
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

432 | P a g e

www.ijacsa.thesai.org

Vehicular Traffic Congestion Detection System and

Improved Energy-Aware Cost Effective Task

Scheduling Approach for Multi-Objective

Optimization on Cloud Fog Network

Praveen Kumar Mishra, Amit Kumar Chaturvedi

Computer Application Deptt., Govt. Engg. College, Ajmer, BTU, Bikaner, India

Abstract—A current research area called fog computing aims

to extend the advantages of cloud computing to network edges.

Task scheduling is a crucial problem for fog device data

processing since a lot of data from the sensor or Internet of

Things layer is generated at the fog layer. This research

suggested a vehicular traffic congestion detection model and an

energy-aware cost effective task scheduling (ECTS) method in a

cloud fog scenario. This research proposes an ECTS approach to

allocate jobs to the fog nodes effectively. The recommended

scheduling approach minimizes energy consumption and

decreases expenses for time-sensitive real-time applications. The

ECTS algorithm is implemented, and results are analysed using

the iFogSim simulator. The proposed method minimizes energy

consumption and cost. The suggested ECTS method is tested

with five sets of inputs in this paper. The experiment's results

show that an ECTS minimizes energy consumption in

comparison to alternative algorithms. It also reduces the

execution cost. The suggested approach outperforms both the

Round-Robin (RR) and Genetic Algorithm techniques.

According to the simulation results, the suggested algorithm

reduced overall costs by 13.38% and energy usage by 6.59%

compared to the Genetic Algorithm (GA). Compared to RR, the

proposed method minimizes energy use by 13.76% and total costs

by 18.46%.

Keywords—IoT; fog computing; task scheduling; multi

objective Model; iFogSim tool

I. INTRODUCTION

One of the most crucial improvements in the realm of
technology in the last several years is the Internet of Things
(IoT) devices for the computation and exchange of
information. IoT devices allow a wide range of items and
equipment like sensors, cameras, automobiles, and
connectivity with the Internet with smart devices like cell
phones and laptops. Numerous applications and service
offerings, such as latency minimization, control of traffic, and
response time improvement, can be carried out as a result.
Large volumes of data are produced through end devices as a
result, which require supervision, processing, and analysis to
generate appropriate data that will meet the user's objectives
and aims. Moreover, the volume of data and a variety of
required services and apps are expanding very quickly,
demanding more computing power than even the most
advanced smart devices can no longer match. The well-known
cloud environment is a vast repository of resources that

permits the universal ability to share and dynamically provide
users with resources through virtualization procedures, which
is one potential platform to aid in IoT improvements. By
shifting resource and service-intensive jobs to a trustworthy
computer environment, like the cloud, allowing smart devices
to undertake basic tasks, limitations of current smart devices,
such as enhancements, might be made to processing speed,
capacity of storage, and resources required at the network.
However, combining the use of clouds with the IoT creates
further problems. It is anticipated that 50 billion IoT devices
has been deployed in 2023. This figure will be increased to
35.8 billion in 2030, with the exponential rise in connected
devices and cloud architectures that rely on traditional
centralized processing features where storage and
computational resources combined won't be enough to handle
the demands of the Internet of Things devices burden. The
main reason is that IoT gadgets and the cloud's infrastructure
are quite far apart. The enormous amount of data of IoT
devices send via the Internet to the cloud will strain the
network's capacity and bandwidth, causing congestion,
particularly near bottlenecks [4]. IoT applications are latency
sensitive; therefore, a transmission delay reduces the Quality
of Services (QoS), negatively impacting the user experience.

Fog computing [1], an innovative strategy of cloud
computing first introduced by Cisco, has the potential to
transform connecting the network’s boundary to a distributed
processing design that can accommodate the end devices
services. By using fogging, clients may access computing and
data storage power resources more conveniently by extending
cloud computing to data-generating and data-receiving IoT
gadgets; instead of moving all the processing to the CDS
(Cloud Data Center), the Fog layer goals to process the
maximum of the traffic load created by end devices nearby to
the user’s ranger of the network, called fog computing
devices. Anywhere there is network connectivity, such as
factories, shopping malls, electricity poles, railroads, inside of
cars, etc., may use end devices. A fog node is any device with
networking, computing, and storage capabilities. These
devices include embedded servers, switches, routers,
controllers, and security cameras. Requests are optimized for
transmission time by putting resources near the network’s
edge, where the minimum amount of time needed for
information to arrive at a point of processing larger-scale and
delay-tolerant activities still be routed to the cloud layer. At

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

433 | P a g e

www.ijacsa.thesai.org

the same time, smaller jobs or task requirements with low
latency have to be given precedence to be handled by fog
computing platforms deposited at fog nodes with limited
processing capability. Ultimately, fogging and cloud
computing combine to create the cloud fog scenario, a new
paradigm for the computing environment. This innovative
strategy has several benefits, which include latency
minimization, minimize high network traffic, and minimizing
power consumption. Balancing of load for jobs ensures that no
resource remains idle while others are being used [1]. The
security risks businesses face using cloud computing has
decreased [2]. For enterprises deploying solution of big data
on cloud infrastructure, is a crucial factor to consider.

The paper is presented in the following sequence. Specific
literature review for task scheduling within the framework of
cloud fog atmosphere is provided in section 2. The proposed
Vehicular Traffic Congestion Detection (VTCD) System and
ETS scheduling algorithm are presented in Section 3. Section
4 provides a simulation environment. Section 5 includes
performance analysis and simulation outcomes. Section 6
present the conclusion and forthcoming scope at the end.

II. LITERATURE REVIEW

According to Jayasena et al. [3], scheduling of job
necessitates optimizing two goals: minimizing cost and
decreasing power utilization. The author designed a meta-
heuristic Whale Optimization Algorithm (WOA) mapped
procedure to explain the recommended system and calculate
the outcomes in iFogSim against heuristic techniques like
Particle Swarm Optimization (PSO) and RR and SJF. Xu et al.
[4] explain the laxity-mapped precedence approach to build a
scheduling of task order with a fair priority. According to the
author, based on the ant colony system (ACO) algorithm, this
strategy minimizes overall energy use.

Tan, et al. [5] proposed an energy-efficient approach and
looked at a task scheduling issue along with time limit
restrictions in instances when could exist distributed
throughout heterogeneous assets, such as fog computing, and
an energy-conscious algorithm capable of finding the best
solution in a polynomial amount of time. Nikoui et al. [6]
developed a genetic-based (CAGB) planning method that
improves efficiency at a lower cost for real-world applications
with tight deadlines. Its effectiveness is evaluated regarding
system overload, expenses, and delay. Fellir Z. et al. [7]
presented multi-agent-based planning method, the most
important tasks are handled first to ensure that when a packet
with the highest importance goes into the waiting line, the job
is dealt with, without interfering with the least significant
task's implementation if it is presently being run. Madej et al.
[8] presented four scheduling schemes named NFCFS (Naive
First Come First Serve) technique. The other three schemes
are client fair, prioritized fair, and hybridization.

Abdel Basset, et al. [9] suggested method improved the
effectiveness of the best outcome and justified the workload
across the accessible simulated engines by using a meta-
heuristic method and a shift modification technique. Yang et
al. [10] presented the superior value efficiency and scale
outcome set to tackle the two-parameter collaboration to
minimize fog computing scheduling task difficulties. The

results demonstrate how the suggested strategy performs
better than conventional strategies regarding resource cost,
overall job execution time, etc. Hoseiny et al. [11] suggested
cost aware scheduling method reduces latency, computation
costs, and communication costs for IoT inquiries while
increasing the proportion of tasks that are finished earlier than
the deadline. This algorithm is compared with genetic
algorithm.

The Task Priority Resource Allocation (TPRA) algorithm
was presented by Dang et al. [12]. This algorithm's primary
goal is to minimize the average latency in the fog network's
diverse environment. Abdel-Basset et al. [13] presented the
multiple objective task scheduling technique. This algorithm
aims to minimize the rate of carbon emissions, make-span,
and energy consumption. The resource-aware-cost-efficient
(RACE) scheduler was introduced by Arshed et al. [14]. This
method distributes the incoming jobs to fog nodes function.
This strategy pursues minimizing bandwidth use, maximize
Fog Node (FN) utilization at the fog layer, and shorten
application make span.

In a fog context, Singh et al.'s [15] hybrid swarm
optimization using genetic algorithms (GA) reduces execution
time and cost. Compared to GA and PSO, the workflow
scheduling experimental result that is being provided is
superior. The MGWO multi-objective optimization approach
was introduced by Saif, et al. [16] multiple goals, including
make-span, throughput, energy, and delay. This approach aims
to ascertain the optimal strategy for work scheduling at the fog
layer. The MGWO algorithm's experimental result
outperforms the equivalent methods regarding power
minimization and delay reduction. Zhang et al. [17] introduced
the Enhanced Whale Optimization Algorithm (EWOA). It's a
technique for scheduling tasks with multiple objectives in a
cloud computing environment—a search strategy known as
Levy's struggle in EWOA. The results of the various heuristic
and meta-heuristic algorithms match the results of the EWOA
experiment. EWOA performs better in cost reduction and
energy use minimization than these existing algorithms.
Alwabel et al. [18] offered a deadline and power-efficient job
scheduling method in a fog computing network. This method
aims to determine which jobs are crucial and prioritize them
so that they may be finished at the fog layer. The simulator
iFogSim is used for outcome analysis. The recommended
approach outperforms earlier algorithms regarding deadline
and energy consumption reduction.

The PEWO (Parallel Enhanced Whale Optimization)
approach was created by Khan et al. [19] for task scheduling
at the cloud computing layer. This meta-heuristic method aims
to minimize make-span and execution time. In a
heterogeneous cloud environment, tasks are assigned using the
PEWO approach. The experimental result of PEWO is better
represented by the random matrix particle swarm optimization
(RMPSO). Ali et al. [20] presented DNSG, a task scheduling
system, by dynamically assigning the task to a fog node; the
proposed approach aims to reduce make-span and cost
compared to modified GA. Balancing tasks is also one of the
issue in cloud fog environment. Within the Cloud-Fog system
[24-25], job scheduling aims to maximize benefits for either

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

434 | P a g e

www.ijacsa.thesai.org

service End users are concerned about minimizing make-span,
power consumption and cost.

A thorough analysis reveals that there is a trade-off
between minimizing costs and minimizing energy use.
Consequently, this paper proposes ECTS to assign jobs to FN
at the fog layer with the least amount of energy consumption
and the best possible cost. WOA is inherited by the proposed
ECTS method. This method determines the fitness function by
adding up the expenses of RAM and CPU (central processing
unit) for every fog node, together with the power used for task

execution and FN's power when idle. The primary
contribution of this study is the development of the ECTS
algorithm. This suggested method for vehicular traffic
congestion detection applications is simulated using the
iFogSim simulator as the secondary contribution.

Table I presents a survey of the latest published study on
cloud and fog computing task scheduling strategies, as well as
main idea, improvement parameters and algorithms of
previous studies.

TABLE I. REVIEW OF THE EXISTING CLOUD FOG ENVIRONMENT’S SCHEDULING PROCEDURES

Year Author
Improvement

Parameter
Algorithm Main ideas

2019
Jayasena, et al. [3]

IEEE

Minimize energy
consumption, Reduce

cost

Whale Optimization task

scheduling algorithm

A fog processing system job-planning strategy that
optimizes two objectives: reducing power consumption

and cutting expenses.

2019 Xu, et al. [4] IEEE
 Energy consumption,

Execution time

Laxity based Ant Colony

algorithm [LBACA]

To effectively control the adaptability of work latency and

energy consumption, implemented the ant colony systems

algorithm and flexibility while accounting for the

relevance of each task and when it will be finished.

2020 Tan, et al. [5] Elsevier Energy, Deadline
Energy Efficient scheduling
method

An energy-efficient task scheduling method finding the
best solution in a polynomial time.

2020 Nikoui, et al. [6] IEEE Deadline, Cost Genetic algorithm

A genetic-based (CAGB) planning method that improves

efficiency at a lower cost for real-world applications with
tight deadlines. Its effectiveness is evaluated regarding

system overload, expenses, and delay.

2020 Fellir Z, et al. [7] IEEE Priority, Execution Time
Priority based task scheduling

algorithm

Multi-agent-based planning method, the most important

tasks are handled first to ensure that when a packet with
the highest importance goes into the waiting line.

2020 Madej, et al. [8] IEEE Priority, Job Execution
Priority based task scheduling

algorithm

Four scheduling schemes named NFCFS (Naive First

Come First Serve) technique. The other three schemes are
client fair, prioritized fair, and hybridization are presented

2020
Abdel Basset, et al. [9]

IEEE
Energy, Makespan

Energy aware task scheduling

algorithm

Improved the effectiveness of the best outcome and

justified the workload across the accessible simulated

engines by using a meta-heuristic method and a shift
modification technique.

2020 Yang, et al. [10] IEEE
Total task execution time,

resource cost

Meta heuristic scheduling

algorithm

Demonstrate how the suggested strategy performs better

than conventional strategies regarding resource cost and
execution time.

2021
Hoseiny, et al. [11]

IEEE
 Cost, deadline

Combined (QoS) quality of

service and cost effective
scheduling method

In contrast to a genetic algorithm, the suggested technique

reduces latency, compute costs, and communication costs

all at once for IoT inquiries while increasing the
proportion of tasks that are finished earlier than the

deadline.

2021 Dang, et al. [12] IEEE
Task priority

An algorithm for allocating

resources based on task priorities

Resource allocation algorithm based on task priority
reduces the average delay in the heterogeneous

environment in the fog environment.

2021
Abdel-Basset, et al.

[13] IEEE
Energy, makespan

Multi objective scheduling

algorithm

The purpose of this algorithm is minimizing energy,

make-span and carbon emission rate.

2021
Arshed, et al. [14]

IEEE
Execution time, cost RACE scheduler

Resource aware cost efficient scheduling algorithm at fog

layer.

2023 Singh, et al. [15] IEEE Makespan, cost
Hybrid particle swarm
optimization with genetic

algorithm (GA)

The purpose of this algorithm is to reduce execution time

and cost in cloud fog environment.

2024 Saif, et al. [16] IEEE Throughput, makespan

Multi-Objectives Grey Wolf

Optimizer
(MGWO) algorithm

MGWO is multi objective optimization technique for

optimal solution of task scheduling.

2024
Zhang, et al.[17]

Springer

Execution Cost, power

consumption

Improved Whale Optimization

Algorithm (EWOA)

EWOA is advanced task scheduling algorithm at cloud

computing environment.

2024
Alwabel, et al. [18]
IEEE

Deadline , energy
consumption

Power-Aware Placement
Mechanism (POAPM)

Deadline and energy consumption minimization
scheduling at fog computing network

2024 Khan et al. [19] IEEE Make-span, throughput
Parallel Improved Whale

Optimization (PIWO) algorithm

PIWO algorithm is used for allocation of tasks at cloud

computing layer. The purpose of this algorithm is
minimizing make-span and execution time

2022 Ali et al. [20] IEEE Execution time, cost
Non-dominated Sorting Genetic
(NSG) algorithm II

DNSG is scheduling algorithm at cloud fog environment.

Purpose of proposed algorithm is minimizing cost and

execution time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

435 | P a g e

www.ijacsa.thesai.org

III. PROPOSED SYSTEM ARCHITECTURE

This section describes the proposed three tire architecture
of a vehicular congestion detection system, and the ECTS
algorithm in cloud fog network.

A. Proposed Vehicular Traffic Congestion Detection

Architecture

Vehicular Traffic Congestion Detection (VTCD)
architecture in a cloud fog network is shown in Fig. 1. As
shown in the diagram this is a three-layer model for detecting
vehicular traffic congestion. Layer 1 represents the end
devices layer, and at this layer, sensors detect vehicular traffic
congestion, and forward requests at layer two, i.e., fog
computing layer through IoT enabled devices. At the layer
two, clusters of FN are available. Each cluster of FN is
connected to a Master Fog Server (MFS) called a fog server.
MFS is responsible for checking resource availability,
scheduling tasks to FN, and assigning tasks (jobs) to the
appropriate FN. These fog nodes process jobs and respond to
MFS. Using an actuator, MFS responds to end devices and
displays traffic congestion detection-related information. MFS
also forwards task results to layer three, the Cloud Data Center
(CDC), through a proxy server to store the results for future
reference.

Fig. 1. Proposed three-tier model of vehicular traffic congestion detection.

1) Vehicular traffic area and end devices: As shown in

Fig. 1, end users approach end devices using gadgets like

tablets, smartphones, desktops, notebook computers, wearable

devices, etc. In this paper, end devices are vehicular traffic on

roads in different city areas. As we can see in this diagram,

vehicular traffic area 1 to vehicular traffic area n are shown

where sensor 1 to sensor n detect traffic on the road and

forward this information to layer 2 using IoT-enabled devices.

2) The proxy server and fog computing layer: Fog

computing is the middle layer in the cloud fog scenario with

three-tier architecture called fogging or fog networking. FNs

are near-end devices for computing, storage, and

communication with end users locally with reduced latency,

low bandwidth and lower cost compared to cloud computing

environments. An enhanced version of cloud computing, i.e.,

fogging, reduces stress in the layer of clouds [22-23]. A proxy

server is router that communicates with and prevents cyber-

attacks, reduces latency between the CDS and layer 2. Data

can be retrieved by fog nodes from cloud storage whenever

further processing is required.

B. Proposed Task Scheduling Model

The suggested task scheduling technique for assigning jobs
to the FN in the cloud fog network is covered in this part. A
recommended job scheduling plan is based on the WOA [21]
and the multiple-objective model [26]. Fig. 2 depicts the
system of the suggested ECTS method of this paper for
assigning tasks to the FN. The memory, CPU, and energy
consumption functions are all computed using the multiple-
objective computation. The cost function and energy
consumption are added to get the fitness value. By the fitness
rating, the tasks are allocated to the Fog nodes. ECTS first
considers the current solution is the best solution. This process
is repeated until the optimum solution is identified. In this
paper task scheduling aims to minimize energy and total cost
while assigning task to the fog node as effectively as feasible.

Fig. 2. Model of the proposed ECTS scheduler.

The fog layer which contains of n numbers of fog nodes.
Where FL represents fog layer and { 𝐹𝑁1, 𝐹𝑁2, 𝐹𝑁3,
𝐹𝑁4……… . 𝐹𝑁𝑛 } represent fog nodes presented at fog layer.
This can be represented as,

𝐹𝑜𝑔, 𝐹𝐿 = { 𝐹𝑁1, 𝐹𝑁2, . . . 𝐹𝑁𝑛 } (1)

The fog node FN1 can be represented by the equation that
follows. Where, { 𝐹𝑁1, 𝐹𝑁2, . . . 𝐹𝑁𝑛 } represents the fog
nodes. Master Fog Node (MFS) connected with cluster of fog
nodes at layer 2.

𝑀𝐹𝑆 = { 𝐹𝑁1, 𝐹𝑁2, . . . 𝐹𝑁𝑛 } (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

436 | P a g e

www.ijacsa.thesai.org

Each fog node has the CPU and the memory. 𝑇𝑘
represents task and MFS represent master fog server.

𝑇𝑘 = { 𝑇1, 𝑇2 𝑇500 } (3)

Where, 𝑇1 is the task first and 𝑇450 shows 500th task.
Assume that one IoT device forward 10 𝑇𝑘 to MFS.

In this paper proposed algorithm: ECTS, where tasks and
fog nodes are inputs. The suggested task scheduler aims to
best distribute the job across the fog nodes. The WOA is the
basis for this scheduler. Initially, the search agent population
is initialized. The model of proposed ECTS scheduler
computes the fitness value. Equation number 15 updates the
search agent's position if the e is greater than or equal to 0.5.
The 13th and 14th equation are used to update the search
agents' positions if the e is less than 0.5. Until the ideal
solution is found, this procedure is carried out repeatedly.

Proposed Algorithm : ECTS

Input: Task T, Fog Node FN

Result: Fog nodes are assigned the jobs.

Control Parameters 𝑆∗, α, N, W, t, p

Begin

 Set up the population initially. 𝑆𝑖 (i = 1, 2, …, n)

 Fitness value obtained from the sub function

1. Initialize the current best agent 𝑆∗

2. Update α, N, W, t, p

3. if (e < 0.5)

4. if (|N| < 1)

Change the search agent's location with equation 13.

5. Else if (|N| ≥ 1)

 Change the search agent's location with equation 14.

 End if

6. End if

 if (e ≥ 0.5)

 Change the search agent's location with equation 15.

 End if

In the event that (any search agent leaves the search space)

 Update 𝑆∗

Assign y to y + 1.

 End if

End

Sub function:

Input: Tasks T, Fog Nodes FN

Output: Fitness value

 For (all the Fog nodes)

 Find active energy consumption function by equation 4

 Find idle energy consumption function by equation 5

 Find total energy consumption function by equation 6

 Find the fitness value by equation 12

 End for

End

1) Energy Consumption: Energy consumption formula is

similar like [15].

𝐸𝑅𝑢𝑠𝑎𝑔𝑒(𝑦) = ∑ µ 𝐹𝑖 𝑉𝑖
2 𝑛

𝑖=1 (𝐵𝑇𝑇𝑖
 - 𝐸𝑇𝑇𝑖

) (4)

𝐸𝑅𝑖𝑑𝑙𝑒(𝑦) = ∑ ∑ µ𝑖𝑑𝑙𝑒𝑗𝑘 ɛ 𝐼𝐷𝐿𝐸𝑗𝑘
 𝑅𝐹min 𝑖 𝑉𝐿min 𝑖

2 𝑚
𝑗=1 (5)

The power consumption during job i, when the resource is
operating at peak efficiency and is about to enter sleep mode,
and added together to get the total energy consumption.

𝐸𝑅𝑢𝑠𝑎𝑔𝑒 is active energy usage and 𝐸𝑅𝑖𝑑𝑙𝑒 is idle energy

consumed by system at sleep mode. 𝐹𝑖 is frequency, 𝑉𝑖 is

voltage supply fog node where task executes. 𝐵𝑇𝑇𝑖
, represent

beginning time and 𝐸𝑇𝑇𝑖
 is end time for task 𝑇𝑖 and µ is

constant.

𝑇𝐸𝑅𝑐𝑜𝑛 (y) = 𝐸𝑅𝑢𝑠𝑎𝑔𝑒 + 𝐸𝑅𝑖𝑑𝑙𝑒 (6)

2) Total cost: The fog node total cost is calculated as,

C (y) = ∑ 𝐶𝑐𝑜𝑠𝑡 (𝑘)
|𝐹𝑁|
𝑘=1 (7)

𝐶𝑐𝑜𝑠𝑡 (𝑘) = 𝐶𝑏𝑎𝑠𝑖𝑐 ∗ 𝐶𝑘 ∗ 𝑡𝑖𝑘 ∗ 𝐶𝑡𝑟 (8)

M (y) = ∑ 𝑀𝑐𝑜𝑠𝑡 (𝑘)
|𝐹𝑁|
𝑘=1 (9)

𝑀𝑐𝑜𝑠𝑡 (𝑘) = 𝑀𝑏𝑎𝑠𝑖𝑐 ∗ 𝑀𝑘 ∗ 𝑡𝑖𝑘 ∗ 𝑀𝑡𝑟 (10)

Where 𝐶𝑐𝑜𝑠𝑡 (𝑘) is the cost of CPU of fog node 𝐹𝑁𝑘 and
𝑡𝑖𝑘 is the amount of time in which task 𝑇𝑖 is executed at
node 𝑆𝑘 . 𝐶𝑡𝑟 is the communication cost of the CPU of fog
node. Here , 𝐶𝑏𝑎𝑠𝑖𝑐 and 𝐶𝑡𝑟 are constant where 𝐶𝑏𝑎𝑠𝑖𝑐 is 0.16
per hours and 𝐶𝑡𝑟 is 0.004, much like in [26]. |FN| is the total
no of fog nodes. 𝑀𝑏𝑎𝑠𝑖𝑐 is 0.04 GB per hour and 𝑀𝑡𝑟 is 0.4,
C(y) is the total no of cost of CPU of FN and M(y) is the
memory cost of FN . 𝑇𝐶 (𝑦) denote the total cost, it can be
calculated as,

𝑇𝐶(𝑦) = C(y) + M(y) (11)

3) Fitness value determining: To determine the best

solutions, the fitness value is computed; the solution must

have the lowest possible energy consumption and lowest

possible cost function. The following formula is used to

calculate fitness.

𝐹𝑉(𝑦) = 𝑇𝐸𝑅𝑐𝑜𝑛 (y) + 𝑇𝐶(𝑦) (12)

4) Whale optimization algorithm: For distributing the jobs

to the fog nodes as efficiently as possible, the whale

optimization method [21] is explained. The collection of

random solutions is where the whale optimization process

starts. It moves forward with the process under the

presumption that the present answer is optimal. Repeating this

procedure keeps on until the best solution is found.

𝑆 (𝑦 + 1) = S ∗⃗⃗⃗⃗ ⃗ (𝑦) − 𝑁⃗⃗ ⃗ ∗ 𝐷⃗⃗ (13)

𝑆 ⃗⃗⃗ (𝑦 + 1) = 𝑆𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑁⃗⃗ ⃗ ∗ 𝐷⃗⃗ (14)

𝑆 ⃗⃗⃗ (𝑦 + 1) = 𝐷′ ∗ 𝑏𝑣𝑡 ∗ cos(2 𝛱 𝑡) + 𝑆∗ (𝑦) (15)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

437 | P a g e

www.ijacsa.thesai.org

Where, y denotes current iteration, 𝑆 is position vector

and 𝑆 ∗⃗⃗⃗⃗ ⃗ represents optimal solution. 𝑆𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is random

location vector, 𝑁⃗⃗ represents the coefficient vector. 𝑊⃗⃗⃗
represents the coefficient vector. In equation 11, v is constant
and t shows the value in [-1, 1] interval. | | denotes the
absolute value, while * denotes multiplication of elements by
elements. 𝐷′ is calculated as follows,

𝐷′ = | S ∗⃗⃗⃗⃗ ⃗ (𝑦) − 𝑆 (𝑦) | (16)

𝐷⃗⃗ = | 𝑊 ⃗⃗⃗⃗ ⃗ ∗ S ∗⃗⃗⃗⃗ ⃗ (𝑦) − 𝑆 (𝑦) | (17)

Where 𝑁⃗⃗ and 𝑊⃗⃗⃗ can be computed by following formula,

 𝑁⃗⃗ = 2 ∝ ⃗⃗ ⃗ ∗ 𝛽 − ∝ ⃗⃗ ⃗ (18)

𝑊⃗⃗⃗ = 2 ∗ 𝛽 (19)

The value of ∝⃗⃗ is move between 2 to 0 and 𝛽 denote the
arbitrary vector in [0, 1].

IV. SIMULATION ENVIRONMENT

The simulation environment used to perform calculations
is explained in this section. Simulation scenario of Vehicular
Traffic Congestion Detection (VTCD) system in fog
computing environment has shown in Fig. 3. where S1, S2,
S3, S4 are sensors to collect cross-road vehicular traffic
information and A1, A2, A3, A4…A8 are actuators to display
the results and total four terminals for VTCD system IoT
Devices (T_IoT_D1, T_IoT_D2, T_IoT_D3, T_IoT_D4) are
used to collect VTCD information from sensors and forward
to Fog Node (FN) where four fog nodes (FN1, FN2, FN3,
FN4) have used in this simulation at fog computing layer.
Controller Fog Server (MFS) collects information from FN
and stores it at CDC (Cloud Data Center) via a proxy server.
This topology was created and simulated by the iFogSim
simulator.

Fig. 3. Scenario of ECTS with VTCD for simulation in cloud fog

environment.

Table II shows configuration parameters and values at the
Cloud Server, Proxy Server, and Fog Computing layer, which
are used to simulate the cloud fog environment. Table III
represents the description, various notations used, values
assumed in this paper, and system configuration.

TABLE II. CONFIGURATION PARAMETER

Requirement at Cloud Proxy server at Fog

Processing unit (MIPS) 44700 2900 2900

Main memory in MB 9900 3900 3900

Up_bps in MB 100 9900 9900

Dn_bps in MB 9900 9900 9900

Layer 3 2 1

Rate in MIPS 0.01 0 0

power_b in WATT 17*104 107.349 107.349

power_ID in WATT 17*83.24 85.5333 85.5333

TABLE III. NOTATION, VALUES AND DESCRIPTION

Description Notation and values

Max no of IoT device 50

p [-1 , 1]

i 1, 2, 3…

Maxitr 100

FN fog node

EDN edge device node

System Intel ® Core(TM) i3 CPU

Tool for simulation iFogSim

OS(operation system) Window 7 Ultimate, 64 bit

V. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS FOR PROPOSED ECTS ALGORITHM

Performance evaluation of the proposed algorithm with
VTCD application in a cloud fog network is shown in this
section. The measurements for energy consumption
performance and the simulation result of overall cost are
shown in Tables IV and V, respectively. The corresponding
bar chart of the parameters shows that energy consumption is
minimized when number of IoT devices have increased as
shown in Fig. 4, and cost is also minimized when no of IoT
devices have increased as shown in Fig. 5. Assume that 10 IoT
devices are equal to 100 tasks.

TABLE IV. SIMULATION RESULTS FOR THE ENERGY CONSUMPTION

 No. of IoT Devices Consumption of energy (in WATTS)

10 188040.91

20 185103.87

30 185103.39

40 182487.18

50 176916.18

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

438 | P a g e

www.ijacsa.thesai.org

Fig. 4. Energy consumption.

TABLE V. SIMULATION RESULTS FOR THE COST

No. of IoT Devices Cost ($)

10 395905.15

20 392444.41

30 614328.21

40 761434.06

50 810188.88

Fig. 5. Cost.

Table VI shows the comparative study of the proposed
ECTS method with the existing methods, such as (Round
Robin) RR [3] and (Cost aware genetic algorithm) GA [6].
The proposed ECTS method has the minimum energy
consumption 176916.18. The energy consumption of RR is
201259.8464 and the energy consumption of GA is
188574.9563. The total cost of RR and GA are 959749.7472
and 918592.1521 respectively while the total cost of proposed
ECTS method is 810188.88 which is smaller than the other
existing methods.

TABLE VI. COMPARATIVE STUDY OF THE ECTS METHOD WITH THE RR

AND GA

 ECTS RR GA

Energy consumption 176916.18 201259.8464 188574.9563

Cost 810188.88 959749.7472 918592.1521

This is the analysis of the proposed algorithm in this paper.
A range of IoT devices as input of 10-50 have been used for
the simulation at the iFogSim simulator. Assume that 10 IoT
devices are equal to 100 tasks and 50 IoT devices are equal to
500 tasks. As shown in Fig. 6 energy consumptions are
minimized in the proposed algorithm when no of IoT devices
are increased as compared to RR and GA. As shown in Fig. 7.
The proposed algorithm minimizes the overall cost when the
number of IoT devices increases compared to RR and GA.

Fig. 6. Energy consumption comparison.

Fig. 7. Cost comparison.

188040.9
1

185103.8
7

185103.3
9

182487.1
8

176916.1
8

170000 180000 190000

10

20

30

40

50

Energy Consumption (WATTS)

N
o

 o
f

Io
T

 d
e
v
ic

e
s

ECTS

Proposed

395905.1
5

392444.4
1

614328.2
1

761434.0
6

810188.8
8

0 500000 1000000

10

20

30

40

50

Cost ($)

N
o

 o
f

Io
T

 d
e
v
ic

e
s

ECTS

Proposed

0

50000

100000

150000

200000

250000

10 20 30 40 50

E
n

e
r
g

y
 C

o
n

su
m

p
ti

o
n

 (
 W

A
T

T
S

)

No of IoT devices

RR

GA

ECTS

Comparison of proposed system with existing systems

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

10 20 30 40 50

C
o

st
 (

 $
)

No of IoT devices

RR

GA

ECTS

Comparison of proposed system with existing systems

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

439 | P a g e

www.ijacsa.thesai.org

Column chart for comparison of energy consumption,
overall cost with GA, RR, and proposed algorithm show that
the proposed result is better compared to others, especially in
energy and cost parameters.

VI. CONCLUSION

The design of the task scheduling technique is the primary
purpose of this study. The secondary objective is designing a
Vehicular Traffic Congestion Detection (VTCD) system. The
proposed Energy-aware Cost effective Task Scheduling (ECTS)
scheduling algorithm performance has been analyzed using
various inputs. Two other approaches, particularly the Genetic

Algorithm (GA) and Round-Robin (RR) in a cloud-fog network,
were compared with the proposed algorithm using the
iFogSim simulator. Especially for energy usage and cost
parameters, our proposed algorithm ECTS performed better
than the others at five different sets of inputs. The simulation
result shows that energy consumption is minimized by 6.59%,
and the overall cost is minimized by 13.38% compared to GA.
In comparison, energy consumption is minimized by 13.75%,
and the overall cost is minimized by 18.46% compared to RR.
Here, multi-objective means task’s cost, energy consumption
and deadline for scheduling the user's request at the fog
computing layer. Furthermore, the suggested algorithm may
adapt to the end user's requirement for higher processing
performance for other applications.

In the future, improvements may be made in ECTS
algorithm to address other issues like reducing make-span,
response time, security issues, etc. improvement for other real
time applications.

ACKNOWLEDGMENT

I sincerely thank Dr. A. K. Chaturvedi, Head, Computer
Application Dept., at Govt. Engineering College, Ajmer,
Rajasthan, for truthful academic backing throughout the work.

REFERENCES

[1] A. I. Abueid, “Big Data and Cloud Computing Opportunities and
Application Areas”, Eng. Technol. Appl. Sci. Res., vol. 14, no. 3, pp.
14509–14516, Jun. 2024

[2] M. Ramzan, M. S. Farooq, A. Zamir, W. Akhtar, M. Ilyas, and H. U.
Khan, “An Analysis of Issues for Adoption of Cloud Computing in
Telecom Industries”, Eng. Technol. Appl. Sci. Res., vol. 8, no. 4, pp.
3157–3161, Aug. 2018.

[3] N. Jayasena, K. P., & Thisarasinghe, B. S. (2019). Optimized task
scheduling on fog computing environment using meta heuristic
algorithms. 2019 IEEE International Conference on Smart
Cloud. doi:10.1109/smartcloud.2019.00019.

[4] Xu, J., Hao, Z., Zhang, R., & Sun, X. (2019). A Method Based on the
Combination of Laxity and Ant Colony System for Cloud-Fog Task
Scheduling. IEEE Access, 7, 116218–
116226. doi:10.1109/access.2019.2936116.

[5] Tan, H., Chen, W., Qin, L., Zhu, J., & Huang, H., Energy-aware and
Deadline-constrained Task Scheduling in Fog Computing Systems.
2020, 15th International Conference on Computer Science & Education
(ICCSE). doi:10.1109/iccse49874.2020.92017.

[6] Nikoui, T. S., Balador, A., Rahmani, A. M., & Bakhshi, Z. (2020). Cost-
Aware Task Scheduling in Fog-Cloud Environment. 2020 CSI/CPSSI
International Symposium on Real-Time and Embedded Systems and
Technologies (RTEST). doi:10.1109/rtest49666.2020.9140118.

[7] Fellir, F., El Attar, A., Nafil, K., & Chung, L. (2020). A multi-Agent
based model for task scheduling in cloud-fog computing platform. 2020

IEEE International Conference on Informatics, IoT, and Enabling
Technologies (ICIoT). doi:10.1109/iciot48696.2020.9089652.

[8] Madej, A., Wang, N., Athanasopoulos, N., Ranjan, R., & Varghese, B.
(2020). Priority-based Fair Scheduling in Edge Computing. 2020 IEEE
4th International Conference on Fog and Edge Computing
ICFEC). doi:10.1109/icfec50348.2020.00012.

[9] Abdel-Basset, M., El-shahat, D., Elhoseny, M., & Song, H.
(2020). Energy-Aware Metaheuristic algorithm for Industrial Internet of
Things task scheduling problems in fog computing applications. IEEE
Internet of Things Journal, 1–1. doi:10.1109/jiot.2020.3012617.

[10] Yang, M., Ma, H., Wei, S., Zeng, Y., Chen, Y., & Hu, Y. (2020). A
Multi-Objective Task Scheduling Method for Fog Computing in Cyber-
Physical-Social Services. IEEE Access, 8, 65085–
65095. doi:10.1109/access.2020.2983742.

[11] Hoseiny, F., Azizi, S., Shojafar, M., & Tafazolli, R. (2021). Joint QoS-
aware and Cost-efficient Task Scheduling for Fog-cloud Resources in a
Volunteer Computing System. ACM Transactions on Internet
Technology, 21(4), 1–21. doi:10.1145/3418501.

[12] Tran-Dang, H., & Kim, D.-S. (2021). Task Priority-based Resource
Allocation Algorithm for Task Offloading in Fog-enabled IoT Systems.
2021 International Conference on Information Networking.
(ICOIN). doi:10.1109/icoin50884.2021.9333992.

[13] M. Abdel-Basset, N. Moustafa, R. Mohamed, O. M. Elkomy and M.
Abouhawwash, "Multi-Objective Task Scheduling Approach for Fog
Computing," in IEEE Access, vol. 9, pp. 126988-127009, 2021, doi:
10.1109/ACCESS.2021.3111130.

[14] J. U. Arshed and M. Ahmed, "RACE: Resource Aware Cost-Efficient
Scheduler for Cloud Fog Environment," in IEEE Access, vol. 9, pp.
65688-65701, 2021, doi: 10.1109/ACCESS.2021.3068817.

[15] Singh, G., Chaturvedi, A.K. Hybrid modified particle swarm
optimization with genetic algorithm (GA) based workflow scheduling in
cloud-fog environment for multi-objective optimization. Cluster
Comput 27, 1947–1964 (2024). https://doi.org/10.1007/s10586-023-
04071-1.

[16] F. A. Saif, R. Latip, Z. M. Hanapi and K. Shafinah, "Multi-Objective
Grey Wolf Optimizer Algorithm for Task Scheduling in Cloud-Fog
Computing," in IEEE Access, vol. 11, pp. 20635-20646, 2023, doi:
10.1109/ACCESS.2023.3241240.

[17] Zhang, Y., Wang, J. Enhanced Whale Optimization Algorithm for task
scheduling in cloud computing environments. J. Eng. Appl. Sci. 71, 121
(2024). https://doi.org/10.1186/s44147-024-00445-3.

[18] A. Alwabel and C. K. Swain, "Deadline and Energy-Aware Application
Module Placement in Fog-Cloud Systems," in IEEE Access, vol. 12, pp.
5284-5294, 2024, doi: 10.1109/ACCESS.2024.3350171.

[19] Z. A. Khan, I. A. Aziz, N. A. B. Osman and S. Nabi, "Parallel Enhanced
Whale Optimization Algorithm for Independent Tasks Scheduling on
Cloud Computing," in IEEE Access, vol. 12, pp. 23529-23548, 2024,
doi: 10.1109/ACCESS.2024.3364700.

[20] I. M. Ali, K. M. Sallam, N. Moustafa, R. Chakraborty, M. Ryan and K. -
K. R. Choo, "An Automated Task Scheduling Model Using Non-
Dominated Sorting Genetic Algorithm II for Fog-Cloud Systems," in
IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2294-2308,
1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3032386.

[21] Mirjalili S. and Lewis A., “The whale optimization algorithm,”
Advances in engineering software, vol. 95, pp. 51–67, Elsevier, 2016.

[22] Celso A. R. L. Brennand, Daniel Ludovico Guidoni (2021). Fog
Computing-based Traffic Management Support forIntelligent
Transportation Systems. 17165-217-13756-1-10-20210911.

[23] Ning, Z., Huang, J., & Wang, X. (2019). Vehicular Fog Computing:
Enabling Real-Time Traffic Management for Smart Cities. IEEE
Wireless Communications, 26(1), 87–
93. doi:10.1109/mwc.2019.1700441.

[24] Mishra P. K., A. K. Chaturvedi, "State-Of- The-Art and Research
Challenges in Task Scheduling and Resource Allocation Methods for
Cloud-Fog Environment," 3rd International Conference on Intelligent
Communication and Computational Techniques (ICCT), Jaipur, India,
2023, IEEE, doi: 10.1109/ICCT56969.2023.

[25] Mishra P. K., Chaturvedi A. K., "Research Challenges in Job Scheduling
and Resource Distribution Methodology for Cloud Fog Network: An

https://doi.org/10.1186/s44147-024-00445-3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

440 | P a g e

www.ijacsa.thesai.org

Organized Analysis. “ International Conference on Computational
Intelligence, Communication Technology and Networking, 2023, IEEE,
doi: 10.1109/CICTN57981.2023.

[26] Sreenu, K., Sreelatha, M. W-Scheduler: whale optimization for task
scheduling in cloud computing. Cluster Comput 22 (Suppl 1), 1087–
1098 (2019). https://doi.org/10.1007/s10586-017-1055-5

https://doi.org/10.1007/s10586-017-1055-5

