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Abstract—Feature selection is a critical preprocessing 

technique used to remove irrelevant and redundant features from 

datasets while maintaining or improving the accuracy of machine 

learning models. Recent advancements in this area have primarily 

focused on wrapper-based feature selection methods, which 

leverage metaheuristic search algorithms (MSAs) to identify 

optimal feature subsets. In this paper, we propose a novel 

wrapper-based feature selection method utilizing the 

Triangulation Topology Aggregation Optimizer (TTAO), a newly 

developed algorithm inspired by the geometric properties of 

triangular topology and similarity. To adapt the TTAO for binary 

feature selection tasks, we introduce a conversion mechanism that 

transforms continuous decision variables into binary space, 

allowing the TTAO—which is inherently designed for real-valued 

problems—to function efficiently in binary domains. TTAO 

incorporates two distinct search strategies, generic aggregation 

and local aggregation, to maintain an effective balance between 

global exploration and local exploitation. Through extensive 

experimental evaluations on a wide range of benchmark datasets, 

TTAO demonstrates superior performance over conventional 

MSAs in feature selection tasks. The results highlight TTAO's 

capability to enhance model accuracy and computational 

efficiency, positioning it as a promising tool to advance feature 

selection and support industrial innovation in data-driven tasks. 
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selection; metaheuristic search algorithm; machine learning; 
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I. INTRODUCTION 

Recent advancements in data-driven methodologies such as 
machine learning approaches have demonstrated significant 
benefits in addressing diverse, complex real-world challenges. 
Nonetheless, the escalating complexity of datasets from various 
domains and sources increasingly burdens machine learning 
models with inefficiencies and elevated computational costs [1]. 
This burden is often exacerbated by the presence of excessive, 
irrelevant, and redundant features, particularly when datasets are 
laden with noise, inconsistencies, and non-contributory 
information. Such datasets do not enhance model performance 

and may even compromise system approximation accuracy due 
to overfitting. Additionally, the presence of a large number of 
features necessitates the use of more complex machine learning 
models. These models require extensive data to optimize 
learning parameters, which can degrade their ability to 
generalize effectively [1]. 

To address these challenges, it becomes crucial to select a 
relevant subset of features while eliminating redundancies from 
the original datasets. This process not only enhances the 
efficiency, accuracy, and generalization capability of machine 
learning models but also serves as a vital preprocessing strategy. 
Feature selection effectively improves model performance by 
minimizing redundant input during training. It aims to optimize 
model efficiency by identifying and employing an optimal 
subset of features, thus alleviating the detrimental effects 
associated with the “curse of dimensionality”. This is 
particularly important when dealing with input datasets that 
contain an excessively large number of primitive features. 
Feature selection is instrumental in addressing a wide range of 
real-world machine-learning challenges, such as food fraud 
detection, automatic modulation recognition, predictive 
maintenance, robot path planning, kitchen waste segregation etc. 
[2-8]. 

Feature selection techniques are primarily divided into three 
categories: filter, wrapper, and embedded methods [9]. Filter 
methods determine feature subsets using statistical techniques 
that evaluate data dependencies. These methods assign rankings 
based on criteria such as inter-feature distances, correlations, 
and consistency indices. Widely utilized filter methods include 
the correlation coefficient, F-score, and Gini index [10]. 
Although filter methods are computationally efficient due to 
their classifier independence, they often do not reflect true 
feature relevance within specific models, potentially leading to 
reduced predictive accuracy. Conversely, wrapper methods 
integrate with a specific classifier, employing classification 
accuracy to assess feature subset quality [11]. While these 
methods typically enhance classifier performance, they also 
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increase the risk of overfitting and require extensive 
computational resources due to repeated classifier executions to 
ascertain the optimal subset. Embedded methods, merging the 
benefits of filter and wrapper approaches, interact directly with 
the classifier while managing dependencies more efficiently to 
reduce computational demands. Although embedded methods 
offer a compromise in computational load, they remain more 
resource-intensive than filter methods. 

The feature selection technique proposed in this paper is 
classified as wrapper-based, typically involves three 
components [9]: classifiers employed, evaluation criteria for 
feature selection, and the search algorithms used to derive 
feature subsets from raw data. Conventional search strategies 
[11] such as backward elimination, forward selection, greedy 
search, and complete search often exhibit significant limitations 
within the wrapper-based framework. These limitations include 
poor global search abilities, entrapment in local optima, and high 
computational costs. To address these deficiencies, this study 
advocates the use of metaheuristic search algorithms (MSAs), 
which offer superior global search strength, stochastic behavior, 
simple implementation, and do not rely on gradient information, 
making them well-suited to address complex optimization 
challenges [12-16]. A review of how MSAs effectively 
overcome feature selection challenges is provided [9]. 

MSAs represent a varied collection of optimization 
techniques, categorized by their foundational inspirations and 
search mechanisms [17]. The first category of MSAs is the 
evolutionary algorithms that are influenced by Darwin's theory 
of evolution and natural selection. Swarm intelligence 
algorithms are the second category of MSAs and they are 
inspired by collective animal behaviors such as flocking and 
foraging. Human-based algorithms are the third category of 
MSAs and they mimic aspects of human cognition including 
learning and social interactions, whereas the last category of 
MSAS are physics-based algorithms that apply principles from 
physical sciences and mathematics. Although numerous MSAs 
have been developed in response to the No-Free-Lunch (NFL) 
theorem, which asserts that no single algorithm can optimally 
solve all types of problems, their validation has predominantly 
been confined to mathematical benchmarks. 

While significant theoretical advancements have been made 
in the development of MSAs, their performance evaluations 
remain largely confined to theoretical benchmarks. This narrow 
focus limits our understanding of their practical effectiveness in 
solving real-world problems, emphasizing the need for more 
empirical studies. In particular, the practical application of many 
recently developed MSAs in addressing real-world optimization 
challenges, such as feature selection, remains insufficiently 
explored. Moreover, most MSAs have not been rigorously 
validated in complex, high-dimensional feature selection tasks 
involving binary decision variables. This gap highlights the 
pressing need for empirical research that assesses the 
performance of novel MSAs in feature selection tasks, extending 
beyond traditional continuous-variable optimization problems. 

This paper introduces an advanced wrapper-based feature 
selection method leveraging the unique search mechanisms of 

the Triangulation Topology Aggregation Optimizer (TTAO), a 
novel physics-based MSA proposed by Zhao et al. in 2024 [18]. 
Inspired by the geometric properties of triangular topology and 
the principle of triangular similarity, TTAO utilizes the 
consistent shape but variable sizes of similar triangles to 
generate diverse triangular topological units that serve as 
dynamic evolutionary entities throughout the optimization 
process. This technique aims to enhance the performance of 
machine learning models by effectively eliminating irrelevant 
features from datasets. TTAO incorporates two primary 
aggregation strategies: generic aggregation and local 
aggregation. Generic aggregation enhances exploratory search 
by promoting information exchange across different triangular 
topological units, whereas local aggregation focuses on 
exploitation, refining the search within individual units. 
Although initially applied in limited real-world contexts such as 
transmission expansion planning [19], productivity prediction 
[20], and controller parameter adjustment [21], where decision 
variables are real-valued, the application of TTAO to feature 
selection tasks involving binary decision variables is an 
unexplored area of research. This study aims to fill this gap by 
demonstrating how TTAO can be adapted to binary feature 
selection, presenting a novel conversion mechanism that enables 
its application in this domain. By expanding TTAO’s utility to 
feature selection tasks with binary decision variables, this paper 
contributes to addressing the broader challenge of validating 
MSAs in real-world optimization problems. 

The technical contributions and novelty of this study are 
summarized as follows: 

 We propose an advanced wrapper-based feature 
selection technique that utilizes the unique search 
mechanisms of the TTAO to identify optimal feature 
subsets. This approach aims to achieve high 
classification accuracy while maintaining low model 
complexity. 

 To our knowledge, this is the first application of TTAO 
to address feature selection problems involving binary 
decision variables, which present more complex 
optimization challenges compared to those with 
continuous variables. 

 A novel conversion mechanism is introduced, 
transforming continuous decision variables into binary 
ones, thus adapting the inherently real-valued TTAO for 
use in binary solution spaces. 

 We provide a comprehensive evaluation of TTAO’s 
effectiveness as a wrapper-based method for feature 
selection, demonstrating its superior performance 
against other MSAs using diverse datasets from the UCI 
Machine Learning Repository. 

The remainder of this paper is organized as follows: Section 
II reviews related work. Section III outlines the formulation of 
wrapper-based feature selection as an optimization problem and 
details the search mechanisms of TTAO. Section IV presents 
performance evaluations of various wrapper-based feature 
selection techniques. Section V concludes with a summary and 
future works. 
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II. RELATED WORKS OF USING DIFFERENT MSAS FOR 

WRAPPER-BASED FEATURE SELECTION 

A wrapper-based feature selection technique incorporates 
three core components: the classifier types, the search 
algorithms for discovering optimal feature subsets, and the 
criteria for assessing the quality of these subsets. MSAs are often 
favored for wrapper-based feature selection due to their robust 
global search capabilities and straightforward implementation, 
as documented in study [9]. These MSAs are particularly 
effective in identifying feature subsets that optimize 
classification accuracy while minimizing the complexity of the 
machine learning model. 

Recent developments in MSAs have significantly enhanced 
the robustness of feature selection methodologies. Various novel 
MSAs such as the Flow Direction Algorithm [22], African 
Vultures Optimization Algorithm [23], Sperm Swarm 
Optimization [24], Grasshopper Optimization Algorithm [25], 
Artificial Butterfly Optimization [26], have been employed to 
tackle feature selection challenges. Researchers also continue to 
refine these algorithms, creating more efficient versions tailored 
to specific problem characteristics. For example, Zekeri and 
Hokmabadi [11] introduced a real-value Grasshopper 
Optimization Algorithm (GOFS), utilizing a mathematical 
model that leverages repulsion and attraction forces between 
grasshoppers to effectively navigate the feature space. They 
enhanced GOFS with an adaptive parameter that modifies the 
influence zones to improve feature exploration and exploitation. 
Additionally, they implemented a feature probability factor to 
eliminate redundant features each iteration. Mostafa et al. [27] 
developed a Modified Chameleon Swarm Algorithm (mCSA), 
incorporating a transfer operator and a randomization Levy 
flight control parameter to fine-tune search behaviors. They also 
hybridized mCSA with the consumption operator from Artificial 
Ecosystem-based Optimization to augment its global search 
capabilities. 

Zhang et al. [10] developed a novel wrapper-based feature 
selection method utilizing the Return-Cost-Based Binary Firefly 
Algorithm (Rc-BBFA), enhanced with three key modifications 
to address premature convergence. This version replaces 
traditional distance-based attractiveness with a return-cost 
metric to gauge each firefly's appeal. Additionally, a Pareto 
dominance strategy selects the most attractive firefly based on 
cost and return values. A new binary movement operator, driven 
by return-cost attractiveness and supplemented by an adaptive 
jump, updates each firefly's position within Rc-BBFA. Ma et al.  
[28] introduced the Multi-Strategy Binary Hunger Games 
Search (MS-bHGS) to tackle feature selection across 20 
benchmark datasets. MS-bHGS incorporates chaotic maps, a 
vertical crossover scheme, and a greedy selection strategy, 
enhancing the balancing of exploration and exploitation. Wu et 
al. [29] enhanced a wrapper-based feature selection method 
using the Sparrow Search Algorithm, augmented by Quantum 
Computation and Multi-Strategy Enhancement (QMESSA). 
This approach integrates an improved circle chaotic map with a 
quantum gate mutation mechanism to diversify the initial 
population. Adaptive T-distribution and a novel position update 
formula were also embedded in QMESSA to boost its 
convergence speed. capabilities. 

Zhong et al. [30] introduced the Self-Adaptive Quantum 
Equilibrium Optimizer with Artificial Bee Colony (SQEOABC) 
for feature selection, incorporating quantum theory and a self-
adaptive mechanism to improve its convergence. Additionally, 
SQEOABC utilizes updating mechanisms from the Artificial 
Bee Colony to enhance the selection of effective feature subsets. 
Khafaga et al. [31] proposed a novel wrapper-based feature 
selection method using the Adaptive Squirrel Search 
Optimization Algorithm (ASSOA), paired with a KNN 
classifier. This method was applied to ten datasets from the UCI 
Machine Learning Repository. ASSOA was enhanced with new 
relocation equations and various movements (vertical, 
horizontal, exponential, and diagonal) to improve its search 
capabilities. Furthermore, various feature selection techniques 
were advanced by combining the Dipper Throated Optimization 
Algorithm with the Grey-World Optimizer [32] and Sine Cosine 
Algorithm [33]. These hybrid methods were tailored to identify 
superior feature subsets, contributing to higher accuracy and 
reduced model complexity in handling publicly available 
datasets. 

Image Analysis Society (MIAS), the selected features were 
evaluated using the XGBoost classifier. In a follow-up study, 
they developed an adaptive binary TLBO with an ensemble 
classifier combining XGBoost and Random Forest, aimed at the 
early detection of breast cancer using mammograms from MIAS 
and the Digital Database for Screening Mammography (DDSM) 
[23]. 

III. WRAPPER-BASED FEATURE SELECTION USING TTAO 

A. Solution Representation of TTAO in Feature Selection 

In the context of feature selection, consider a dataset where 
|𝐹𝑜|  denotes the total number of input features. Within the 
framework of TTAO, each search agent or vertex of the n-th 
triangular topological unit is defined by a position vector 𝑋𝑛 =
[𝑋𝑛,1, . . . , 𝑋𝑛,𝑑 , . . . , 𝑋𝑛,𝐷], with D equating to |𝐹𝑜|, representing 

the dimensionality of the problem. Each dimensional index d 
corresponds directly to a feature index l. Initially, the decision 
variables for each search agent are continuous. However, the 
binary nature required for feature selection dictates that these 
variables must be converted to binary values – 0 or 1. 

To facilitates this conversion, the proposed wrapper-based 
feature selection technique based on TTAO implements a 
threshold parameter 𝛾 . This parameter is used to transform 
continuous decision variables into binary decisions by 
evaluating each real-valued decision variable 𝑋𝑛,𝑑  against 𝛾: 

𝑆𝑛,𝑙 = {
0,        if  𝑋𝑛,𝑑 < 𝛾 

1,           otherwise


Here, the binary value 𝑆𝑛,𝑙 determines the inclusion status of 

each l-th feature, where a value of 1 indicates inclusion and 0 
indicates exclusion. For example, a status of 𝑆𝑛 = [0,1,1,1,0] 
implies that features at indices l = 2 to 4 are selected, while those 
at indices l = 1 and 5 are excluded. This mechanism effectively 
transforms continuous input values encoded in the search agent 
into the discrete decisions crucial for effective feature selection. 
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B. Fitness Evaluation of TTAO Search Agent in Feature 

Selection 

Feature selection plays a crucial role in machine learning by 
facilitating the identification of an optimal subset of features. 
This subset not only enhances classification accuracy but also 
reduces the numbers of utilized features, addressing a twofold 
challenge: lowering the classifier’s error rate and minimizing the 
ratio of selected features to the total available. 

Define 𝜉𝐸𝑟𝑟𝑜𝑟  as the classifier’s error rate and |𝐹𝑠|  as the 
count of features selected for the subset, with |𝐹𝑠| ≤ |𝐹𝑜|. The 
fitness value, which assess the quality for each search agent of 
the n-th triangular topological unit via the feature status vector 
𝑆𝑛 = [𝑆𝑛,1, . . . , 𝑆𝑛,𝑙 , . . . , 𝑆𝑛,|𝐹𝑜|], is given by: 

𝐹(𝑋𝑛) = 𝜔 × 𝜉𝐸𝑟𝑟𝑜𝑟 + 𝜇 ×
|𝐹𝑠|

|𝐹𝑜|


Here, 𝜔 is a coefficient ranging from 0 to 1, and 𝜇 is defined 
as 1 −  𝜔. These parameters are designed to weigh the impacts 
of classification error and feature proportionality, respectively. 
The optimal feature subset minimizes the fitness function 
outlined in Eq. (2), achieving a balance between high 
classification accuracy and reduced feature set complexity, 
thereby simplifying and enhancing the efficacy of machine 
learning models. 

In the wrapper-based feature selection framework using 
TTAO, the fitness evaluation process, denoted as Algorithm 1, 
employs the KNN classifier to measure each n-th search agent’s 
performance based on the feature selection status 𝑆𝑛 . Feature 
normalization is applied to scale the selected features between 0 
and 1, followed by performance evaluation using K-fold cross-
validation with the KNN classifier. A lower 𝐹(𝑋𝑛)  value 
signifies superior fitness, indicative of higher classification 
accuracy and a smaller number of selected features. 

Algorithm 1: Fitness Evaluation Process of Wrapper-Based 

Feature Selection Using TTAO 

Inputs: 𝑋𝑛, 𝐹𝑜, 𝐷, 𝛾 

01: Convert 𝑋𝑛 into  𝑆𝑛 using Eq. (1); 

02: Determine |𝐹𝑠| from 𝑆𝑛 and train KNN classifier to get 𝜉𝐸𝑟𝑟𝑜𝑟; 

03: Calculate 𝐹(𝑋𝑛) using Eq. (2) based on |𝐹𝑠| 𝑎𝑛𝑑 𝜉𝐸𝑟𝑟𝑜𝑟; 

Outputs: 𝐹(𝑋𝑛) 

C. Mechanisms of TTAO to Identify Optimal Feature Subsets 

1) Conceptual ideas of TTAO: The search mechanisms of 

TTAO draw inspiration from the fundamental properties of 

triangular topology in mathematics. The triangle, recognized as 

the most basic yet stable shape in planar geometry, serves as a 

cornerstone in both finite and infinite dimensional spaces. It 

functions as a graph within its two-dimensional subspace. Due 

to its inherent simplicity and robustness, the triangular topology 

is extensively employed as a structural unit in model 

representation and analysis across a variety of real-world 

applications. These applications span multiple disciplines, 

including computational geometry, structural engineering, 

digital image processing, etc. 

The concept of triangular similarity is pivotal in geometry 
and plays a key role in the search mechanisms of TTAO. The 
principles of triangular similarity are covered in four theorems: 

 Theorem 1: A new triangle formed by drawing a line 
parallel to one side of an original triangle and intersecting 
the extensions of the other two sides is similar to the 
original. 

 Theorem 2: Two triangles are similar if their 
corresponding sides and angles are proportional. 

 Theorem 3: A triangle is similar to another if the ratios 
of their corresponding sides are equal. 

 Theorem 4: Triangles that have identical corresponding 
angles are similar. 

TTAO employs these theorems of triangular similarity to 
direct its search strategy. Throughout its iterative search process, 
the algorithm continuously generates new vertices in the 
solution space to construct triangles of varying sizes, each 
considered an evolutionary unit with three external vertices and 
one internal random vertex. Additionally, the TTAO utilizes the 
concept of aggregation to merge vertices with superior traits, 
enhancing the information exchange within and across different 
topological units. All triangles within the TTAO framework are 
equilateral, maintaining geometric consistency by adhering to 
the second theorem of similarity. The optimization process of 
TTAO consists of two primary stages: aggregation between and 
within units, streamlining the exploration and exploitation 
phases. 

2) Initialization phase of TTAO: The initialization phase of 

TTAO involves randomly generating a diverse set of potential 

solutions across the solution space. Let N and D represent the 

population size and problem dimensionality of TTAO, 

respectively. Each vertex within a triangular topological unit is 

treated as a search agent or potential solution. Using the floor 

rounding operator ⌊∙⌋, the population set of N search agents is 

organized into ⌊𝑁 3⁄ ⌋  triangular topological units. Any 

additional search agents, arising when N is not divisible by 3, 

are randomly generated within the solution space. 

The lower and upper boundary limits of decision variables 

are denoted as 𝑋𝐿 = [𝑥1
𝑙 , … , 𝑥𝑑

𝑙 , … , 𝑥𝐷
𝑙 ]  and 𝑋𝑈 =

[𝑥1
𝑢, … , 𝑥𝑑

𝑢, … , 𝑥𝐷
𝑢] , respectively. Let 𝑟0  be a random number 

between 0 and 1. For each n-th triangular topological unit, where 
𝑛 = 1, … , ⌊𝑁 3⁄ ⌋, the position of the first search agent (vertex) 
is randomly determined within the feasible regions of solution 
space as follows: 

𝑋𝑛,1 = 𝑋𝐿 + 𝑟0(𝑋𝑈 − 𝑋𝐿)

3) Construction of triangular topological unit: In 

addressing multi-dimensional optimization challenges, TTAO 

constructs equilateral triangles within each two-dimensional 

projection of a higher-dimensional space. The TTAO leverages 

transformations between polar and Cartesian coordinate 

systems to establish the vertices of each triangular topological 

unit. 

For every n-th triangular topological unit, a direction vector, 
denoted as 𝑙𝑓(∙), is calculated and applied to the first vertex 

(𝑋𝑛,1) to determine the second vertex (𝑋𝑛,2) as follows: 
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𝑋𝑛,2 = 𝑋𝑛,1 + 𝑙𝑓(𝜃)

The third vertex (𝑋𝑛,3 ) is then generated by rotating the 

direction vector 𝑙𝑓(∙) by 𝜋 3⁄  radians anticlockwise: 

𝑋𝑛,3 = 𝑋𝑛,1 + 𝑙𝑓(𝜃 + 𝜋 3⁄ )

Here, 𝑙  signifies the length of the edges of the triangular 
topology unit, given by: 

𝑙 = 9𝑒−
𝑡

𝑇𝑚𝑎𝑥 

where t is the current iteration numbers, and  𝑇𝑚𝑎𝑥  
represents the maximum iteration numbers. According to Eq. 
(6), l decreases as the number of fitness evaluations increases. 
This adaptive strategy enables broader exploratory moves in the 
initial stages and more focused exploitation in the latter phases 
to refine the search in promising regions. The exponential decay 
ensures l remains positive, preventing excessive exploitation 
and potential premature convergence. 

Moreover, the vectors 𝑓(𝜃) and 𝑓(𝜃 + 𝜋 3⁄ ), directing the 
edges from the first vertex, are defined respectively as: 

𝑓(𝜃)  = [cos 𝜃1 , … . , cos 𝜃𝑑 , … , cos 𝜃𝐷]

𝑓(𝜃 + 𝜋 3⁄ ) = [cos (𝜃1 + 𝜋 3⁄ ), … .,

cos(𝜃𝑑 + 𝜋 3⁄ ), … , cos(𝜃𝐷 + 𝜋 3⁄ )] 

where 𝜃𝑑  for 𝑑 = 1, … , 𝐷  is a randomly generated angle 
ranging from 0 to 𝜋. 

Within each n-th triangular topological unit, a fourth vertex 
𝑋𝑛,4 is derived through an internal aggregation process using a 

linear combination of the first three vertices, weighted by 
randomly generated coefficients: 

𝑋𝑛,4 = 𝑟1𝑋𝑛,1 + 𝑟2𝑋𝑛,2 + 𝑟3𝑋𝑛,3

where 𝑟1, 𝑟2 and 𝑟3 are randomly numbers between 0 to 1, 
ensuring 𝑟1 + 𝑟2 + 𝑟3 = 1. 

In each iteration, a new triangular topological unit is 
generated from a vertex and two sides of equal lengths l, which 
dynamically change throughout optimization process. Within 
each n-th triangular topological unit, the vertex exhibiting the 
best fitness during the current iteration is designated as the lead 
vertex. This lead vertex plays a crucial role in guiding the search 
process of the other vertices within the same unit. As detailed in 
subsequent sections, vertices within and across different 
triangular topological units employ two pivotal search 
mechanisms: generic aggregation and local aggregation. These 
mechanisms enable exploration and exploitation, respectively. 

4) Generic aggregation of TTAO: Generic aggregation 

facilitates exploration by enabling the information exchange 

between the best search agent (vertex) in each triangular 

topological unit and the best vertex from a randomly selected 

unit. This mechanism draws inspiration from the crossover 

operator in genetic algorithm, which creates a new offspring 

solution by merging genetic information from two parent 

solutions. 

Let 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡  denote the best vertex of the n-th triangular 

topological unit at iteration t, and 𝑋𝑛𝑟𝑎𝑛𝑑,𝑏𝑒𝑠𝑡
𝑡  represents the best 

vertex from a randomly selected unit at the same iteration. For 

each n-th triangular topological unit, a new vertex 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1  is 

generated through generic aggregation by linearly combining 
the dimensional variables of these two superior vertices with 
different weights: 

 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1 = 𝑟4𝑋𝑛,𝑏𝑒𝑠𝑡

𝑡  + (1 − 𝑟4)𝑋𝑛𝑟𝑎𝑛𝑑,𝑏𝑒𝑠𝑡
𝑡 

where 𝑟4 is a random number between 0 to 1. 

The fitness value of the newly generated vertex 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1  is 

evaluated as 𝐹(𝑋𝑛,𝑛𝑒𝑤1
𝑡+1 ) , and compared against the fitness 

values of the current optimal and suboptimal vertices in the n-th 

triangular topological unit, represented as 𝐹(𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡 )  and 

𝐹(𝑋𝑛,𝑠𝑏𝑒𝑠𝑡
𝑡 ), respectively. Here, the suboptimal vertex 𝑋𝑛,𝑠𝑏𝑒𝑠𝑡

𝑡  is 

defined as the search agent with the second-best fitness in the n-
th unit. For minimization problems, updates to the optimal and 
suboptimal vertices of n-th triangular topological unit for the 
subsequent iteration (𝑡 + 1)  are made according to the 
conditions below: 

𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1 = {

𝑋𝑛,𝑛𝑒𝑤1
𝑡+1 , if 𝐹(𝑋𝑛,𝑛𝑒𝑤1

𝑡+1 ) < 𝐹(𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡 ) 

𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡 ,                                   otherwise 

 

𝑋𝑛,𝑠𝑏𝑒𝑠𝑡
𝑡+1 = {

𝑋𝑛,𝑛𝑒𝑤1
𝑡+1 , if 𝐹(𝑋𝑛,𝑛𝑒𝑤1

𝑡+1 ) < 𝐹(𝑋𝑛,𝑠𝑏𝑒𝑠𝑡
𝑡 ) 

𝑋𝑛,𝑠𝑏𝑒𝑠𝑡
𝑡 ,                                   otherwise 

 

5) Local aggregation of TTAO: Local aggregation within 

the TTAO is pivotal for exploitation, refining searches within 

promising areas previously identified by the generic 

aggregation’s exploratory processes. This strategy operates 

within each triangular topological unit, optimizing based on the 

best available internal information to enhance solution quality. 

Following generic aggregation, a temporary triangular 

topological unit is formed among the updated optimal or 

suboptimal vertex and two other vertices with relatively good 

fitness. Notably, this temporary unit may not necessarily form 

an equilateral triangle. 

Within each n-th triangular topological unit, the optimal 
vertex’s position is locally perturbed to refine the vicinity 
around the best current solution, based on the differences 
between the optimal and suboptimal vertices, thus ensuring the 
new search direction leverages the promising information. The 
new vertex generated through local aggregation is given by: 

𝑋𝑛,𝑛𝑒𝑤2
𝑡+1 = 𝑋𝑛,𝑏𝑒𝑠𝑡

𝑡+1  + 𝛼𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1 

where 𝛼  is a decreasing parameter regulating the local 
aggregation’s scope, defined as: 

𝛼 = ln (
𝑒−𝑒3

𝑇𝑚𝑎𝑥−1
𝑡 + 𝑒3 −

𝑒−𝑒3

𝑇𝑚𝑎𝑥−1
)

The parameter 𝛼  progressively narrows the search area 
across iterations to emphasize exploitation in algorithm’s later 
stages. 
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After local aggregation, it is crucial that the lead vertex of 
the triangular topological unit is the optimal within that unit. To 
assure convergence towards the most promising directions, the 

fitness of the newly aggregated vertex 𝑋𝑛,𝑛𝑒𝑤2
𝑡+1 , denoted as 

𝐹(𝑋𝑛,𝑛𝑒𝑤2
𝑡+1 ), is compared against the current optimal vertex’s 

fitness 𝐹(𝑋𝑛,𝑛𝑒𝑤1
𝑡+1 ). For minimization problems, the updates of 

optimal vertex during local aggregation is determined as: 

𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1 = {

𝑋𝑛,𝑛𝑒𝑤2
𝑡+1 , if 𝐹(𝑋𝑛,𝑛𝑒𝑤2

𝑡+1 ) < 𝐹(𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1 ) 

𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1 ,                                   otherwise 



Following this update, new similar triangular topological 
units are constructed for the subsequent iteration based on these 

updated optimal vertices, employing Eqs. (4) to (9) to refine the 
search space further and focus on previously promising areas. 

6) Optimization workflow of TTAO for wrapper-based 

feature selection: Algorithm 2 delineates the workflow of the 

proposed TTAO-based wrapper feature selection technique. 

The process commences by loading the dataset and establishing 

dimensionality D equal to the number of input features, |𝐹𝑜|. 
Initial setting of TTAO include resetting the iteration counter t 

and determining the number of triangular topological units as 

⌊𝑁 3⁄ ⌋. 

To deploy TTAO in searching for optimal feature subsets, 
initial positions for the first vertices, 𝑋𝑛,1 for 𝑛 = 1, … , ⌊𝑁 3⁄ ⌋, 
of all triangular topological units are randomly generated as per 

Algorithm 2: Proposed Wrapper-Based Feature Selection Using TTAO 

Inputs: N, 𝛾, 𝑇𝑀𝑎𝑥, 𝐹𝑜 

01: Load dataset containing |𝐹𝑜| input features and set the total dimensional size as 𝐷 ← |𝐹𝑜|; 
02: Initialize 𝑡 ← 0, number of triangular topological unit ← ⌊𝑁 3⁄ ⌋; 
03: for n = 1 to ⌊𝑁 3⁄ ⌋  do   /*Random initialization of the first vertices*/ 

04:       Randomly generate the first vertex 𝑋𝑛,1 of each n-th triangular topology unit using Eq. (3); 

05: end for 

06: while 𝑡 ≤ 𝑇𝑀𝑎𝑥 do         /*Iterative search process*/ 

07:           Update the value of parameter l using Eq. (6); 

            /*Construction of each n-th triangular topological unit*/ 

08:           for n = 1 to ⌊𝑁 3⁄ ⌋  do                          

09:                 Determine 𝑓(𝜃) and 𝑓(𝜃 + 𝜋 3⁄ ) using Eqs. (7) and (8), respectively; 

10:                 Calculate second vertex 𝑋𝑛,2 of each n-th triangular topology unit using Eq. (4); 

11:                 Calculate third vertex 𝑋𝑛,3 of each n-th triangular topology unit using Eq. (5); 

12:                 Boundary checking for 𝑋𝑛,2 and 𝑋𝑛,3 to ensure solution feasibility;  

13:                 Calculate fourth internal vertex 𝑋𝑛,4 of each n-th triangular topology unit using Eq. (9); 

14:                 Boundary checking for 𝑋𝑛,4 to ensure solution feasibility; 

15:                 Fitness evaluation of all vertices (i.e., 𝑋𝑛,1 to 𝑋𝑛,4) using Algorithm 1; 

16:         Identify the vertices with best and second-best fitness as 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡  and 𝑋𝑛,𝑠𝑏𝑒𝑠𝑡

𝑡 , respectively.  

17:          end for 

          /*Generic aggregation*/ 

18:          for n = 1 to ⌊𝑁 3⁄ ⌋  do                           

19:                Calculate new vertex 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1  of each n-th triangular topology unit using Eq. (10); 

20:                Boundary checking for 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1  to ensure solution feasibility; 

21:                Fitness evaluation of 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1  using Algorithm 1; 

22:                Update 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1  and 𝑋𝑛,𝑠𝑏𝑒𝑠𝑡

𝑡+1  along with their fitness using Eqs. (11) and (12), respectively; 

23:          end for 

          /*Local aggregation*/ 

24:          for n = 1 to ⌊𝑁 3⁄ ⌋  do                           

25:                Update the value of parameter 𝛼 using Eq. (14) 

26:                Calculate new vertex 𝑋𝑛,𝑛𝑒𝑤2
𝑡+1  of each n-th triangular topology unit using Eq. (13); 

27:                Boundary checking for 𝑋𝑛,𝑛𝑒𝑤2
𝑡+1  to ensure solution feasibility; 

28:                Fitness evaluation of 𝑋𝑛,𝑛𝑒𝑤2
𝑡+1  using Algorithm 1; 

29:                Update 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1  along with its fitness using Eq. (15); 

30          end for 
          /*To check if the population size N is divisible by 3*/    

31:          if 𝑁 − ⌊𝑁 3⁄ ⌋ ≠ 0 then                    

32:              𝑁𝑅𝑒𝑚𝑎𝑖𝑛 = 𝑁 − ⌊𝑁 3⁄ ⌋;              
33:              for i = 1 to 𝑁𝑅𝑒𝑚𝑎𝑖𝑛  do                           

34:                    Randomly generate the i-th remaining search agent 𝑋𝑖
𝑅𝑒𝑚𝑎𝑖𝑛 using Eq. (3); 

35:                    Fitness evaluation of 𝑋𝑖
𝑅𝑒𝑚𝑎𝑖𝑛 using Algorithm 1; 

36:             end for 

37:             Compare the fitness value of 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1  for n = 1 to ⌊𝑁 3⁄ ⌋  and 𝑋𝑖

𝑅𝑒𝑚𝑎𝑖𝑛 for i = 1 to 𝑁𝑅𝑒𝑚𝑎𝑖𝑛; 

38:             Extract the top ⌊𝑁 3⁄ ⌋ search agents with better fitness to be lead vertices in next iteration; 

39:         end if 

40:         Record the best solution 𝑋𝐵𝑒𝑠𝑡 and its fitness 𝐹(𝑋𝐵𝑒𝑠𝑡) found in each iteration; 

41: end while  

Outputs: 𝑋𝐵𝑒𝑠𝑡 and 𝑆𝐵𝑒𝑠𝑡 
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Eq. (1). During iterative searching, subsequent vertices of 
each n-th triangular topological unit (𝑋𝑛,2 , 𝑋𝑛,3  and 𝑋𝑛,4) are 

constructed using Eqs. (4), (5) and (9), respectively, to form 
equilateral triangle. Boundary conditions for 𝑋𝑛,2, 𝑋𝑛,3 and 𝑋𝑛,4 

are checked to maintain solution feasibility. In the fitness 
evaluation process using Algorithm 1, continuous decision 
variables in each vertex of the n-th triangular topological unit 
are converted into binary selection status vectors (i.e., 𝑆𝑛,1, 𝑆𝑛,2, 

𝑆𝑛,3 and 𝑆𝑛,4) using Eq. (1), and their respective fitness values 

(𝐹(𝑋𝑛,1), 𝐹(𝑋𝑛,2), 𝐹(𝑋𝑛,3), 𝐹(𝑋𝑛,4)) are calculated using Eq. 

(2). Given these fitness values, the optimal and suboptimal 

vertices for each n-th unit at iteration t are identified as 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡  

and 𝑋𝑛,𝑠𝑏𝑒𝑠𝑡
𝑡 , respectively. 

During the generic aggregation, a new vertex 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1  is 

formulated for each n-th triangular topological unit via Eq. (10). 

The updates of position vector and fitness of 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡  and 𝑋𝑛,𝑠𝑏𝑒𝑠𝑡

𝑡  

are performed using Eq. (11) and (12) if 𝑋𝑛,𝑛𝑒𝑤1
𝑡+1  demonstrates 

superior fitness. Similarly, during local aggregation, another 

new vertex 𝑋𝑛,𝑛𝑒𝑤2
𝑡+1  is generated for each n-th triangular 

topological unit using Eq. (13), with updates to 𝑋𝑛,𝑏𝑒𝑠𝑡
𝑡+1  

conducted via Eq. (15) if 𝑋𝑛,𝑛𝑒𝑤2
𝑡+1  exhibits enhanced fitness. For 

population where N is not divisible by three, remaining search 
agents are randomly generated within the solution space per Eq. 
(3) and evaluated using Eq. (2). After completing both generic 
and local aggregations, the fitness values of the optimal vertices 
across all ⌊𝑁 3⁄ ⌋ triangular topological units and the randomly 
generated search agents are compared, selecting only the best 
⌊𝑁 3⁄ ⌋ agents as lead vertices for the subsequent iteration. 

This iterative search process persists until reaching the 
predetermined termination criterion, typically the maximum 
iteration number 𝑇𝑚𝑎𝑥 . Upon termination, the decision 
variables in the best solution 𝑋𝐵𝑒𝑠𝑡 are translated into a binary 
feature subset 𝑆𝐵𝑒𝑠𝑡 , employed to train machine learning models 
that are both more accurate and less complex. 

IV. RESULTS 

A. Datasets Used and Simulation Settings 

This performance evaluation study employs ten benchmark 
datasets from the UCI Machine Learning Repository to assess 
the efficacy of the proposed wrapper-based feature selection 
technique utilizing the TTAO. These datasets were chosen based 
on their diverse characteristics, including varying numbers of 
input features, instances, and output classes, which represent a 
wide range of feature selection challenges. The datasets cover 
different problem domains such as medical diagnosis, survival 
analysis, signal processing, etc., providing a comprehensive 
assessment of the algorithm's versatility and robustness. 

The number of input features influences the dimensionality 
of the problem, which is crucial in testing the capability of the 
algorithm to handle high-dimensional spaces. For instance, 
datasets like Multiple Features (649 features) and Arrhythmia 
(279 features) represent high-dimensional feature selection 
challenges, whereas datasets such as Diabetes and Haberman’s 
Survival provide lower-dimensional tasks. The diversity in the 
number of instances, ranging from small datasets like Lung 

Cancer (27 instances) to larger datasets such as Maternal Health 
Risk (1014 instances), ensures that the algorithm's performance 
is evaluated under varying data sizes. Additionally, the datasets 
include both binary and multiclass classification problems, 
further demonstrating the algorithm's adaptability to different 
problem types. Table I presents the detailed characteristics of the 
ten datasets, including the number of instances, features, and 
output classes. This diversity in datasets allows for a thorough 
evaluation of TTAO's performance in feature selection tasks 
across various real-world applications. 

TABLE I.  THE CHARACTERISTICS OF 10 BENCHMARK DATASETS USED 

IN PERFORMANCE EVALUATION 

No Dataset 
No. of 

Instances 

No. of 

Features 

No. of 

Classes 

DS1 Lung Cancer Data Set 27 56 10 

DS2 Multiple Features Data Set 2000 649 2 

DS3 Ionosphere Data Set 351 34 2 

DS4 Arrhythmia Data Set 452 279 13 

DS5 Echocardiogram Data Set 61 8 2 

DS6 
Haberman's Survival Data 
Set 

306 3 2 

DS7 Diabetes Data Set 768 8 2 

DS8 Wine Data Set 178 13 3 

DS9 
Maternal Health Risk Data 
Set Data Set 

1014 6 3 

DS10 Zoo Data Set 101 16 7 

This study evaluates the performance of the TTAO in feature 
selection tasks relative to seven other state-of-the-art MSAs: 
Bezier Search Differential Evolution (BeSD) [34], Coronavirus 
Herd Immunity Optimization Algorithm (CHIO) [35], Chaotic 
Oppositional based Hybridized Differential Evolution with 
Particle Swarm Optimization (CO-HDEPSO) [36], Differential 
Squirrel Search Algorithm (DSSA) [37], Flow Direction 
Algorithm (FDA) [38], Generalized Normal Distribution 
Optimization (GNDO) [39], and Oppositional and Social 
Learning with Enhanced Operator with Particle Swarm 
Optimization (ODSFMFO) [40]. Optimal parameters for these 
algorithms are adopted as per the specifications in their 
respective foundational publications. 

To facilitate the conversion of real-valued decision variables 
within the TTAO and other MSAs to binary values for feature 
selection, the threshold parameter γ is set at 0.5. A KNN 
classifier with k = 5 is utilized to evaluate classification accuracy 
based on the selected feature subsets. Each dataset is split into 
two segments, with 80% of the instances designated as the 
training set and the remaining 20% as the testing set. The 
population size and the maximum iteration number for all MSAs 
are standardized at 𝑁 = 20  and 𝑇𝑀𝑎𝑥 = 200 , respectively. 
Given the stochastic nature of MSAs, each algorithm undergoes 
30 simulation runs to ensure robustness in addressing the feature 
selection challenges across different datasets. 

B. Performance Comparisons on Average Classification 

Accuracies 

Table II presents the average classification accuracy 
achieved by the TTAO and seven other MSAs, each employed 
as wrapper-based feature selection techniques. The results 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

340 | P a g e  

www.ijacsa.thesai.org 

reflect the mean values across 30 independent runs for each 
dataset, labeled as DS1 through DS10. Classification accuracy 
serves as a crucial validation measure, as it directly indicates 
how effectively the selected feature subsets enable the KNN 
classifier to distinguish between instances with high precision. 
The MSAs yielding higher average classification accuracies 
demonstrate superior capability in feature subset selection, 
contributing to improved overall performance. In this context, 
the MSAs that achieve the highest and second-highest 
accuracies are highlighted in bold and underlined, respectively, 
to facilitate a clear comparison. Furthermore, these accuracy 
results are juxtaposed with those from existing related studies to 
benchmark the efficacy of TTAO and verify its potential 
superiority in various classification tasks. This thorough 
comparison provides a more robust understanding of the 
advancements TTAO offers over previously proposed methods. 

Table II shows that BeSD, ODSFMFO, and DSSA generally 
exhibit subpar performance when used as wrapper-based feature 
selection techniques across the ten benchmark datasets. The 
performance deficits are particularly pronounced in datasets 
with a large number of features or output classes. Specifically, 
BeSD recorded the lowest classification accuracies in three 
datasets (DS1, DS2, and DS6) and the second lowest in another 
(DS4). ODSFMFO displayed the poorest performance in two 
datasets (DS3 and DS4) and was second poorest in another two 
(DS8 and DS9). DSSA consistently ranked as having the 
second-worst average classification accuracy in four datasets 
(DS1, DS2, DS6, and DS7). Conversely, CO-HDEPSO and 
FDA demonstrated moderate performance, with their 
classification accuracies neither exceptionally high nor low 
across the majority of the datasets. 

The wrapper-based feature selection techniques utilizing the 
three MSAs, including TTAO, have exhibited exemplary 

performance across the ten evaluated datasets. Specifically, 
CHIO recorded the highest average classification accuracy in 
two datasets (DS1 and DS5) and the second highest in four 
others (DS2 to DS4 and DS7). GNDO showed robust 
performance, achieving the highest classification accuracy in 
three datasets (DS2, DS5, and DS8) and the second highest in 
two (DS1 and DS9). However, both CHIO and GNDO 
demonstrated limitations in certain datasets, such as DS8 for 
CHIO and DS2 and DS10 for GNDO, indicating a need for 
improved robustness in diverse feature selection scenarios. 
TTAO emerged as the most effective MSA, securing the highest 
accuracy in eight datasets (DS1, DS3 to DS8, and DS10) and the 
second highest in DS9. Its superior performance, especially in 
datasets with a large number of features or classes (DS1, DS4, 
and DS10), underscores TTAO's capability to adeptly handle 
complex feature selection tasks prevalent in real-world 
applications. 

C. Performance Comparisons on Average Numbers of 

Selected Features 

While high classification accuracy is essential for effectively 
solving the given datasets, minimizing the size of the selected 
feature subset is equally important to prevent unnecessary 
complexity in the resulting machine learning models. Reducing 
feature subsets without compromising accuracy leads to simpler, 
more interpretable, and computationally efficient models, a 
critical goal in real-world applications. Achieving an optimal 
balance between classification accuracy and model simplicity is 
thus a fundamental validation criterion for evaluating feature 
selection techniques. To assess this trade-off, the average 
number of features selected by the KNN classifier is used as an 
additional performance metric in this study. 

TABLE II.  COMPARISON OF AVERAGE CLASSIFICATION ACCURACIES OF ALL MSAS FOR FEATURE SELECTION 

No BeSD CHIO CO-HDEPSO DSSA FDA GNDO ODSFMFO TTAO 

DS1 5.670E-01 1.000E+00 1.000E+00 6.130E-01 8.920E-01 9.130E-01 8.600E-01 1.000E+00 

DS2 9.680E-01 9.800E-01 9.800E-01 9.710E-01 9.780E-01 9.810E-01 9.740E-01 9.750E-01 

DS3 9.310E-01 9.510E-01 9.380E-01 9.290E-01 9.440E-01 9.270E-01 9.000E-01 9.840E-01 

DS4 6.210E-01 7.360E-01 7.040E-01 6.620E-01 6.730E-01 6.730E-01 6.050E-01 7.440E-01 

DS5 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.790E-01 1.000E+00 1.000E+00 1.000E+00 

DS6 6.440E-01 8.280E-01 7.950E-01 7.540E-01 8.300E-01 8.010E-01 7.870E-01 8.360E-01 

DS7 7.810E-01 7.810E-01 7.570E-01 7.520E-01 7.420E-01 7.700E-01 7.650E-01 8.220E-01 

DS8 9.930E-01 9.310E-01 9.990E-01 9.560E-01 9.540E-01 1.000E+00 9.460E-01 1.000E+00 

DS9 7.680E-01 7.370E-01 7.460E-01 7.430E-01 7.500E-01 7.670E-01 7.270E-01 7.670E-01 

DS10 9.970E-01 9.550E-01 9.950E-01 9.820E-01 9.950E-01 8.900E-01 9.870E-01 1.000E+00 

TABLE III.  COMPARISON OF AVERAGE NUMBERS OF SELECTED FEATURES BY ALL MSAS FOR FEATURE SELECTION 

No BeSD CHIO CO-HDEPSO DSSA FDA GNDO ODSFMFO TTAO 

DS1 26.30 20.33 10.90 9.33 15.03 14.23 28.93 5.23 

DS2 325.23 289.13 305.93 441.23 309.70 302.17 446.93 243.30 

DS3 16.80 13.80 7.83 12.47 10.27 10.63 16.87 4.33 

DS4 135.80 112.17 119.13 83.70 131.47 126.97 155.87 49.93 

DS5 3.83 2.60 1.00 7.10 1.00 1.00 3.63 1.00 

DS6 6.67 6.13 4.57 2.03 5.33 6.53 2.30 2.00 

DS7 4.67 4.07 5.03 2.27 4.97 4.80 6.20 3.87 

DS8 6.23 5.60 4.03 5.37 3.67 2.97 9.00 3.00 

DS9 3.70 3.57 3.30 3.17 3.00 4.00 5.00 3.00 

DS10 8.53 6.27 4.97 12.13 5.00 6.80 9.97 3.07 
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Table III details the average number of features selected by 
all MSAs, implemented as wrapper-based feature selection 
techniques across 30 simulation runs for each dataset. The 
MSAs achieving the smallest and second-smallest feature subset 
sizes for each dataset are highlighted in bold and underlined text, 
respectively. In addition to their poor performance in terms of 
average classification accuracy, the results also reveal that 
ODSFMFO and BeSD are notably ineffective in minimizing the 
number of selected features, often yielding the largest and 
second-largest feature subsets across most datasets. Specifically, 
ODSFMFO consistently produced the largest feature subsets in 
seven datasets (DS1 to DS4, DS7 to DS9) and the second largest 
in one dataset (DS10). Meanwhile, BeSD was frequently 
associated with the second-largest feature subsets in six datasets 
(DS1, DS3 to DS6, and DS8). In contrast, CO-HDEPSO and 
FDA exhibited moderate performance, maintaining an average 
number of selected features that was neither particularly high 
nor low across most datasets. 

Moreover, certain MSAs demonstrate inconsistent 
performance across both evaluation metrics, highlighting their 
inability to effectively balance the trade-off between model 
accuracy and complexity. For instance, while CHIO and GNDO 
achieve competitive average classification accuracies across 
most datasets, they fall short in consistently identifying smaller 
feature subsets that could reduce machine learning model 
complexity. Conversely, DSSA successfully identified the 
smallest feature subset size for one dataset (DS7) and the second 
smallest for four others (DS1, DS4, DS6, and DS9). However, 
DSSA ranks among the poorest in terms of average 
classification accuracy, as detailed in Table II. Additionally, 
DSSA was found to select the largest feature subsets for two 
datasets (DS5 and DS10) and the largest subset for another 
(DS2), indicating its potential inconsistency in handling datasets 
with diverse characteristics. 

Contrary to the other MSAs evaluated, TTAO has exhibited 
superior performance by consistently identifying the smallest 
average number of selected features in eight datasets (DS1 to 
DS6, DS9, and DS10) and the second smallest in two others 
(DS7 and DS8). This emphasizes the effectiveness of TTAO's 
inherent search mechanism in optimally selecting feature 
subsets across datasets with diverse characteristics, thereby 
reducing the complexity of the machine learning models. The 
results presented in Tables II and III affirm TTAO's excellence 
in harmonizing accuracy with model simplicity, effectively 
addressing the challenges associated with feature selection. 

D. Discussion 

A key strength of TTAO lies in its ability to achieve an 
optimal trade-off between classification accuracy and feature 
subset size, primarily due to the effective balance it strikes 
between exploration and exploitation. The presence of both 
generic and local aggregation mechanisms enables TTAO to 
explore the search space while refining promising solutions, thus 
ensuring a well-balanced search process. In feature selection, 
high classification accuracy alone is insufficient if the feature 
subset is excessively large, as it can lead to overly complex 
models that are difficult to interpret and computationally 
expensive. TTAO addresses this issue by selecting smaller 
feature subsets while maintaining high accuracy, making it 
valuable in applications where simplicity and efficiency are 

critical. This balance is crucial for developing robust machine 
learning models that generalize well to unseen data. TTAO’s 
consistent ability to reduce feature subset size across diverse 
datasets without sacrificing accuracy demonstrates the efficacy 
of its search strategies, allowing it to perform effectively even in 
high-dimensional spaces or datasets with multiple output 
classes, where many other algorithms tend to struggle. 

Another practical advantages of TTAO over other MSAs is 
its reduced reliance on extensive parameter tuning. Many MSAs 
require fine-tuning of algorithm-specific parameters to balance 
exploration (global search) and exploitation (local search) 
effectively. In contrast, TTAO’s performance depends primarily 
on the population size N and a few stochastically generated 
random variables (i.e, r0, r1, r1

, r1
 and r4), all of which require 

minimal adjustment. This reduction in parameter dependency 
simplifies the application of TTAO to different problem 
domains. By ensuring that the algorithm performs well without 
requiring extensive experimentation to find the optimal 
parameter settings, TTAO is highly adaptable and user-friendly. 
This makes it particularly attractive for real-world applications 
where tuning complex algorithmic parameters may not be 
feasible due to time constraints or lack of domain expertise. 

The consistent performance of TTAO across a wide range of 
datasets indicates its versatility in tackling real-world feature 
selection problems. Its ability to handle datasets with high-
dimensional features and varying class distributions highlights 
its robustness and generalizability. Furthermore, the efficiency 
of TTAO to reduce feature subsets without compromising 
accuracy can have significant practical implications. For 
example, in industries where computational resources are 
limited or where model interpretability is crucial (e.g., such as 
healthcare, finance, or sensor-based monitoring systems), 
TTAO’s approach can lead to more efficient models with fewer 
features, ultimately reducing training time, memory 
requirements, and the risk of overfitting. 

V. CONCLUSION 

This paper introduces a novel wrapper-based feature 
selection technique utilizing the Triangulation Topology 
Aggregation Optimizer (TTAO), which is inspired by the 
geometric properties of triangular topology and principles of 
triangular similarity. Unlike its prior applications to real-valued 
decision variable problems, this study explores TTAO's 
adaptability to challenging real-world optimization problems 
with binary solution spaces. To facilitate this adaptation, a 
conversion mechanism is employed to transform continuous 
decision variables into binary ones, thus enabling the inherently 
real-valued TTAO for use in binary domains. TTAO generates 
diverse triangular topological units of consistent shape but 
varying sizes, serving as dynamic evolutionary entities 
throughout the optimization process. It incorporates two primary 
search strategies, generic and local aggregation, designed to 
balance exploration and exploitation effectively. Extensive 
simulations compare TTAO's performance in feature selection 
against seven other metaheuristic search algorithms (MSAs). 
The results indicate varied performances among the MSAs, with 
some underperform across both matrices (i.e., classification 
accuracy and feature subset size), while others fail to achieve a 
satisfactory balance. In contrast, the TTAO-based wrapper 
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method excels, demonstrating an outstanding ability to achieve 
superior classification accuracy while minimizing feature subset 
size, thereby solving datasets with varied characteristics 
effectively. 

While TTAO has shown excellent performance across the 
datasets used in this study, its scalability to extremely large 
datasets (in terms of both the number of features and instances) 
remains untested. Future research is needed to assess its 
computational efficiency and performance under more 
demanding, large-scale conditions. Additionally, the current 
study has focused on datasets with relatively balanced class 
distributions. TTAO’s performance in highly imbalanced 
datasets, where classification bias might occur, has not been 
thoroughly explored and may require algorithmic adjustments to 
address such challenges. One promising direction for future 
research is to explore hybridization between TTAO and other 
MSAs to further improve performance. Combining the strengths 
of different algorithms could enhance the ability to balance 
exploration and exploitation, especially for more complex and 
dynamic datasets. Another potential extension of this work is 
applying TTAO in a multi-objective optimization framework, 
allowing the simultaneous optimization of multiple criteria (e.g., 
accuracy, computational cost, interpretability) to provide more 
comprehensive solutions for real-world feature selection tasks. 
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