
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

491 | P a g e

www.ijacsa.thesai.org

Detecting Malware of Windows OS Using AI

Classification for Image of Extracted Behavior

Features

Kang Dongshik, Noor Aldeen Alhamedi

University of the Ryukyus, Okinawa, Japan

Abstract—Malware detection is crucial for protecting digital

environments. Traditional methods involve static and dynamic

analysis, but recent advancements leverage artificial intelligence

(AI) to enhance detection accuracy. This study aims to improve

malware detection by integrating dynamic malware analysis with

AI-driven techniques. The primary challenge addressed is

accurately classifying and detecting malware based on behavior

extracted from isolated virtual machines. By analyzing 50

malware samples and 11 benign programs, we extract ten

behavioral features such as process ID, CPU usage, and network

connections. We employ text-based classification using

feedforward neural networks (FNN) and recurrent neural

networks (RNN), achieving accuracy rates of 56% and 68%,

respectively. Additionally, we convert the extracted features into

grayscale images for image-based classification with a

convolutional neural network (CNN), resulting in a higher

accuracy of 70.1%. This multi-modal approach, combining

behavioral analysis with AI, not only enhances detection accuracy

but also provides a comprehensive understanding of malware

behavior compared to competing methods.

Keywords—Malware analysis; dynamic-based analysis; image

classification; malware behavior extraction; text

I. INTRODUCTION

Recently, the number, severity, sophistication of malware
attacks, and cost of malware inflicts on the world economy have
been increasing exponentially. Attacks with these kinds of
software have disastrous effects and cause considerable
material damage to individuals, private companies, and
governments’ assets. Thus, malware should be detected before
damaging the important assets in the company [1]. The primary
motivation for this research stems from the need to enhance
existing detection mechanisms to keep pace with the constantly
changing threat landscape. With traditional analysis methods,
we aim to significantly improve the detection and classification
accuracy of malicious software. One of the key advantages of
our approach is the combination of dynamic-based malware
analysis with AI-driven techniques. This allows for a more
comprehensive understanding of malware behavior. This
hybrid approach not only improves detection rates but also
enhances the ability to accurately classify and understand the
nature of malware.

There are two main techniques for analyzing malware static
and dynamic-based analysis. Static-based analysis examines
the malware code without actually executing it. This by
integrating advanced artificial intelligence (AI) techniques can

provide information about suspicious functions, network
activity, impacted files, etc. Dynamic-based analysis executes
the malware code in an isolated environment to observe its
runtime behavior. This provides insight into the full impact of
the malware. A key benefit of static-based analysis is the ability
to thoroughly inspect malware code using techniques like
disassembly and decompilation to identify suspicious functions
related to replication, propagation, payload activation, and
more [2]. The static techniques help reveal overall structure,
dependencies, triggers for malicious events, and obfuscation
attempts. However, lacking runtime behavior, static-based
analysis cannot confirm the real impact of suspected
capabilities. Complex packing or encryption techniques also
limit code inspection. Other hand, the dynamic-based analysis
provides direct observation of malware behavior in action by
executing it and monitoring the resulting activity.

Dynamic-based analysis confirms suspected functions
based on static clues and captures full infection chains showing
the progression and end objectives of malware according to
case studies by [3]. Dynamic monitoring of memory access,
network calls, system API usage, and more creates a
comprehensive picture. Additionally, dynamic-based analysis
is particularly effective in identifying and analyzing newly
emerging malware strains. As it focuses on the runtime
behavior, it is better equipped to handle polymorphic and
metamorphic malware that may change its form to evade static-
based analysis techniques. Leveraging AI models for the
analysis of malware code or the study of malware behavior has
significantly contributed to the detection of malware in recent
years. Numerous AI models have been integrated into static or
dynamic approaches to augment both the malware detection
rate and feature extraction processes. Despite the notable
progress in the field of AI, these models still face various
challenges. This research will use many models of AI to detect
malware.

Robust malware analysis faces numerous obstacles. The
sheer volume of malware proliferating at a rapid pace presents
a formidable challenge in comprehensively examining this
ever-expanding threat landscape. Additionally, malware
authors employ sophisticated obfuscation tactics, such as code
interchange, amalgamation, register reassignment, null
insertion, and subroutine reordering [3], purposefully designed
to evade detection by anti-malware systems. Despite decades of
development, these security solutions still exhibit high false
positive rates, undermining their accuracy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

492 | P a g e

www.ijacsa.thesai.org

Moreover, certain malware strains possess the ability to
identify virtualized environments, resulting in altered or ceased
execution, hindering effective analysis. The evasion techniques
employed by malware necessitate lengthy detection times,
potentially ranging from minutes to hours depending on the
specific malware variant, during which systems remain
vulnerable to compromise. Furthermore, the ambiguity
surrounding API calls, as both malicious and benign software
may legitimately invoke common APIs, complicates the
process of distinguishing malware based on API usage patterns.

These factors, including the immense scale, obfuscation
methods, virtual environment detection capabilities, delayed
identification timelines, and the dual usage of APIs, collectively
contribute to the arduous nature of robust malware analysis,
necessitating the development of advanced techniques to
overcome these challenges effectively. The juxtaposition of text
classification and image classification in the analysis of
extracted behavior. It underscores that a nuanced understanding
of program nature, distinguishing between benign and
malicious entities, can be achieved through thorough behavior
analysis. The model primarily relies on the extraction of
malware features. Within the developed script, two distinct
observers play a crucial role. The first observer extracts the
entirety of the process, encompassing its characteristics, as well
as details related to internet connections. The second observer
is tasked with monitoring any file creation specifically linked
to the malware. The experimental framework involves the
extraction of 10 distinct features through the monitoring of
behaviors within an isolated Virtual Machine. Python libraries
such as psutil, subprocess, wmi, watchdog, time, json, and os
were employed to develop functions responsible for observing
malware behavior and subsequently extracting pertinent
information to a JSON file. The extracted features encompassed
critical aspects such as process ID, process name, username,
CPU percentage.

II. RELATED WORK

Artificial Intelligence (AI) has emerged as a powerful tool
in this ongoing struggle to detect and classify malware offering
advanced capabilities in identifying and mitigating malware
threats.

In a study [4], the third paper analyzes different classical
machine learning algorithms for malware detection - Random
Forest, Support Vector Machine (SVM), grid search optimized
SVM, and K-Nearest Neighbors (KNN). The goal is to validate
the effectiveness of these models for detecting zero-day
malware attacks. The dataset from Kaggle contained 19,611 PE
files, with 14,599 malicious samples and 5,012 benign files
with 77 numeric features. Three training/test splits were used.
Various accuracy metrics were calculated: accuracy, F1-score,
confusion matrix, precision, recall and Type I/II errors.
Random Forest performed the best with 96% accuracy and 93%
F1score, with low errors and fastest training time. Optimized
SVM improved results significantly but slowed down
execution. KNN also performed decently with simpler
implementation. Analysis showed Random Forest has good
prospects for realtime zero-day malware detection. The model
can process 25,000 files per second. For deployment, more

diverse input data covering different malware families is
needed.

In study [5], the authors used convolutional neural networks
(CNNs) for malware classification by visualizing malware
programs as grayscale images. The images are generated from
the bytecode of malware programs and classified using CNN
architectures. They evaluate several well-known CNN models
like AlexNet, ResNet, and VGG16 using transfer learning on a
malware image dataset. They also propose a custom shallow
CNN architecture that achieves 96% accuracy, but is faster to
train than the other complex models. The customized CNN and
transfer learning models are also tested as feature extractors,
with the features fed into SVM and KNN classifiers. This
achieves even better performance up to 99.4% accuracy. They
set a new benchmark on the public BIG 2015 malware dataset.
The proposed system combining CNN feature extraction +
SVM classifier obtains state-of-the-art 99.4% accuracy in
distinguishing between nine malware classes. Visualization and
CNN-based classification is shown to be effective for malware
detection. The approach is computationally efficient compared
to static/dynamic-based analysis. Fusing different CNN model
predictions can further improve performance.

In study [6], the authors used Support Vector Machines
(SVMs) for malware analysis and classification. SVMs are
supervised learning models that can analyze high-dimensional,
sparse data and recognize patterns. The authors collect a
heterogeneous malware dataset from a real threat database. The
data has features like time, format, domain, and IP address.
They visualize the dataset using techniques like scatter plots
and radius visualization to understand correlations and structure
before classification. An SVM model with a polynomial kernel
is trained on the dataset to classify malware vs normal software.
The model is validated using cross-validation, leave-one-out
and random sampling. The SVM classifier achieves 93-95%
accuracy, 97-98% sensitivity and 86-90% specificity on the
malware dataset. Validation shows the model generalizes very
well. The high-performance highlights that SVMs can
effectively classify heterogeneous malware data gathered from
computer networks and security systems.

 In study [7], the paper proposes a deep learning framework
for malware visualization and classification using
convolutional neural networks (CNNs). The key aspects are:
Malware files are converted into three image types - grayscale,
RGB color, and Markov images. Markov images help retain
global statistics of malware bytes. A Gabor filter approach is
used to extract textures and discriminative features from the
malware images. Two CNN models are used for classification
– a custom 13-layer CNN and a pretrained 71-layer Xception
CNN fine-tuned for malware images. The framework is
evaluated on two public Windows malware image data sets, a
custom Windows malware dataset, and a custom IoT malware
dataset. Markov images provide the best results, with the fine-
tuned Xception CNN achieving over 99% accuracy on multiple
datasets. The computational efficiency is also better compared
to prior works. The approach demonstrates effectiveness for
real-time malware recognition and classification. The
visualization and deep learning framework extracts features
automatically without extensive feature engineering.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

493 | P a g e

www.ijacsa.thesai.org

The framework's resilience against adversarial attacks is
also analyzed by adding noise to test images. Some drop in
accuracy is noticed, indicating scope for improvement. The
current landscape underscores the significance of AI models as
powerful tools for the analysis, classification, and detection of
malware. These models can seamlessly integrate with both
static and dynamic-based analysis, yielding noteworthy results
that underscore their pivotal role in shaping the future of this
field.

Arabo et al. [8] analyzed CPU and RAM usage patterns as
potential indicators for detecting ransomware processes. Their
findings suggested that while not the primary factors,
monitoring CPU and RAM could complement other behavioral
characteristics in identifying malicious processes. Regarding
CPU usage, they observed variations that showed potential for
distinguishing ransomware activities. Specifically, for the
ViraLock ransomware sample, the maximum CPU usage
peaked at 25% [1]. Such CPU spikes could potentially signify
the initiation of encryption or other malicious operations by the
ransomware. As for RAM consumption, the study found that
ransomware samples generally exhibited low and relatively
stable memory usage patterns. In the case of ViraLock, the
maximum RAM usage was only around 2% [1]. However, the
authors noted that while low RAM usage alone may not be a
definitive indicator, it could be considered in combination with
other behavioral factors. The researchers highlighted that while
CPU and RAM usage showed some differences between
ransomware and benign processes, the most significant
distinguishing factor was abnormally high disk read/write
activity [1]. Nonetheless, incorporating CPU and RAM
monitoring alongside disk usage analysis could potentially
enhance the accuracy and robustness of ransomware detection
systems based on process behavior analysis.

III. METHODOLOGY

The current investigation is centered on the behavioral
analysis within an isolated Windows environment in virtual
machine for the purpose of detecting malware. To achieve this,
a combination of Recurrent Neural Network (RNN) for text
classification and Convolutional Neural Network (CNN) for
image classification is employed to analyze the extracted data.
Diverging from the methodologies outlined in previous studies
[3], [6], and [7], the classification approach adopted here
focuses on the inherent characteristics of the malware file itself.
This is achieved through a comprehensive analysis of the
malware binary file and, notably, by representing the malware
file as an image utilizing various visualization techniques. In
this research, the emphasis is on visualizing the malware's
behavior and, subsequently, conducting analyses based on these
visual representations and also analysis the extracted features
as a text. The presented model offers a juxtaposition of text
classification and image classification in the analysis of
extracted behavior. It underscores that a nuanced understanding
of program nature, distinguishing between benign and
malicious entities, can be achieved through thorough behavior
analysis.

The model primarily relies on the extraction of malware
features. Within the developed script, two distinct observers

play a crucial role. The first observer extracts the entirety of the
process, encompassing its characteristics, as well as details
related to internet connections. The second observer is tasked
with monitoring any file creation specifically linked to the
malware.

The experimental framework involves the extraction of 10
distinct features through the monitoring of behaviors within an
isolated Virtual Machine. Python libraries such as psutil,
subprocess, wmi, watchdog, time, json, and os were employed
to develop functions responsible for observing malware
behavior and subsequently extracting pertinent information to a
JSON file. The extracted features encompassed critical aspects
such as process ID, process name, username, CPU percentage.

The modules for this research were developed using
TensorFlow and Keras, leveraging the Sequential model
architecture. These tools enabled efficient construction and
training of neural networks for malware detection, facilitating
both text-based and image-based classification with enhanced
accuracy through deep learning techniques. Fig. 1 shows
proposed processing model.

Fig. 1. Proposed processing.

Following the extraction of these features, the gathered
information is stored in a JSON file (see Fig. 2) for further next
step.

A. Text Analysis

The analytical process for the extracted features unfolded
across two phases. Initially, the data underwent textual analysis,
leveraging a simple feedforward neural network (FNN) model
designed for binary classification using the Keras library to
create a fully connected dense layer with 128 nodes. The output
layer has 1 node and uses 'sigmoid' activation for binary
classification. Subsequently, a recurrent neural network (RNN)
model was employed to classify the same textual data, creates
an embedding layer that transforms integer word indices to
dense word vector representations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

494 | P a g e

www.ijacsa.thesai.org

Fig. 2. Sample of Json file content connection details, parent process, child process, execution path, and created files.

B. Image Analysis

By transforming data into images, researchers can leverage
the vast body of knowledge and advancements in image
processing techniques, readily applicable to the analysis of the
transformed data. This data-to-image transformation unlocks
the power of CNNs for a wider range of analysis tasks,
promoting deeper insights into complex datasets. So this
research implements the power of CNN alongside with the
behavior analysis Subsequent to the behavioral analysis, the
extracted features underwent further evaluation through an
image classification paradigm. A dedicated function was
developed to transform these feature data into grayscale
images. This transformative process involved the removal of
associated labels, conversion of the data into binary numerical
representations, subsequent transformation of these binary
values into hexadecimal equivalents, and, finally, depiction of
these hexadecimal values onto a 30*30 grayscale canvas.

The 30x30 size was empirically determined to balance
information preservation and computational efficiency.
Representing features as images enabled the utilization of
convolutional neural networks (CNNs), which excel at
capturing spatial patterns the extracted features underwent
further evaluation through an image classification paradigm.
This visual representation approach offered several key
advantages. Firstly, it enabled leveraging powerful deep
learning techniques like convolutional neural networks, adept
at capturing spatial patterns invaluable for malware
characterization. Secondly, transforming features into images
facilitated uncovering intrinsic relationships and patterns
obfuscated in the original data's raw representation. Thirdly, the
image domain allowed seamless integration of transfer learning
and pre-trained models, expediting the analysis process. Lastly,
the visually interpretable nature of images could provide
insights into the discriminative characteristics learned by the
models, aiding explain ability. By combining dynamic
monitoring with visual analytics, this multi-pronged approach

offered a potent framework for comprehensive malware
analysis and classification.

The dataset employed for experimentation comprised 50
instances of .EXE malware sourced from diverse families,
obtained from the Malware Bazaar database, a freely accessible
online repository. Additionally, 11 benign programs were
included for comparative analysis. The monitoring process
lasted three seconds for every malware instance, during which
the monitoring code ran in the background, observing the
processes and file creation activities of the malware. After the
monitoring period, the code produced a JSON file containing
the captured information. The dataset has been divided into 40
malware behavior and six benign program behavior for the
training and 10 malware behavior and five benign program
behavior for testing. Fig. 3 shows converting text to image
process.

Fig. 3. Converting text to image.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

495 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTS

A. Text Analysis

The described FNN model exhibited an accuracy rate of
56% with a corresponding loss rate of 0.78. For the RNN
model: It takes the vocabulary size equal to 32 and output
dimensionality as arguments. Also LSTM layer models the
sequential nature and long-range context of text. The output
dense layers act as classifiers on top of LSTM representations.
The model is compiled with binary cross entropy loss, adam
optimizer and accuracy metric.

With epoch 100, yielding an improved accuracy rate of 68%
with a reduced loss rate of 0.67.

B. Image Analysis

Convolutional Neural Networks (CNNs) have
revolutionized image analysis due to their ability to extract
intricate spatial features. However, their power can be extended
to non-image data by transforming it into a suitable image
representation. This approach offers several advantages: CNNs
excel at automatically learning relevant features from images,
circumventing the need for manual feature engineering, a time-
consuming and potentially error-prone step in traditional
analysis. Data transformation allows for the visualization of
complex relationships between data points within the image
domain. This empowers CNNs to identify subtle patterns that
might be obscured in the raw data format. The experiment was
done using two suggested models. The first model (Fig. 5) is
simple and the second model is more complex both models are
based on CNN. The simple model consists of:

 Conv2D layer: Performs 2D convolution with 32 filters
and 3x3 kernel. Extracts spatial features from input
image.

 MaxPool2D: Max pooling layer reduces dimensions to
summarize the features detected by the convolution
layer.

 Flatten: Flattens the pooled feature map into a 1D vector
to prepare for fully-connected layers.

 Dense layers: Fully-connected layers that act as classifier
on top of the extracted features. 64 nodes in first dense
layer.

Output layer contains single node with 'sigmoid' activation
for binary classification. This model takes input images of
shape (30, 30, 1) indicating 30x30 grayscale images. Using this
simple model over these grayscale pictures gives accuracy rate
70.1% with loss 0.67.

The second model also based on CNN with more complex
architecture: The model then uses several convolutional layers
(Conv2D) to extract features from the image. These layers
apply filters (also called kernels) that slide across the image,
detecting patterns and edges.

The first Conv2D layer has 256 filters, each of size 3x3. As
the filter slides across the image, it performs element-wise
multiplication between the filter weights and the corresponding
pixel values in the image. The results are then summed and
passed through an activation function (relu in this case) to

introduce non-linearity. This process helps identify low-level
features like edges, corners, and simple shapes. The subsequent
Conv2D layers follow the same principle but with a different
number of filters (128 and 64 in this example). These layers
extract progressively more complex features based on the
lower-level features detected earlier.

MaxPooling2D layers are inserted after some convolutional
layers. These layers downsample the feature maps by taking the
maximum value within a specific window (2x2 in this
example). This helps reduce the number of parameters and
computational cost while potentially capturing the most
important features. Fig. 4 shows sample representation of the
resultant images.

Fig. 4. A sample representation of the resultant images, offering a glimpse

into their visual characteristics.

Fig. 5. The structure of the first model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

496 | P a g e

www.ijacsa.thesai.org

The Dropout layer (commented out) randomly drops a
certain percentage (25% in this example) of activations during
training. This helps prevent the model from overfitting to the
training data by forcing it to learn more robust features.

After the convolutional and pooling layers, the model uses
a Flatten layer to convert the 3D feature maps into a 1D vector
(see Fig. 6). This allows the fully-connected layers to process
the extracted features. The model then uses several fully-
connected layers (Dense) to classify the image. These layers
work similarly to traditional neural networks, where each
neuron receives input from all neurons in the previous
layer, performs weighted sums, and applies an activation
function. The first three fully connected layers (4096, 2048, and
1024 neurons) are responsible for learning complex, high-level
representations based on the extracted features. The relu
activation allows these layers to learn non-linear relationships
between the features.

The final Dense layer has only one neuron with a sigmoid
activation function. This neuron outputs a value between 0 and
1, representing the probability of the image belonging to a
specific class. As a summary of this model. The convolutional
layers act as feature detectors, extracting progressively more
complex features from the input image. The pooling layers
reduce the dimensionality of the data while retaining important
information. The dropout layer helps prevent overfitting. The
fully-connected layers learn high-level representations and
produce the final classification probability.

Fig. 6. The structure of the second CNN model.

Fig. 7. Bar chart for accuracy and loss.

Using this complex model over these grayscale pictures
gives accuracy rate 88% with loss 0.31. Comprehensive
performance evaluation through bar charts (Fig. 7) illustrates
accuracy and loss metrics for both text and image classification.
The findings suggest that combining behavioral analysis with
AI models, particularly in the image domain, holds promise for
effective malware detection. This multimodal approach

provides a holistic understanding of malware behavior,
potentially enhancing overall detection capabilities in the
evolving cybersecurity landscape. The study contributes to
advancing malware detection methodologies by leveraging the
synergy between static and dynamic analyses, bolstered by AI
integration, and offers insights into the promising potential of
image-based classification for improved accuracy in
identifying malicious behavior.

The Second Model with numerous convolutional and fully-
connected layers grants high capacity for learning intricate
features. While advantageous for complex datasets, it can lead
to overfitting, particularly with limited training data. The model
memorizes training data too well, hindering performance on
unseen examples. Furthermore, training and running this deep
model can be computationally expensive due to the high
number of parameters. This translates to significant processing
power and memory requirements, potentially limiting its use in
resource-constrained environments. The results from the text
classification and image classification shows that these
methods of analyzing malware might be a good way to detect
the malware using the extracted behavioral features.

V. CONCLUSION

This study successfully employs dynamic-based analysis
within a virtual machine (VM) to extract crucial behavioral
features from Windows malware. Integrating these features
with advanced text and image classification models (RNN and
CNN) shows promise for malware detection. Image
classification, based on transformed feature data, achieves a
superior accuracy of 88% compared to 68% in text
classification. This multi-modal approach, combining
behavioral analysis with AI models, provides a nuanced
understanding of malware behavior. To enhance model
robustness, we recommend increasing the number of malware
and benign samples, including a wider range of malware
families, and exploring additional features like registry
changes. Experimenting with different visualization techniques
for image generation and testing more complex CNN
architectures or pre-trained models with fine- tuning could
further improve accuracy. Addressing adversarial attacks is
crucial; incorporating noise resilience mechanisms is suggested
for future work. These enhancements contribute to advancing
malware detection methodologies, ensuring adaptability in the
evolving cybersecurity landscape.

REFERENCES

[1] Aslan, Ö., & Samet, R. (2019). A comprehensive review on malware
detection approaches. IEEE Access, Advance online publication.
https://doi.org/10.1109/ACCESS.2019.2963724

[2] Roundy, K.A. and Miller, B.P., 2013, August. Binary-code obfuscations
in prevalent packer tools. In Proceedings of the 2013 ACM workshop on
Software PROtection (pp. 3-14).M. Young, The Techincal Writers
Handbook. Mill Valley, CA: University Science, 1989.

[3] Rossow, C., Dietrich, C. J., Grier, C., Kreibich, C., Paxson, V., Pohlmann,
N. & van Steen, M. (2012). Prudent practices for designing malware
experiments: Status quo and outlook. In 2012 IEEE Symposium on
Security and Privacy (pp. 65-79). IEEE.

[4] Nafiiev, A., Kholodulkin, H., & Rodionov, A. (2022). Comparative
analysis of machine learning methods for detecting malicious files.
Algorithms and Methods of Cyber Attacks Prevention and Counteraction.

[5] V. S. P. Davuluru, B. N. Narayanan and E. J. Balster, "Convolutional
Neural Networks as Classification Tools and Feature Extractors for

0 0.2 0.4 0.6 0.8 1

FNN text classification

RNN text classification

First CNN Model

Second CNN Model

Accuracy and Loss Results

loss accuracy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

497 | P a g e

www.ijacsa.thesai.org

Distinguishing Malware Programs," 2019 IEEE National Aerospace and
Electronics Conference (NAECON), 2019, pp. 273-277.

[6] M. Kruczkowski and E. Niewiadomska-Szynkiewicz, "Support Vector
Machine for malware analysis and classification," 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), 2014, pp. 415-420.

[7] Sharma, O., Sharma, A., & Kalia, A. (2022). Windows and IoT malware
visualization and classification with deep CNN and Xception CNN using
Markov images. Journal of Intelligent Information Systems. Advance
online publication.

[8] Arabo, A., Dijoux, R., Poulain, T., & Chevalier, G. (2020). Detecting
Ransomware Using Process Behavior Analysis. Procedia Computer
Science, 168, 289-296.

