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Abstract—A current research area called fog computing aims 

to extend the advantages of cloud computing to network edges. 

Task scheduling is a crucial problem for fog device data 

processing since a lot of data from the sensor or Internet of 

Things layer is generated at the fog layer. This research 

suggested a vehicular traffic congestion detection model and an 

energy-aware cost effective task scheduling (ECTS) method in a 

cloud fog scenario. This research proposes an ECTS approach to 

allocate jobs to the fog nodes effectively. The recommended 

scheduling approach minimizes energy consumption and 

decreases expenses for time-sensitive real-time applications.  The 

ECTS algorithm is implemented, and results are analysed using 

the iFogSim simulator. The proposed method minimizes energy 

consumption and cost.  The suggested ECTS method is tested 

with five sets of inputs in this paper. The experiment's results 

show that an ECTS minimizes energy consumption in 

comparison to alternative algorithms. It also reduces the 

execution cost. The suggested approach outperforms both the 

Round-Robin (RR) and Genetic Algorithm techniques. 

According to the simulation results, the suggested algorithm 

reduced overall costs by 13.38% and energy usage by 6.59% 

compared to the Genetic Algorithm (GA). Compared to RR, the 

proposed method minimizes energy use by 13.76% and total costs 

by 18.46%. 

Keywords—IoT; fog computing; task scheduling; multi 

objective  Model;  iFogSim tool 

I. INTRODUCTION 

One of the most crucial improvements in the realm of 
technology in the last several years is the Internet of Things 
(IoT) devices for the computation and exchange of 
information. IoT devices allow a wide range of items and 
equipment like sensors, cameras, automobiles, and 
connectivity with the Internet with smart devices like cell 
phones and laptops. Numerous applications and service 
offerings, such as latency minimization, control of traffic, and 
response time improvement, can be carried out as a result. 
Large volumes of data are produced through end devices as a 
result, which require supervision, processing, and analysis to 
generate appropriate data that will meet the user's objectives 
and aims. Moreover, the volume of data and a variety of 
required services and apps are expanding very quickly, 
demanding more computing power than even the most 
advanced smart devices can no longer match. The well-known 
cloud environment is a vast repository of resources that 

permits the universal ability to share and dynamically provide 
users with resources through virtualization procedures, which 
is one potential platform to aid in IoT improvements. By 
shifting resource and service-intensive jobs to a trustworthy 
computer environment, like the cloud, allowing smart devices 
to undertake basic tasks, limitations of current smart devices, 
such as enhancements, might be made to processing speed, 
capacity of storage, and resources required at the network. 
However, combining the use of clouds with the IoT creates 
further problems. It is anticipated that 50 billion IoT devices 
has been deployed in 2023. This figure will be increased to 
35.8 billion in 2030, with the exponential rise in connected 
devices and cloud architectures that rely on traditional 
centralized processing features where storage and 
computational resources combined won't be enough to handle 
the demands of the Internet of Things devices burden. The 
main reason is that IoT gadgets and the cloud's infrastructure 
are quite far apart. The enormous amount of data of IoT 
devices send via the Internet to the cloud will strain the 
network's capacity and bandwidth, causing congestion, 
particularly near bottlenecks [4]. IoT applications are latency 
sensitive; therefore, a transmission delay reduces the Quality 
of Services (QoS), negatively impacting the user experience. 

Fog computing [1], an innovative strategy of cloud 
computing first introduced by Cisco, has the potential to 
transform connecting the network’s boundary to a distributed 
processing design that can accommodate the end devices 
services. By using fogging, clients may access computing and 
data storage power resources more conveniently by extending 
cloud computing to data-generating and data-receiving IoT 
gadgets; instead of moving all the processing to the CDS 
(Cloud Data Center), the Fog layer goals to process the 
maximum of the traffic load created by end devices nearby to 
the user’s ranger of the network, called fog computing 
devices. Anywhere there is network connectivity, such as 
factories, shopping malls, electricity poles, railroads, inside of 
cars, etc., may use end devices. A fog node is any device with 
networking, computing, and storage capabilities. These 
devices include embedded servers, switches, routers, 
controllers, and security cameras. Requests are optimized for 
transmission time by putting resources near the network’s 
edge, where the minimum amount of time needed for 
information to arrive at a point of processing larger-scale and 
delay-tolerant activities still be routed to the cloud layer. At 
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the same time, smaller jobs or task requirements with low 
latency have to be given precedence to be handled by fog 
computing platforms deposited at fog nodes with limited 
processing capability. Ultimately, fogging and cloud 
computing combine to create the cloud fog scenario, a new 
paradigm for the computing environment. This innovative 
strategy has several benefits, which include latency 
minimization, minimize high network traffic, and minimizing 
power consumption. Balancing of load for jobs ensures that no 
resource remains idle while others are being used [1]. The 
security risks businesses face using cloud computing has 
decreased [2]. For enterprises deploying solution of big data 
on cloud infrastructure, is a crucial factor to consider. 

The paper is presented in the following sequence. Specific 
literature review for task scheduling within the framework of 
cloud fog atmosphere is provided in section 2. The proposed 
Vehicular Traffic Congestion Detection (VTCD) System and 
ETS scheduling algorithm are presented in Section 3. Section 
4 provides a simulation environment. Section 5 includes 
performance analysis and simulation outcomes. Section 6 
present the conclusion and forthcoming scope at the end.  

II. LITERATURE REVIEW 

According to Jayasena et al. [3], scheduling of job 
necessitates optimizing two goals: minimizing cost and 
decreasing power utilization. The author designed a meta-
heuristic Whale Optimization Algorithm (WOA) mapped 
procedure to explain the recommended system and calculate 
the outcomes in iFogSim against heuristic techniques like 
Particle Swarm Optimization (PSO) and RR and SJF. Xu et al. 
[4] explain the laxity-mapped precedence approach to build a 
scheduling of task order with a fair priority. According to the 
author, based on the ant colony system (ACO) algorithm, this 
strategy minimizes overall energy use. 

Tan, et al. [5] proposed an energy-efficient approach and 
looked at a task scheduling issue along with time limit 
restrictions in instances when could exist distributed 
throughout heterogeneous assets, such as fog computing, and 
an energy-conscious algorithm capable of finding the best 
solution in a polynomial amount of time. Nikoui et al. [6] 
developed a genetic-based (CAGB) planning method that 
improves efficiency at a lower cost for real-world applications 
with tight deadlines. Its effectiveness is evaluated regarding 
system overload, expenses, and delay. Fellir Z. et al. [7] 
presented multi-agent-based planning method, the most 
important tasks are handled first to ensure that when a packet 
with the highest importance goes into the waiting line, the job 
is dealt with, without interfering with the least significant 
task's implementation if it is presently being run. Madej et al. 
[8] presented four scheduling schemes named NFCFS (Naive 
First Come First Serve) technique. The other three schemes 
are client fair, prioritized fair, and hybridization. 

Abdel Basset, et al. [9] suggested method improved the 
effectiveness of the best outcome and justified the workload 
across the accessible simulated engines by using a meta-
heuristic method and a shift modification technique. Yang et 
al. [10] presented the superior value efficiency and scale 
outcome set to tackle the two-parameter collaboration to 
minimize fog computing scheduling task difficulties. The 

results demonstrate how the suggested strategy performs 
better than conventional strategies regarding resource cost, 
overall job execution time, etc. Hoseiny et al. [11] suggested 
cost aware scheduling method reduces latency, computation 
costs, and communication costs for IoT inquiries while 
increasing the proportion of tasks that are finished earlier than 
the deadline. This algorithm is compared with genetic 
algorithm. 

The Task Priority Resource Allocation (TPRA) algorithm 
was presented by Dang et al. [12]. This algorithm's primary 
goal is to minimize the average latency in the fog network's 
diverse environment.  Abdel-Basset et al. [13] presented the 
multiple objective task scheduling technique. This algorithm 
aims to minimize the rate of carbon emissions, make-span, 
and energy consumption. The resource-aware-cost-efficient 
(RACE) scheduler was introduced by Arshed et al. [14]. This 
method distributes the incoming jobs to fog nodes function. 
This strategy pursues minimizing bandwidth use, maximize 
Fog Node (FN) utilization at the fog layer, and shorten 
application make span. 

In a fog context, Singh et al.'s [15] hybrid swarm 
optimization using genetic algorithms (GA) reduces execution 
time and cost. Compared to GA and PSO, the workflow 
scheduling experimental result that is being provided is 
superior. The MGWO multi-objective optimization approach 
was introduced by Saif, et al. [16] multiple goals, including 
make-span, throughput, energy, and delay. This approach aims 
to ascertain the optimal strategy for work scheduling at the fog 
layer. The MGWO algorithm's experimental result 
outperforms the equivalent methods regarding power 
minimization and delay reduction. Zhang et al. [17] introduced 
the Enhanced Whale Optimization Algorithm (EWOA). It's a 
technique for scheduling tasks with multiple objectives in a 
cloud computing environment—a search strategy known as 
Levy's struggle in EWOA. The results of the various heuristic 
and meta-heuristic algorithms match the results of the EWOA 
experiment. EWOA performs better in cost reduction and 
energy use minimization than these existing algorithms. 
Alwabel et al. [18] offered a deadline and power-efficient job 
scheduling method in a fog computing network. This method 
aims to determine which jobs are crucial and prioritize them 
so that they may be finished at the fog layer. The simulator 
iFogSim is used for outcome analysis. The recommended 
approach outperforms earlier algorithms regarding deadline 
and energy consumption reduction. 

The PEWO (Parallel Enhanced Whale Optimization) 
approach was created by Khan et al. [19] for task scheduling 
at the cloud computing layer. This meta-heuristic method aims 
to minimize make-span and execution time. In a 
heterogeneous cloud environment, tasks are assigned using the 
PEWO approach. The experimental result of PEWO is better 
represented by the random matrix particle swarm optimization 
(RMPSO). Ali et al. [20] presented DNSG, a task scheduling 
system, by dynamically assigning the task to a fog node; the 
proposed approach aims to reduce make-span and cost 
compared to modified GA. Balancing tasks is also one of the 
issue in cloud fog environment. Within the Cloud-Fog system 
[24-25], job scheduling aims to maximize benefits for either 
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service End users are concerned about minimizing make-span, 
power consumption and cost. 

A thorough analysis reveals that there is a trade-off 
between minimizing costs and minimizing energy use. 
Consequently, this paper proposes ECTS to assign jobs to FN 
at the fog layer with the least amount of energy consumption 
and the best possible cost. WOA is inherited by the proposed 
ECTS method. This method determines the fitness function by 
adding up the expenses of RAM and CPU (central processing 
unit) for every fog node, together with the power used for task 

execution and FN's power when idle. The primary 
contribution of this study is the development of the ECTS 
algorithm. This suggested method for vehicular traffic 
congestion detection applications is simulated using the 
iFogSim simulator as the secondary contribution. 

Table I presents a survey of the latest published study on 
cloud and fog computing task scheduling strategies, as well as 
main idea, improvement parameters and algorithms of 
previous studies. 

TABLE I. REVIEW OF THE EXISTING CLOUD FOG ENVIRONMENT’S SCHEDULING PROCEDURES 

Year Author 
Improvement 

Parameter 
Algorithm Main ideas 

2019 
Jayasena, et al. [3] 

IEEE 

Minimize energy 
consumption, Reduce 

cost 

Whale Optimization task 

scheduling algorithm 

A fog processing system job-planning strategy that 
optimizes two objectives: reducing power consumption 

and cutting expenses.  

2019 Xu, et al. [4] IEEE 
 Energy consumption, 

Execution time 

Laxity based Ant Colony 

algorithm [LBACA] 

To effectively control the adaptability of work latency and 

energy consumption, implemented the ant colony systems 

algorithm and flexibility while accounting for the 

relevance of each task and when it will be finished. 

2020 Tan, et al. [5] Elsevier Energy, Deadline 
Energy Efficient scheduling 
method 

An energy-efficient task scheduling method finding the 
best solution in a polynomial time. 

2020 Nikoui, et al. [6] IEEE Deadline, Cost Genetic  algorithm 

A genetic-based (CAGB) planning method that improves 

efficiency at a lower cost for real-world applications with 
tight deadlines. Its effectiveness is evaluated regarding 

system overload, expenses, and delay. 

2020 Fellir Z, et al. [7] IEEE Priority, Execution Time 
Priority based task scheduling 

algorithm 

Multi-agent-based planning method, the most important 

tasks are handled first to ensure that when a packet with 
the highest importance goes into the waiting line. 

2020 Madej, et al. [8] IEEE Priority, Job Execution 
Priority based task scheduling 

algorithm 

Four scheduling schemes named NFCFS (Naive First 

Come First Serve) technique. The other three schemes are 
client fair, prioritized fair, and hybridization are presented 

2020 
Abdel Basset, et al. [9] 

IEEE 
Energy, Makespan 

Energy aware task scheduling 

algorithm 

Improved the effectiveness of the best outcome and 

justified the workload across the accessible simulated 

engines by using a meta-heuristic method and a shift 
modification technique.  

2020 Yang, et al. [10] IEEE 
Total task execution time, 

resource cost 

Meta heuristic scheduling 

algorithm 

Demonstrate how the suggested strategy performs better 

than conventional strategies regarding resource cost and 
execution time.  

2021 
Hoseiny, et al. [11] 

IEEE 
 Cost, deadline 

Combined (QoS) quality of 

service and cost effective 
scheduling method 

In contrast to a genetic algorithm, the suggested technique 

reduces latency, compute costs, and communication costs 

all at once for IoT inquiries while increasing the 
proportion of tasks that are finished earlier than the 

deadline. 

2021 Dang, et al. [12] IEEE 
Task priority 

An algorithm for allocating 

resources based on task priorities 

Resource allocation algorithm based on task priority 
reduces the average delay in the heterogeneous 

environment in the fog environment. 

2021 
Abdel-Basset, et al. 

[13] IEEE 
Energy, makespan 

Multi objective scheduling 

algorithm 

The purpose of this algorithm is minimizing energy, 

make-span and carbon emission rate. 

2021 
Arshed, et al. [14] 

IEEE 
Execution time, cost RACE scheduler 

Resource aware cost efficient scheduling algorithm at fog 

layer. 

2023 Singh, et al. [15] IEEE Makespan, cost 
Hybrid  particle swarm 
optimization with genetic 

algorithm (GA) 

The purpose of this algorithm is to reduce execution time 

and cost in cloud fog environment. 

2024 Saif, et al. [16] IEEE Throughput, makespan 

Multi-Objectives Grey Wolf 

Optimizer 
(MGWO) algorithm 

MGWO is multi objective optimization technique for 

optimal solution of task scheduling. 

2024 
Zhang, et al.[17] 

Springer 

Execution Cost, power 

consumption 

Improved Whale Optimization 

Algorithm (EWOA) 

EWOA is advanced task scheduling algorithm at cloud 

computing environment. 

2024 
Alwabel, et al. [18] 
IEEE 

Deadline , energy 
consumption 

Power-Aware Placement 
Mechanism (POAPM) 

Deadline and energy consumption minimization  
scheduling at fog computing network 

2024 Khan et al. [19] IEEE Make-span, throughput 
Parallel Improved Whale 

Optimization (PIWO) algorithm 

PIWO algorithm is used for allocation of tasks at cloud 

computing layer. The purpose of this algorithm is 
minimizing make-span and execution time 

2022 Ali et al. [20] IEEE Execution time, cost 
Non-dominated Sorting Genetic 
(NSG) algorithm II 

DNSG is scheduling algorithm at cloud fog environment. 

Purpose of proposed algorithm is minimizing cost and 

execution time 
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III. PROPOSED SYSTEM ARCHITECTURE 

This section describes the proposed three tire architecture 
of a vehicular congestion detection system, and the ECTS 
algorithm in cloud fog network. 

A. Proposed Vehicular Traffic Congestion Detection 

Architecture 

Vehicular Traffic Congestion Detection (VTCD) 
architecture in a cloud fog network is shown in Fig. 1. As 
shown in the diagram this is a three-layer model for detecting 
vehicular traffic congestion. Layer 1 represents the end 
devices layer, and at this layer, sensors detect vehicular traffic 
congestion, and forward requests at layer two, i.e., fog 
computing layer through IoT enabled devices. At the layer 
two, clusters of FN are available. Each cluster of FN is 
connected to a Master Fog Server (MFS) called a fog server. 
MFS is responsible for checking resource availability, 
scheduling tasks to FN, and assigning tasks (jobs) to the 
appropriate FN. These fog nodes process jobs and respond to 
MFS. Using an actuator, MFS responds to end devices and 
displays traffic congestion detection-related information. MFS 
also forwards task results to layer three, the Cloud Data Center 
(CDC), through a proxy server to store the results for future 
reference. 

 

Fig. 1. Proposed three-tier model of vehicular traffic congestion detection. 

1) Vehicular traffic area and end devices: As shown in 

Fig. 1, end users approach end devices using gadgets like 

tablets, smartphones, desktops, notebook computers, wearable 

devices, etc. In this paper, end devices are vehicular traffic on 

roads in different city areas. As we can see in this diagram, 

vehicular traffic area 1 to vehicular traffic area n are shown 

where sensor 1 to sensor n detect traffic on the road and 

forward this information to layer 2 using IoT-enabled devices. 

2) The proxy server and fog computing layer: Fog 

computing is the middle layer in the cloud fog scenario with 

three-tier architecture called fogging or fog networking. FNs 

are near-end devices for computing, storage, and 

communication with end users locally with reduced latency, 

low bandwidth and lower cost compared to cloud computing 

environments. An enhanced version of cloud computing, i.e., 

fogging, reduces stress in the layer of clouds [22-23]. A proxy 

server is router that communicates with and prevents cyber-

attacks, reduces latency between the CDS and layer 2. Data 

can be retrieved by fog nodes from cloud storage whenever 

further processing is required. 

B. Proposed Task Scheduling Model 

The suggested task scheduling technique for assigning jobs 
to the FN in the cloud fog network is covered in this part. A 
recommended job scheduling plan is based on the WOA [21] 
and the multiple-objective model [26]. Fig. 2 depicts the 
system of the suggested ECTS method of this paper for 
assigning tasks to the FN. The memory, CPU, and energy 
consumption functions are all computed using the multiple-
objective computation. The cost function and energy 
consumption are added to get the fitness value. By the fitness 
rating, the tasks are allocated to the Fog nodes. ECTS first 
considers the current solution is the best solution. This process 
is repeated until the optimum solution is identified. In this 
paper task scheduling aims to minimize energy and total cost 
while assigning task to the fog node as effectively as feasible. 

 
Fig. 2. Model of the proposed ECTS scheduler. 

The fog layer which contains of n numbers of fog nodes. 
Where FL represents fog layer and  { 𝐹𝑁1, 𝐹𝑁2, 𝐹𝑁3,
𝐹𝑁4……… . 𝐹𝑁𝑛 }  represent fog nodes presented at fog layer. 
This can be represented as, 

𝐹𝑜𝑔, 𝐹𝐿 = { 𝐹𝑁1, 𝐹𝑁2, . . . 𝐹𝑁𝑛 }       (1) 

The fog node FN1 can be represented by the equation that 
follows. Where,  { 𝐹𝑁1, 𝐹𝑁2, . . . 𝐹𝑁𝑛 }  represents the fog 
nodes. Master Fog Node (MFS) connected with cluster of fog 
nodes at layer 2. 

𝑀𝐹𝑆 = { 𝐹𝑁1, 𝐹𝑁2, . . . 𝐹𝑁𝑛 }  (2) 
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Each fog node has the CPU and the memory. 𝑇𝑘 
represents task and MFS represent master fog server. 

𝑇𝑘 = { 𝑇1, 𝑇2 .  .  .  .  .  .  𝑇500 }  (3) 

Where, 𝑇1  is the task first and 𝑇450  shows 500th task. 
Assume that one IoT device forward 10  𝑇𝑘 to MFS. 

In this paper proposed algorithm: ECTS, where tasks and 
fog nodes are inputs. The suggested task scheduler aims to 
best distribute the job across the fog nodes. The WOA is the 
basis for this scheduler. Initially, the search agent population 
is initialized. The model of proposed ECTS scheduler 
computes the fitness value. Equation number 15 updates the 
search agent's position if the e is greater than or equal to 0.5. 
The 13th and 14th equation are used to update the search 
agents' positions if the e is less than 0.5. Until the ideal 
solution is found, this procedure is carried out repeatedly. 

Proposed Algorithm :  ECTS 

Input: Task T, Fog Node FN 

Result:  Fog nodes are assigned the jobs. 

Control Parameters 𝑆∗, α, N, W, t, p 

Begin 

        Set up the population initially. 𝑆𝑖  (i = 1, 2, …, n) 

        Fitness value obtained from the sub function 

1.         Initialize the current best agent 𝑆∗ 

2.         Update α, N, W, t, p 

3.          if ( e < 0.5) 

4.              if ( |N| < 1) 

Change the search agent's location with equation 13. 

5.              Else if ( |N| ≥ 1) 

    Change the search agent's location with equation 14. 

             End if 

6.          End if 

         if ( e ≥ 0.5) 

              Change the search agent's location with equation 15. 

        End if 

In the event that (any search agent leaves the search space)   

             Update  𝑆∗ 

Assign y to y + 1. 

       End if 

End 

Sub function: 

Input: Tasks T, Fog Nodes FN 

Output: Fitness value 

 For (all the Fog nodes) 

 Find active energy consumption function by equation 4  

 Find idle energy consumption function by equation 5 

 Find total energy consumption function by equation 6 

 Find the fitness value by equation 12 

 End for 

End 

1) Energy Consumption: Energy consumption formula is 

similar like [15]. 

𝐸𝑅𝑢𝑠𝑎𝑔𝑒(𝑦) =  ∑ µ 𝐹𝑖  𝑉𝑖
2  𝑛

𝑖=1 (𝐵𝑇𝑇𝑖
 - 𝐸𝑇𝑇𝑖

 )  (4) 

𝐸𝑅𝑖𝑑𝑙𝑒(𝑦) =  ∑  ∑ µ𝑖𝑑𝑙𝑒𝑗𝑘   ɛ  𝐼𝐷𝐿𝐸𝑗𝑘
 𝑅𝐹min 𝑖   𝑉𝐿min 𝑖

2  𝑚
𝑗=1      (5) 

The power consumption during job i, when the resource is 
operating at peak efficiency and is about to enter sleep mode, 
and added together to get the total energy consumption. 

𝐸𝑅𝑢𝑠𝑎𝑔𝑒  is active energy usage and 𝐸𝑅𝑖𝑑𝑙𝑒  is idle energy 

consumed by system at sleep mode.  𝐹𝑖  is frequency, 𝑉𝑖  is 

voltage supply fog node where task executes. 𝐵𝑇𝑇𝑖
, represent 

beginning time and 𝐸𝑇𝑇𝑖
 is end time for task  𝑇𝑖   and µ  is 

constant. 

𝑇𝐸𝑅𝑐𝑜𝑛  (y) =  𝐸𝑅𝑢𝑠𝑎𝑔𝑒  +  𝐸𝑅𝑖𝑑𝑙𝑒   (6) 

2) Total cost: The fog node total cost is calculated as, 

C (y) = ∑ 𝐶𝑐𝑜𝑠𝑡  (𝑘)
|𝐹𝑁|
𝑘=1         (7) 

𝐶𝑐𝑜𝑠𝑡  (𝑘) = 𝐶𝑏𝑎𝑠𝑖𝑐 ∗ 𝐶𝑘 ∗ 𝑡𝑖𝑘 ∗ 𝐶𝑡𝑟  (8) 

M (y) = ∑ 𝑀𝑐𝑜𝑠𝑡 (𝑘)
|𝐹𝑁|
𝑘=1    (9) 

𝑀𝑐𝑜𝑠𝑡  (𝑘) = 𝑀𝑏𝑎𝑠𝑖𝑐 ∗ 𝑀𝑘 ∗ 𝑡𝑖𝑘 ∗ 𝑀𝑡𝑟    (10) 

Where 𝐶𝑐𝑜𝑠𝑡  (𝑘) is the cost of CPU of fog node 𝐹𝑁𝑘 and 
𝑡𝑖𝑘  is the amount of time in which task 𝑇𝑖  is executed at 
node  𝑆𝑘 .  𝐶𝑡𝑟  is the communication cost of the CPU of fog 
node. Here , 𝐶𝑏𝑎𝑠𝑖𝑐  and  𝐶𝑡𝑟 are constant where 𝐶𝑏𝑎𝑠𝑖𝑐   is 0.16 
per hours and 𝐶𝑡𝑟  is 0.004, much like in [26]. |FN| is the total 
no of fog nodes.  𝑀𝑏𝑎𝑠𝑖𝑐   is 0.04 GB per hour and 𝑀𝑡𝑟  is 0.4,  
C(y) is the total no of cost of CPU of FN and M(y) is the 
memory cost of FN .  𝑇𝐶 (𝑦)  denote the total cost, it can be 
calculated as, 

𝑇𝐶(𝑦) =  C(y) + M(y)      (11) 

3) Fitness value determining: To determine the best 

solutions, the fitness value is computed; the solution must 

have the lowest possible energy consumption and lowest 

possible cost function. The following formula is used to 

calculate fitness. 

𝐹𝑉(𝑦) =  𝑇𝐸𝑅𝑐𝑜𝑛  (y)  +  𝑇𝐶(𝑦)  (12) 

4) Whale optimization algorithm: For distributing the jobs 

to the fog nodes as efficiently as possible, the whale 

optimization method [21] is explained. The collection of 

random solutions is where the whale optimization process 

starts. It moves forward with the process under the 

presumption that the present answer is optimal. Repeating this 

procedure keeps on until the best solution is found. 

𝑆 (𝑦 + 1)  =  S ∗⃗⃗⃗⃗  ⃗ (𝑦)  −  𝑁⃗⃗  ⃗  ∗   𝐷⃗⃗   (13) 

𝑆 ⃗⃗⃗  (𝑦 + 1)  =   𝑆𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   −    𝑁⃗⃗  ⃗  ∗   𝐷⃗⃗   (14) 

𝑆 ⃗⃗⃗  (𝑦 + 1)  =    𝐷′ ∗  𝑏𝑣𝑡 ∗ cos(2 𝛱 𝑡 ) + 𝑆∗ (𝑦) (15) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

437 | P a g e  

www.ijacsa.thesai.org 

Where, y denotes current iteration,  𝑆  is position vector 

and  𝑆 ∗⃗⃗⃗⃗  ⃗   represents optimal solution.  𝑆𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   is random 

location vector, 𝑁⃗⃗  represents the coefficient vector. 𝑊⃗⃗⃗  
represents the coefficient vector. In equation 11, v is constant 
and t shows the value in [-1, 1] interval. | | denotes the 
absolute value, while * denotes multiplication of elements by 
elements.  𝐷′  is calculated as follows, 

𝐷′  =   |  S ∗⃗⃗⃗⃗  ⃗ (𝑦)  −  𝑆  (𝑦) |  (16) 

𝐷⃗⃗  =   | 𝑊 ⃗⃗⃗⃗  ⃗  ∗      S ∗⃗⃗⃗⃗  ⃗ (𝑦)  −   𝑆  (𝑦) |   (17) 

Where 𝑁⃗⃗  and  𝑊⃗⃗⃗  can be computed by following formula, 

 𝑁⃗⃗  = 2 ∝ ⃗⃗  ⃗ ∗  𝛽 − ∝ ⃗⃗  ⃗         (18) 

𝑊⃗⃗⃗  = 2 ∗  𝛽    (19) 

The value of  ∝⃗⃗  is move between 2 to 0 and 𝛽  denote the 
arbitrary vector in [0, 1]. 

IV. SIMULATION ENVIRONMENT 

The simulation environment used to perform calculations 
is explained in this section. Simulation scenario of Vehicular 
Traffic Congestion Detection (VTCD) system in fog 
computing environment has shown in Fig. 3. where S1, S2, 
S3, S4 are sensors to collect cross-road vehicular traffic 
information and A1, A2, A3, A4…A8 are actuators to display 
the results and total four terminals for VTCD system IoT 
Devices (T_IoT_D1, T_IoT_D2, T_IoT_D3, T_IoT_D4) are 
used to collect VTCD information from sensors and forward 
to Fog Node (FN) where four fog nodes (FN1, FN2, FN3, 
FN4) have used in this simulation at fog computing layer. 
Controller Fog Server (MFS) collects information from FN 
and stores it at CDC (Cloud Data Center) via a proxy server. 
This topology was created and simulated by the iFogSim 
simulator. 

 
Fig. 3. Scenario of ECTS with VTCD for simulation in cloud fog 

environment. 

Table II shows configuration parameters and values at the 
Cloud Server, Proxy Server, and Fog Computing layer, which 
are used to simulate the cloud fog environment. Table III 
represents the description, various notations used, values 
assumed in this paper, and system configuration. 

TABLE II. CONFIGURATION PARAMETER 

Requirement at Cloud Proxy server at Fog 

Processing unit (MIPS) 44700 2900 2900 

Main memory in MB 9900 3900 3900 

Up_bps in MB 100 9900 9900 

Dn_bps in MB 9900 9900 9900 

Layer 3 2 1 

Rate in MIPS 0.01 0 0 

power_b in WATT 17*104 107.349 107.349 

power_ID in WATT 17*83.24 85.5333 85.5333 

TABLE III. NOTATION, VALUES AND DESCRIPTION 

Description Notation and values 

Max no of IoT device 50 

p [-1 , 1] 

i 1, 2, 3… 

Maxitr 100 

FN fog node 

EDN edge device node 

System Intel ® Core(TM) i3 CPU  

Tool for simulation iFogSim 

OS(operation system) Window 7 Ultimate, 64 bit 

V. EXPERIMENTAL RESULTS AND PERFORMANCE 

ANALYSIS FOR PROPOSED ECTS ALGORITHM 

Performance evaluation of the proposed algorithm with 
VTCD application in a cloud fog network is shown in this 
section. The measurements for energy consumption 
performance and the simulation result of overall cost are 
shown in Tables IV and V, respectively. The corresponding 
bar chart of the parameters shows that energy consumption is 
minimized when number of IoT devices have increased as 
shown in Fig. 4, and cost is also minimized when no of IoT 
devices have increased as shown in Fig. 5. Assume that 10 IoT 
devices are equal to 100 tasks. 

TABLE IV. SIMULATION RESULTS FOR THE ENERGY CONSUMPTION  

 No. of IoT Devices Consumption of energy  (in WATTS) 

10 188040.91 

20 185103.87 

30 185103.39 

40 182487.18 

50 176916.18 
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Fig. 4. Energy consumption. 

TABLE V. SIMULATION RESULTS FOR THE COST 

No. of IoT Devices Cost ($) 

10 395905.15 

20 392444.41 

30 614328.21 

40 761434.06 

50 810188.88 

 

Fig. 5. Cost. 

Table VI shows the comparative study of the proposed 
ECTS method with the existing methods, such as (Round 
Robin) RR [3] and (Cost aware genetic algorithm) GA [6]. 
The proposed ECTS method has the minimum energy 
consumption 176916.18. The energy consumption of RR is 
201259.8464 and the energy consumption of GA is 
188574.9563. The total cost of  RR and GA are 959749.7472 
and 918592.1521 respectively while the total cost of proposed 
ECTS method is 810188.88 which is smaller than the other 
existing methods. 

TABLE VI. COMPARATIVE STUDY OF THE ECTS METHOD WITH THE RR 

AND GA 

 ECTS RR GA 

Energy consumption 176916.18 201259.8464 188574.9563 

Cost 810188.88 959749.7472 918592.1521 

This is the analysis of the proposed algorithm in this paper. 
A range of IoT devices as input of 10-50 have been used for 
the simulation at the iFogSim simulator. Assume that 10 IoT 
devices are equal to 100 tasks and 50 IoT devices are equal to 
500 tasks. As shown in Fig. 6 energy consumptions are 
minimized in the proposed algorithm when no of IoT devices 
are increased as compared to RR and GA. As shown in Fig. 7. 
The proposed algorithm minimizes the overall cost when the 
number of IoT devices increases compared to RR and GA. 

 
Fig. 6. Energy consumption comparison. 

 
Fig. 7. Cost comparison. 
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Column chart for comparison of energy consumption, 
overall cost with GA, RR, and proposed algorithm show that 
the proposed result is better compared to others, especially in 
energy and cost parameters. 

VI. CONCLUSION 

The design of the task scheduling technique is the primary 
purpose of this study. The secondary objective is designing a 
Vehicular Traffic Congestion Detection (VTCD) system. The 
proposed Energy-aware Cost effective Task Scheduling (ECTS) 
scheduling algorithm performance has been analyzed using 
various inputs. Two other approaches, particularly the Genetic 

Algorithm (GA) and Round-Robin (RR) in a cloud-fog network, 
were compared with the proposed algorithm using the 
iFogSim simulator. Especially for energy usage and cost 
parameters, our proposed algorithm ECTS performed better 
than the others at five different sets of inputs. The simulation 
result shows that energy consumption is minimized by 6.59%, 
and the overall cost is minimized by 13.38% compared to GA. 
In comparison, energy consumption is minimized by 13.75%, 
and the overall cost is minimized by 18.46% compared to RR. 
Here, multi-objective means task’s cost, energy consumption 
and deadline for scheduling the user's request at the fog 
computing layer. Furthermore, the suggested algorithm may 
adapt to the end user's requirement for higher processing 
performance for other applications. 

In the future, improvements may be made in ECTS 
algorithm to address other issues like reducing make-span, 
response time, security issues, etc. improvement for other real 
time applications. 
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