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Abstract—Malware detection is crucial for protecting digital 

environments. Traditional methods involve static and dynamic 

analysis, but recent advancements leverage artificial intelligence 

(AI) to enhance detection accuracy. This study aims to improve 

malware detection by integrating dynamic malware analysis with 

AI-driven techniques. The primary challenge addressed is 

accurately classifying and detecting malware based on behavior 

extracted from isolated virtual machines. By analyzing 50 

malware samples and 11 benign programs, we extract ten 

behavioral features such as process ID, CPU usage, and network 

connections. We employ text-based classification using 

feedforward neural networks (FNN) and recurrent neural 

networks (RNN), achieving accuracy rates of 56% and 68%, 

respectively. Additionally, we convert the extracted features into 

grayscale images for image-based classification with a 

convolutional neural network (CNN), resulting in a higher 

accuracy of 70.1%. This multi-modal approach, combining 

behavioral analysis with AI, not only enhances detection accuracy 

but also provides a comprehensive understanding of malware 

behavior compared to competing methods. 
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I. INTRODUCTION 

Recently, the number, severity, sophistication of malware 
attacks, and cost of malware inflicts on the world economy have 
been increasing exponentially. Attacks with these kinds of 
software have disastrous effects and cause considerable 
material damage to individuals, private companies, and 
governments’ assets. Thus, malware should be detected before 
damaging the important assets in the company [1]. The primary 
motivation for this research stems from the need to enhance 
existing detection mechanisms to keep pace with the constantly 
changing threat landscape. With traditional analysis methods, 
we aim to significantly improve the detection and classification 
accuracy of malicious software. One of the key advantages of 
our approach is the combination of dynamic-based malware 
analysis with AI-driven techniques. This allows for a more 
comprehensive understanding of malware behavior. This 
hybrid approach not only improves detection rates but also 
enhances the ability to accurately classify and understand the 
nature of malware. 

There are two main techniques for analyzing malware static 
and dynamic-based analysis. Static-based analysis examines 
the malware code without actually executing it. This by 
integrating advanced artificial intelligence (AI) techniques can 

provide information about suspicious functions, network 
activity, impacted files, etc. Dynamic-based analysis executes 
the malware code in an isolated environment to observe its 
runtime behavior. This provides insight into the full impact of 
the malware. A key benefit of static-based analysis is the ability 
to thoroughly inspect malware code using techniques like 
disassembly and decompilation to identify suspicious functions 
related to replication, propagation, payload activation, and 
more [2]. The static techniques help reveal overall structure, 
dependencies, triggers for malicious events, and obfuscation 
attempts. However, lacking runtime behavior, static-based 
analysis cannot confirm the real impact of suspected 
capabilities. Complex packing or encryption techniques also 
limit code inspection. Other hand, the dynamic-based analysis 
provides direct observation of malware behavior in action by 
executing it and monitoring the resulting activity. 

Dynamic-based analysis confirms suspected functions 
based on static clues and captures full infection chains showing 
the progression and end objectives of malware according to 
case studies by [3]. Dynamic monitoring of memory access, 
network calls, system API usage, and more creates a 
comprehensive picture.  Additionally, dynamic-based analysis 
is particularly effective in identifying and analyzing newly 
emerging malware strains. As it focuses on the runtime 
behavior, it is better equipped to handle polymorphic and 
metamorphic malware that may change its form to evade static-
based analysis techniques. Leveraging AI models for the 
analysis of malware code or the study of malware behavior has 
significantly contributed to the detection of malware in recent 
years. Numerous AI models have been integrated into static or 
dynamic approaches to augment both the malware detection 
rate and feature extraction processes. Despite the notable 
progress in the field of AI, these models still face various 
challenges. This research will use many models of AI to detect 
malware. 

Robust malware analysis faces numerous obstacles. The 
sheer volume of malware proliferating at a rapid pace presents 
a formidable challenge in comprehensively examining this 
ever-expanding threat landscape. Additionally, malware 
authors employ sophisticated obfuscation tactics, such as code 
interchange, amalgamation, register reassignment, null 
insertion, and subroutine reordering [3], purposefully designed 
to evade detection by anti-malware systems. Despite decades of 
development, these security solutions still exhibit high false 
positive rates, undermining their accuracy. 
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Moreover, certain malware strains possess the ability to 
identify virtualized environments, resulting in altered or ceased 
execution, hindering effective analysis. The evasion techniques 
employed by malware necessitate lengthy detection times, 
potentially ranging from minutes to hours depending on the 
specific malware variant, during which systems remain 
vulnerable to compromise. Furthermore, the ambiguity 
surrounding API calls, as both malicious and benign software 
may legitimately invoke common APIs, complicates the 
process of distinguishing malware based on API usage patterns. 

These factors, including the immense scale, obfuscation 
methods, virtual environment detection capabilities, delayed 
identification timelines, and the dual usage of APIs, collectively 
contribute to the arduous nature of robust malware analysis, 
necessitating the development of advanced techniques to 
overcome these challenges effectively. The juxtaposition of text 
classification and image classification in the analysis of 
extracted behavior. It underscores that a nuanced understanding 
of program nature, distinguishing between benign and 
malicious entities, can be achieved through thorough behavior 
analysis. The model primarily relies on the extraction of 
malware features. Within the developed script, two distinct 
observers play a crucial role. The first observer extracts the 
entirety of the process, encompassing its characteristics, as well 
as details related to internet connections. The second observer 
is tasked with monitoring any file creation specifically linked 
to the malware. The experimental framework involves the 
extraction of 10 distinct features through the monitoring of 
behaviors within an isolated Virtual Machine. Python libraries 
such as psutil, subprocess, wmi, watchdog, time, json, and os 
were employed to develop functions responsible for observing 
malware behavior and subsequently extracting pertinent 
information to a JSON file. The extracted features encompassed 
critical aspects such as process ID, process name, username, 
CPU percentage. 

II. RELATED WORK 

Artificial Intelligence (AI) has emerged as a powerful tool 
in this ongoing struggle to detect and classify malware offering 
advanced capabilities in identifying and mitigating malware 
threats. 

In a study [4], the third paper analyzes different classical 
machine learning algorithms for malware detection - Random 
Forest, Support Vector Machine (SVM), grid search optimized 
SVM, and K-Nearest Neighbors (KNN). The goal is to validate 
the effectiveness of these models for detecting zero-day 
malware attacks. The dataset from Kaggle contained 19,611 PE 
files, with 14,599 malicious samples and 5,012 benign files 
with 77 numeric features. Three training/test splits were used. 
Various accuracy metrics were calculated: accuracy, F1-score, 
confusion matrix, precision, recall and Type I/II errors. 
Random Forest performed the best with 96% accuracy and 93% 
F1score, with low errors and fastest training time. Optimized 
SVM improved results significantly but slowed down 
execution. KNN also performed decently with simpler 
implementation. Analysis showed Random Forest has good 
prospects for realtime zero-day malware detection. The model 
can process 25,000 files per second. For deployment, more 

diverse input data covering different malware families is 
needed. 

In study [5], the authors used convolutional neural networks 
(CNNs) for malware classification by visualizing malware 
programs as grayscale images. The images are generated from 
the bytecode of malware programs and classified using CNN 
architectures. They evaluate several well-known CNN models 
like AlexNet, ResNet, and VGG16 using transfer learning on a 
malware image dataset. They also propose a custom shallow 
CNN architecture that achieves 96% accuracy, but is faster to 
train than the other complex models. The customized CNN and 
transfer learning models are also tested as feature extractors, 
with the features fed into SVM and KNN classifiers. This 
achieves even better performance up to 99.4% accuracy. They 
set a new benchmark on the public BIG 2015 malware dataset. 
The proposed system combining CNN feature extraction + 
SVM classifier obtains state-of-the-art 99.4% accuracy in 
distinguishing between nine malware classes. Visualization and 
CNN-based classification is shown to be effective for malware 
detection. The approach is computationally efficient compared 
to static/dynamic-based analysis. Fusing different CNN model 
predictions can further improve performance. 

In study [6], the authors used Support Vector Machines 
(SVMs) for malware analysis and classification. SVMs are 
supervised learning models that can analyze high-dimensional, 
sparse data and recognize patterns. The authors collect a 
heterogeneous malware dataset from a real threat database. The 
data has features like time, format, domain, and IP address. 
They visualize the dataset using techniques like scatter plots 
and radius visualization to understand correlations and structure 
before classification. An SVM model with a polynomial kernel 
is trained on the dataset to classify malware vs normal software. 
The model is validated using cross-validation, leave-one-out 
and random sampling. The SVM classifier achieves 93-95% 
accuracy, 97-98% sensitivity and 86-90% specificity on the 
malware dataset. Validation shows the model generalizes very 
well. The high-performance highlights that SVMs can 
effectively classify heterogeneous malware data gathered from 
computer networks and security systems. 

 In study [7], the paper proposes a deep learning framework 
for malware visualization and classification using 
convolutional neural networks (CNNs). The key aspects are: 
Malware files are converted into three image types - grayscale, 
RGB color, and Markov images. Markov images help retain 
global statistics of malware bytes. A Gabor filter approach is 
used to extract textures and discriminative features from the 
malware images. Two CNN models are used for classification 
– a custom 13-layer CNN and a pretrained 71-layer Xception 
CNN fine-tuned for malware images. The framework is 
evaluated on two public Windows malware image data sets, a 
custom Windows malware dataset, and a custom IoT malware 
dataset. Markov images provide the best results, with the fine-
tuned Xception CNN achieving over 99% accuracy on multiple 
datasets. The computational efficiency is also better compared 
to prior works. The approach demonstrates effectiveness for 
real-time malware recognition and classification. The 
visualization and deep learning framework extracts features 
automatically without extensive feature engineering. 
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The framework's resilience against adversarial attacks is 
also analyzed by adding noise to test images. Some drop in 
accuracy is noticed, indicating scope for improvement. The 
current landscape underscores the significance of AI models as 
powerful tools for the analysis, classification, and detection of 
malware. These models can seamlessly integrate with both 
static and dynamic-based analysis, yielding noteworthy results 
that underscore their pivotal role in shaping the future of this 
field. 

Arabo et al. [8] analyzed CPU and RAM usage patterns as 
potential indicators for detecting ransomware processes. Their 
findings suggested that while not the primary factors, 
monitoring CPU and RAM could complement other behavioral 
characteristics in identifying malicious processes. Regarding 
CPU usage, they observed variations that showed potential for 
distinguishing ransomware activities. Specifically, for the 
ViraLock ransomware sample, the maximum CPU usage 
peaked at 25% [1]. Such CPU spikes could potentially signify 
the initiation of encryption or other malicious operations by the 
ransomware. As for RAM consumption, the study found that 
ransomware samples generally exhibited low and relatively 
stable memory usage patterns. In the case of ViraLock, the 
maximum RAM usage was only around 2% [1]. However, the 
authors noted that while low RAM usage alone may not be a 
definitive indicator, it could be considered in combination with 
other behavioral factors. The researchers highlighted that while 
CPU and RAM usage showed some differences between 
ransomware and benign processes, the most significant 
distinguishing factor was abnormally high disk read/write 
activity [1]. Nonetheless, incorporating CPU and RAM 
monitoring alongside disk usage analysis could potentially 
enhance the accuracy and robustness of ransomware detection 
systems based on process behavior analysis. 

III. METHODOLOGY 

The current investigation is centered on the behavioral 
analysis within an isolated Windows environment in virtual 
machine for the purpose of detecting malware. To achieve this, 
a combination of Recurrent Neural Network (RNN) for text 
classification and Convolutional Neural Network (CNN) for 
image classification is employed to analyze the extracted data. 
Diverging from the methodologies outlined in previous studies 
[3], [6], and [7], the classification approach adopted here 
focuses on the inherent characteristics of the malware file itself. 
This is achieved through a comprehensive analysis of the 
malware binary file and, notably, by representing the malware 
file as an image utilizing various visualization techniques. In 
this research, the emphasis is on visualizing the malware's 
behavior and, subsequently, conducting analyses based on these 
visual representations and also analysis the extracted features 
as a text. The presented model offers a juxtaposition of text 
classification and image classification in the analysis of 
extracted behavior. It underscores that a nuanced understanding 
of program nature, distinguishing between benign and 
malicious entities, can be achieved through thorough behavior 
analysis. 

The model primarily relies on the extraction of malware 
features. Within the developed script, two distinct observers 

play a crucial role. The first observer extracts the entirety of the 
process, encompassing its characteristics, as well as details 
related to internet connections. The second observer is tasked 
with monitoring any file creation specifically linked to the 
malware. 

The experimental framework involves the extraction of 10 
distinct features through the monitoring of behaviors within an 
isolated Virtual Machine. Python libraries such as psutil, 
subprocess, wmi, watchdog, time, json, and os were employed 
to develop functions responsible for observing malware 
behavior and subsequently extracting pertinent information to a 
JSON file. The extracted features encompassed critical aspects 
such as process ID, process name, username, CPU percentage. 

The modules for this research were developed using 
TensorFlow and Keras, leveraging the Sequential model 
architecture. These tools enabled efficient construction and 
training of neural networks for malware detection, facilitating 
both text-based and image-based classification with enhanced 
accuracy through deep learning techniques. Fig. 1 shows 
proposed processing model. 

 

Fig. 1. Proposed processing. 

Following the extraction of these features, the gathered 
information is stored in a JSON file (see Fig. 2) for further next 
step. 

A. Text Analysis 

The analytical process for the extracted features unfolded 
across two phases. Initially, the data underwent textual analysis, 
leveraging a simple feedforward neural network (FNN) model 
designed for binary classification using the Keras library to   
create a fully connected dense layer with 128 nodes. The output 
layer has 1 node and uses 'sigmoid' activation for binary 
classification. Subsequently, a recurrent neural network (RNN) 
model was employed to classify the same textual data, creates 
an embedding layer that transforms integer word indices to 
dense word vector representations. 
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Fig. 2. Sample of Json file content connection details, parent process, child process, execution path, and created files.

B. Image Analysis 

By transforming data into images, researchers can leverage 
the vast body of knowledge and advancements in image 
processing techniques, readily applicable to the analysis of the 
transformed data. This data-to-image transformation unlocks 
the power of CNNs for a wider range of analysis tasks, 
promoting deeper insights into complex datasets. So this 
research implements the power of CNN alongside with the 
behavior analysis Subsequent to the behavioral analysis, the 
extracted features underwent further evaluation through an 
image classification paradigm. A dedicated function was 
developed to transform these feature data into grayscale 
images. This transformative process involved the removal of 
associated labels, conversion of the data into binary numerical 
representations, subsequent transformation of these binary 
values into hexadecimal equivalents, and, finally, depiction of 
these hexadecimal values onto a 30*30 grayscale canvas. 

The 30x30 size was empirically determined to balance 
information preservation and computational efficiency. 
Representing features as images enabled the utilization of 
convolutional neural networks (CNNs), which excel at 
capturing spatial patterns the extracted features underwent 
further evaluation through an image classification paradigm. 
This visual representation approach offered several key 
advantages. Firstly, it enabled leveraging powerful deep 
learning techniques like convolutional neural networks, adept 
at capturing spatial patterns invaluable for malware 
characterization. Secondly, transforming features into images 
facilitated uncovering intrinsic relationships and patterns 
obfuscated in the original data's raw representation. Thirdly, the 
image domain allowed seamless integration of transfer learning 
and pre-trained models, expediting the analysis process. Lastly, 
the visually interpretable nature of images could provide 
insights into the discriminative characteristics learned by the 
models, aiding explain ability. By combining dynamic 
monitoring with visual analytics, this multi-pronged approach 

offered a potent framework for comprehensive malware 
analysis and classification. 

The dataset employed for experimentation comprised 50 
instances of .EXE malware sourced from diverse families, 
obtained from the Malware Bazaar database, a freely accessible 
online repository. Additionally, 11 benign programs were 
included for comparative analysis. The monitoring process 
lasted three seconds for every malware instance, during which 
the monitoring code ran in the background, observing the 
processes and file creation activities of the malware. After the 
monitoring period, the code produced a JSON file containing 
the captured information. The dataset has been divided into 40 
malware behavior and six benign program behavior for the 
training and 10 malware behavior and five benign program 
behavior for testing. Fig. 3 shows converting text to image 
process. 

 

Fig. 3. Converting text to image. 
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IV. EXPERIMENTS 

A. Text Analysis 

The described FNN model exhibited an accuracy rate of 
56% with a corresponding loss rate of 0.78. For the RNN 
model: It takes the vocabulary size equal to 32 and output 
dimensionality as arguments. Also LSTM layer models the 
sequential nature and long-range context of text. The output 
dense layers act as classifiers on top of LSTM representations. 
The model is compiled with binary cross entropy loss, adam 
optimizer and accuracy metric. 

With epoch 100, yielding an improved accuracy rate of 68% 
with a reduced loss rate of 0.67. 

B. Image Analysis 

Convolutional Neural Networks (CNNs) have 
revolutionized image analysis due to their ability to extract 
intricate spatial features. However, their power can be extended 
to non-image data by transforming it into a suitable image 
representation. This approach offers several advantages: CNNs 
excel at automatically learning relevant features from images, 
circumventing the need for manual feature engineering, a time-
consuming and potentially error-prone step in traditional 
analysis. Data transformation allows for the visualization of 
complex relationships between data points within the image 
domain. This empowers CNNs to identify subtle patterns that 
might be obscured in the raw data format. The experiment was 
done using two suggested models. The first model (Fig. 5) is 
simple and the second model is more complex both models are 
based on CNN. The simple model consists of: 

 Conv2D layer: Performs 2D convolution with 32 filters 
and 3x3 kernel. Extracts spatial features from input 
image. 

 MaxPool2D: Max pooling layer reduces dimensions to 
summarize the features detected by the convolution 
layer. 

 Flatten: Flattens the pooled feature map into a 1D vector 
to prepare for fully-connected layers. 

 Dense layers: Fully-connected layers that act as classifier 
on top of the extracted features. 64 nodes in first dense 
layer. 

Output layer contains single node with 'sigmoid' activation 
for binary classification. This model takes input images of 
shape (30, 30, 1) indicating 30x30 grayscale images. Using this 
simple model over these grayscale pictures gives accuracy rate 
70.1% with loss 0.67. 

The second model also based on CNN with more complex 
architecture: The model then uses several convolutional layers 
(Conv2D) to extract features from the image. These layers 
apply filters (also called kernels) that slide across the image, 
detecting patterns and edges. 

The first Conv2D layer has 256 filters, each of size 3x3. As 
the filter slides across the image, it performs element-wise 
multiplication between the filter weights and the corresponding 
pixel values in the image. The results are then summed and 
passed through an activation function (relu in this case) to 

introduce non-linearity. This process helps identify low-level 
features like edges, corners, and simple shapes. The subsequent 
Conv2D layers follow the same principle but with a different 
number of filters (128 and 64 in this example). These layers 
extract progressively more complex features based on the 
lower-level features detected earlier. 

MaxPooling2D layers are inserted after some convolutional 
layers. These layers downsample the feature maps by taking the 
maximum value within a specific window (2x2 in this 
example). This helps reduce the number of parameters and 
computational cost while potentially capturing the most 
important features. Fig. 4 shows sample representation of the 
resultant images. 

   

   

   

   

Fig. 4. A sample representation of the resultant images, offering a glimpse 

into their visual characteristics. 

 

Fig. 5. The structure of the first model. 
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The Dropout layer (commented out) randomly drops a 
certain percentage (25% in this example) of activations during 
training. This helps prevent the model from overfitting to the 
training data by forcing it to learn more robust features. 

After the convolutional and pooling layers, the model uses 
a Flatten layer to convert the 3D feature maps into a 1D vector 
(see Fig. 6). This allows the fully-connected layers to process 
the extracted features. The model then uses several fully-
connected layers (Dense) to classify the image. These layers 
work similarly to traditional neural networks, where each 
neuron receives input from all neurons in the previous 
layer, performs weighted sums, and applies an activation 
function. The first three fully connected layers (4096, 2048, and 
1024 neurons) are responsible for learning complex, high-level 
representations based on the extracted features. The relu 
activation allows these layers to learn non-linear relationships 
between the features. 

The final Dense layer has only one neuron with a sigmoid 
activation function. This neuron outputs a value between 0 and 
1, representing the probability of the image belonging to a 
specific class. As a summary of this model. The convolutional 
layers act as feature detectors, extracting progressively more 
complex features from the input image. The pooling layers 
reduce the dimensionality of the data while retaining important 
information. The dropout layer helps prevent overfitting. The 
fully-connected layers learn high-level representations and 
produce the final classification probability. 

 

Fig. 6. The structure of the second CNN model. 

 

Fig. 7. Bar chart for accuracy and loss. 

Using this complex model over these grayscale pictures 
gives accuracy rate 88% with loss 0.31. Comprehensive 
performance evaluation through bar charts (Fig. 7) illustrates 
accuracy and loss metrics for both text and image classification. 
The findings suggest that combining behavioral analysis with 
AI models, particularly in the image domain, holds promise for 
effective malware detection. This multimodal approach 

provides a holistic understanding of malware behavior, 
potentially enhancing overall detection capabilities in the 
evolving cybersecurity landscape. The study contributes to 
advancing malware detection methodologies by leveraging the 
synergy between static and dynamic analyses, bolstered by AI 
integration, and offers insights into the promising potential of 
image-based classification for improved accuracy in 
identifying malicious behavior. 

The Second Model with numerous convolutional and fully-
connected layers grants high capacity for learning intricate 
features. While advantageous for complex datasets, it can lead 
to overfitting, particularly with limited training data. The model 
memorizes training data too well, hindering performance on 
unseen examples. Furthermore, training and running this deep 
model can be computationally expensive due to the high 
number of parameters. This translates to significant processing 
power and memory requirements, potentially limiting its use in 
resource-constrained environments. The results from the text 
classification and image classification shows that these 
methods of analyzing malware might be a good way to detect 
the malware using the extracted behavioral features. 

V. CONCLUSION 

This study successfully employs dynamic-based analysis 
within a virtual machine (VM) to extract crucial behavioral 
features from Windows malware. Integrating these features 
with advanced text and image classification models (RNN and 
CNN) shows promise for malware detection. Image 
classification, based on transformed feature data, achieves a 
superior accuracy of 88% compared to 68% in text 
classification. This multi-modal approach, combining 
behavioral analysis with AI models, provides a nuanced 
understanding of malware behavior. To enhance model 
robustness, we recommend increasing the number of malware 
and benign samples, including a wider range of malware 
families, and exploring additional features like registry 
changes. Experimenting with different visualization techniques 
for image generation and testing more complex CNN 
architectures or pre-trained models with fine- tuning could 
further improve accuracy. Addressing adversarial attacks is 
crucial; incorporating noise resilience mechanisms is suggested 
for future work. These enhancements contribute to advancing 
malware detection methodologies, ensuring adaptability in the 
evolving cybersecurity landscape. 
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