nodes to less burdened nodes. A
relocation strategy is formulated, so that the tasks are migrated
along with their priority information intact, and that could
involve tasks segmenting or transferring them in their
entirety. Communication among the nodes involved in the
migration process guarantees the process is done effectively so
that the data and state information are transferred
smoothly. Tasks' execution on target nodes obeys their
priorities. There is ongoing monitoring of the system responses
to the load balancer. Based on the results, necessary changes
are made in the balancing load strategy. The feedback medium
is set to continue to ameliorate the cargo balancing strategy by
conforming to dynamic system conditions and returning to the
regulator when necessary. Eventually, the termination
condition, which is either balancing load or reaching a system
stability thing, decides when the algorithm stops working.

A. Proposed DPBRR Algorithm

Initialization: Count the number of nodes in the distributed
system, then also the capacities of the nodes and the tasks that
are running on each node. Establish a threshold or set of
requirements to kick off load balancing once imbalances are
discovered.

1) Monitoring: Monitor the workload, tasks priorities and

system status around the clock. Find out the data on resource

utilization and other important indicators.

2) Task prioritization: Tasks should be sorted according to

the priority levels that are defined beforehand such as

criticality, importance, or urgency. While balancing load, tasks

with more priority should be given preference.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

255 | P a g e

www.ijacsa.thesai.org

3) Load evaluation: Look at the workload on each node at

the instant, considering the priorities of the assigned tasks and

the load of the computations.

4) Decision making: Evaluate the necessity of load

balancing by comparing the current condition of the system

with the previously defined boundaries or limitations. Involve

yourself in the decision-making process by considering both

task priorities and the overall burden.

5) Task selection: Ascertain which jobs need to be

transferred in agreement with the current load allocation and

their priorities. Firstly, the movement of less significant tasks

from overworked to underworked nodes should be given the

highest priority.

6) Migration strategy: Create a task migration plan which

should be done with the consideration of priority information.

Such a division of labor could be achieved by breaking the task

into smaller pieces or by shifting the entire task.

7) Communication: Let know the concerned nodes about

the migration plan. Ensure that all the required data and state

information is transferred without a glitch.

8) Task execution: Ensure the priority of the assigned

priorities when performing the migrated tasks on the target

nodes. In addition, monitor the system's reaction and adjust as

required.

9) Feedback loop: Design a feedback mechanism that

allows for the continuous adjustment of the load-balancing

strategy as the system adapts. Repeat the method and return to

the observation step.

10) Termination condition: Give the algorithm a stop

condition. It might be based on attaining a predetermined

degree of load balance, system stability or other specific

requirements.

Algorithmic steps for the proposed DPBRR Algorithm

Step 1: Develop the Task Priority Queue where each task has

priority level.

Step 2: Implement the Round Robin server list by yourself.

Step 2.1: Each server receives a unique server ID.

Step 2.2: To start the process, the CSI (Current Server Index) must
be set to 0.

Step 3: The Receive Incoming Requests and Tasks step is the most
important step.

Step 3.1: If the task is a high priority, then put it into the priority
queue and check whether the resources are available or not.

Step 4: Monitor the Priority Queue and the resources availability
all the time.

Step 4.1: Work on the server assigned to you to complete the task

and check the status of the task from time to time.

Step 5: When the job is done, disconnect from the server or

resource.

Step 5.1: If there are any outstanding high-priority tasks in the

Priority Queue, direct the next available server to the highest-
priority task.

Step 6: After the high-priority tasks are completed, servers get
distributed to lower-priority tasks in Round Robin manner.

Step 6.1: Therefore, we must increase the CSI (server index) while
considering resource availability and fairness.

Step 7: Keep an eye on the status of the newly arrived tasks,
resource availability, and task completions.

Step 8: Create the termination conditions and terminate the

algorithm when the termination criteria are fulfilled.

Fig. 1. A Proposed architecture for DPBRR algorithm to enhance load balancing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

256 | P a g e

www.ijacsa.thesai.org

 p be the priority

 a be the priority importance

 b be the resource that is available

 c be the load on the system

 q be the index of the resource

 s be the starting index

 j be the particular priority

 T be the total available resources

 Np be the new priority = Np

 Op be the old priority = Op

a) Priority Assignment Equation:

p = α * a + β * b + γ * c

b) Task Distribution Equation:

q = (s + Σ(j)) % T

c) Load Balancing Adjustment Equation:

Np = Op + Δp

These formulas will demonstrate how to compute the
available resources, task allocation, and priority factors. When
DPBRR applies the equation to distribute tasks evenly among
resources based on priority, the jobs with higher priorities will
become more significant. Tasks are dynamically altered, and
priorities are modified based on changes in priorities as
determined by the equations. These suggested equations will
aid in effective resource usage and balanced workload
distribution within the system.

IV. RESULT ANALYSIS

This paragraph presents the suggested load-balancing
technique as well as experimental results for various load-
balancing algorithms. Several parameters are taken into
consideration when analyzing it, such as throughput, response
time, and resource usage. Existing methods like CMODLB,
Kuhn-Munkres, and improved WRR were taken into
consideration. As given below.

A. Throughput, Response Time, and Resource Utilization

The amount of material or items passing through a system
or process is called throughput, The amount of time taken by a
system to respond to a request or input is called Response Time,
the efficiency in using the resources is called Resource
Utilization, Analysis of CMODLB, Kuhn-Munkres, Improved
WRR and proposed DPBRR in Table II, Table III and Table IV.

TABLE II. COMPUTATIONAL THROUGHPUT ANALYSIS OF DPBRR VS.
CONVENTIONAL ALGORITHMS

S.No Algorithms Throughput (requests/second)

1 Improved WRR 900 tasks/s

2 Kuhn-Munkres 950 tasks/s

3 CMODLB 980 tasks/s

4 DPBRR 1000 tasks/s

Here, it explores how DPBRR can more efficiently raise the
throughput value than other algorithms.

Fig. 2. Computational throughput analysis of DPBRR vs conventional

algorithms.

Fig. 2 shows how DPBRR achieves a perfect spectrum since
it is faster than other algorithms like Improved WRR, Kuhn-
Munkres, CMODLB with a Throughput over 1000
tasks/second. The multi-node adaptive priority-oriented
scheduling of this algorithm likely optimizes the resource
allocation, with the consequent minimization of latency and
improvement in throughput. This benefits DPBRR as
businessmen’s preferred compute tool in cases where fast
processing, well-timed response, and request handling are taken
as top priorities, hence, we are distinguishing it as the most
efficient algorithm from the others.

Here, it explores how DPBRR can more efficiently decrease
the Response time value than other algorithms.

TABLE III. COMPUTATIONAL RESPONSE TIME OF DPBRR VS.
CONVENTIONAL ALGORITHMS

S.No Algorithms Response Time (milliseconds)

1 Improved WRR 60ms

2 Kuhn-Munkres 55ms

3 CMODLB 52ms

4 DPBRR 50ms

Fig. 3. Computational response time of DPBRR vs. conventional algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

257 | P a g e

www.ijacsa.thesai.org

In analyzing the response times of various algorithms from
Fig. 3, it is apparent that DPBRR emerges as the most efficient
choice. When comparing the reaction times across different
algorithms, DPBRR stands out as the most effective option.
While Improved WRR exhibits a response time of 60
milliseconds, DPBRR demonstrates a significant improvement
with a response time of only 50 milliseconds. Both Kuhn-
Munkres and CMODLB show enhancements over Improved
WRR, with response times of 55 and 52 milliseconds,
respectively. However, DPBRR surpasses them all, showcasing
its remarkable ability to handle requests swiftly and minimize
system latency. This outstanding performance underscores
DPBRR's suitability for scenarios where quick reaction times
are crucial, establishing it as the optimal algorithm for
maximizing system performance and ensuring prompt request
processing.

Here, it explores how DPBRR can more efficiently optimize
the Resource utilization value than other algorithms.

TABLE IV. RESOURCE UTILIZATION OF DPBRR VS. CONVENTIONAL

ALGORITHMS

S.No Algorithms Resource Utilization (%)

1 Improved WRR 75%

2 Kuhn-Munkres 78%

3 CMODLB 72%

4 DPBRR 80%

Fig. 4. Resource utilization of DPBRR vs conventional algorithms.

From Fig. 4, the comparisons of resource usage of different
algorithms show trends in their effectiveness. The improved
WRR consumes resources of 75%, while Kuhn-Munkres raises
to 78%. But from the listed algorithms CMODLB has the
highest resource consumption of all other algorithms. DPBRR
manages to maintain a respectable 80% utilization rate by
striking a compromise between resource efficiency and
performance. It efficiently optimizes resource allocation and
achieves competitive performance. DPBRR is a great option
where increasing performance while optimizing resource
utilization is crucial because of its balanced resource usage. It
manages the system resources even though it does not have the
lowest utilization rate.

V. CONCLUSION

In conclusion, the study of Dynamic Priority-Based Round
Robin (DPBRR) load balancing is a useful way to solve the
important problem of efficient load management in cloud
computing settings. DPBRR aims to reduce response time and
maximize resource utilization by implementing a dynamic
adaptive mechanism that intelligently distributes work across
cloud servers. Because DPBRR can dynamically adjust task
priorities in response to real-time data, it is particularly useful
for workload fluctuations and changing resource demands.
Using advanced load balancing technology in virtualized
computing, dynamic priority derived from Round Robin is a
significant step forward in managing workload imbalances in
distributed systems. The recommended approach shows cloud
computing load balancing solutions with better performance
and economy. By implementing several techniques, DPBRR
helps reduce congestion and improve system flexibility and
adaptability. The DPBRR study offers a functional and
effective way to improve system performance and resource
allocation in cloud services, solve important problems, and
soon open the door for further developments.

REFERENCES

[1] Pachipala, Y., Dasari, D.B., Rao, V.V.R.M., Bethapudi, P., Srinivasarao,
T. Workload prioritization and optimal task scheduling in cloud:
introduction to hybrid optimization algorithm (2024) Wireless Networks.

[2] Kavitha .G, Shahbaz Afzal, ‘Load balancing in cloud computing -A
hierarchical taxonomical classification.’, Open Access, 2019.

[3] Karimunnisa, S., Pachipala, Y. Deep Learning Approach for Workload
Prediction and Balancing in Cloud Computing (2024) International
Journal of Advanced Computer Science and Applications, 15 (4), pp. 754-
763.

[4] M. Junaid, A. Sohail, A. Ahmed, A. Baz, I. A. Khan, and H. Alhakami,
“A Hybrid Model for Load Balancing in Cloud Using File Type
Formatting,” IEEE Access, vol. 8, pp. 118135–118155, 2020, doi:
10.1109/access.2020.3003825.

[5] M. Kumar and S. C. Sharma, “Dynamic load balancing algorithm for
balancing the workload among virtual machine in cloud computing,”
Procedia Computer Science, vol. 115, pp. 322–329, 2017, doi:
10.1016/j.procs.2017.09.141.

[6] D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah, and M. A. Alzain, “A Load
Balancing Algorithm for the Data Centres to Optimize Cloud Computing
Applications,” IEEE Access, vol. 9, pp. 41731–41744, 2021, doi:
10.1109/access.2021.3065308.

[7] T. M. Tawfeeg et al., “Cloud Dynamic Load Balancing and Reactive Fault
Tolerance Techniques: A Systematic Literature Review (SLR),” IEEE
Access, vol. 10, pp. 71853–71873, 2022, doi:
10.1109/access.2022.3188645.

[8] A. Moazeni, R. Khorsand, and M. Ramezanpour, “Dynamic Resource
Allocation Using an Adaptive Multi-Objective Teaching-Learning Based
Optimization Algorithm in Cloud,” IEEE Access, vol. 11, pp. 23407–
23419, 2023, doi: 10.1109/access.2023.3247639.

[9] Y. Lohumi, D. Gangodkar, P. Srivastava, M. Z. Khan, A. Alahmadi, and
A. H. Alahmadi, “Load Balancing in Cloud Environment: A State-of-the-
Art Review,” IEEE Access, vol. 11, pp. 134517–134530, 2023, doi:
10.1109/access.2023.3337146.

[10] L. Yang, Y. Xia, L. Ye, R. Gao, and Y. Zhan, “A Fully Hybrid Algorithm
for Deadline Constrained Workflow Scheduling in Clouds,” IEEE
Transactions on Cloud Computing, vol. 11, no. 3, pp. 3197–3210, Jul.
2023, doi: 10.1109/tcc.2023.3269144.

[11] G. Xu, J. Pang, and X. Fu, “A load balancing model based on cloud
partitioning for the public cloud,” Tsinghua Science and Technology, vol.
18, no. 1, pp. 34–39, Feb. 2013, doi: 10.1109/tst.2013.6449405.

[12] M. Sohani and S. C. Jain, “A Predictive Priority-Based Dynamic Resource
Provisioning Scheme With Load Balancing in Heterogeneous Cloud

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

258 | P a g e

www.ijacsa.thesai.org

Computing,” IEEE Access, vol. 9, pp. 62653–62664, 2021, doi:
10.1109/access.2021.3074833.

[13] M. N and P. A, “An Efficient Improved Weighted Round Robin Load
Balancing Algorithm in Cloud Computing,” International Journal of
Engineering & Technology, vol. 7, no. 3.1, p. 110, Aug. 2018, doi:
10.14419/ijet.v7i3.1.16810.

[14] S. Negi, M. M. S. Rauthan, K. S. Vaisla, and N. Panwar, “CMODLB: an
efficient load balancing approach in cloud computing environment,” The
Journal of Supercomputing, vol. 77, no. 8, pp. 8787–8839, Jan. 2021, doi:
10.1007/s11227-020-03601-7.

[15] W. Hou, L. Meng, X. Ke, and L. Zhong, “Dynamic Load Balancing
Algorithm Based on Optimal Matching of Weighted Bipartite Graph,”
IEEE Access, vol. 10, pp. 127225–127236, 2022, doi:
10.1109/access.2022.3226885.

[16] J. Zhang, H. Guo, F. Hong, X. Yuan, and T. Peterka, “Dynamic Load
Balancing Based on Constrained K-D Tree Decomposition for Parallel
Particle Tracing,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 954–963, Jan. 2018, doi:
10.1109/tvcg.2017.2744059.

[17] W.-K. Chung, Y. Li, C.-H. Ke, S.-Y. Hsieh, A. Y. Zomaya, and R. Buyya,
“Dynamic Parallel Flow Algorithms With Centralized Scheduling for
Load Balancing in Cloud Data Center Networks,” IEEE Transactions on
Cloud Computing, vol. 11, no. 1, pp. 1050–1064, Jan. 2023, doi:
10.1109/tcc.2021.3129768.

[18] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou, “Dynamic Resource
Provisioning With Fault Tolerance for Data-Intensive Meteorological
Workflows in Cloud,” IEEE Transactions on Industrial Informatics, vol.
16, no. 9, pp. 6172–6181, Sep. 2020, doi: 10.1109/tii.2019.2959258.

[19] Karimunnisa, S., Pachipala, Y. Task Classification and Scheduling Using
Enhanced Coot Optimization in Cloud Computing (2023) International
Journal of Intelligent Engineering and Systems, 16 (5), pp. 501-511.

[20] J.-P. Yang, “Elastic Load Balancing Using Self-Adaptive Replication
Management,” IEEE Access, vol. 5, pp. 7495–7504, 2017, doi:
10.1109/access.2016.2631490.

[21] Bhargavi, M., Pachipala, Y. Enhancing IoT Security and Privacy with
Claims-based Identity Management (2023) International Journal of
Advanced Computer Science and Applications, 14 (11), pp. 822-830.

[22] B. Kruekaew and W. Kimpan, “Multi-Objective Task Scheduling
Optimization for Load Balancing in Cloud Computing Environment
Using Hybrid Artificial Bee Colony Algorithm With Reinforcement
Learning,” IEEE Access, vol. 10, pp. 17803–17818, 2022, doi:
10.1109/access.2022.3149955.

[23] Aakisetti, R.S.K., Ganta, V., Yellamma, P., Siram, C., Gampa, S.H.,
Brahma Rao, K.V. Dynamic Priority Scheduling Algorithms for Flexible
Task Management in Cloud Computing (2024) International Journal of
Intelligent Systems and Applications in Engineering, 12 (13s), pp. 246-
256.

