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Abstract—Sports skills training is a crucial component of 

sports education, significantly contributing to the development of 

athletic abilities and overall physical literacy. It is essential to 

utilized neural networks to optimize traditional training methods 

that are inefficient and rely on subjective assessments. This paper 

develops methods for sports action recognition and athlete pose 

estimation and prediction based on deep neural networks. Given 

the complexity and rapid changes in sports skills, we propose a 

multi-task framework-based HICNN-PSTA model for jointly 

recognizing sports actions and estimating human poses. This 

method leverages the advantages of Convolution and Involution 

operators in computing channel and spatial information to extract 

sports skill features and uses a decoupled multi-head attention 

mechanism to fully capture spatio-temporal information. 

Furthermore, to accurately predict human poses to avoid potential 

sports injuries, this paper introduces an MS-GCN prediction 

model based on the multi-scale graph. This method utilizes the 

constraints between human body key points and parts, dividing 

the 2D human pose into different levels, significantly enhancing 

the modeling capability of human pose sequences. The proposed 

algorithms have been thoroughly validated on a basketball skills 

dataset and compared with various advanced algorithms. 

Experimental results sufficiently demonstrate the effectiveness of 

the proposed methods in sports action recognition and human 

pose estimation and prediction. This research advances the 

application of deep neural networks in the field of sports training, 

providing significant reference value for related studies. 

Keywords—Deep neural network; action recognition; 2D pose 

prediction; pose estimation; sports skill training; attention 

mechanism 

I. INTRODUCTION 

Sports play an indispensable role in the cultural development 
of nations, serving not only as a key factor of citizen welfare but 
also as an important vessel for cultural identity. Recently, 
numerous policies have been published to encourage public 
participation in sports activities, with an increasing number of 
individuals seeking to alleviate stress and release emotions 
through sports [1]. As societal enthusiasm for sports activities 
grows, the learning and optimization methods of sports skills 
have gained more attention. Traditionally, this process has been 
predominantly governed by the professional capabilities and 
personal experiences of coaches, considering as an individual-
dependent method that lacks objectivity and is resource-
intensive. Therefore, it is essential to explore how advanced 

artificial intelligence algorithms can be utilized to enhance the 
efficiency of the sports skill learning and optimization process.  
In recent years, deep neural networks have been widely applied 
in various fields, such as speech recognition, fault monitoring, 
and text analysis. Notably, in the field of image recognition, 
deep convolutional neural networks (DCNNs) [2] have 
demonstrated the ability to effectively process unstructured 
image inputs and uncover latent features within massive datasets, 
providing a novel approach for sports training. 

Employing neural network algorithms to identify sports 
skills presents an intriguing research problem. Such methods 
leverage the powerful image recognition capabilities inherent in 
deep learning algorithms to analyze the types of movements 
performed by athletes, detect key points in the human body and 
postural information, and thereby aid athletes in enhancing their 
motor skills and improving the quality of their movements. 
Additionally, by extracting temporal information from 
continuous inputs, deep neural networks can effectively predict 
future movements, thereby preventing potential risks and 
avoiding injuries resulting from improper actions. Therefore, the 
accurate recognition of sports actions and estimation of human 
poses can not only enhance the efficiency and quality of motor 
skill learning but also provide sports enthusiasts with more 
effective training methods. 

In sports training, accurately identifying and predicting 
sequences of athletic movements poses a significant challenge. 
This challenge arises from the inherent complexity of human 
posture, the diversity of athletic skills, and the uncertainty in the 
execution of movements. To address the aforementioned 
challenges and enhance the feature extraction capability 
possessed by neural networks, it is imperative to 
comprehensively capture the temporal-spatial relationships 
inherent in sports movements. To this end, this paper proposes a 
novel multitask framework to jointly recognize sports actions 
and estimate human poses based on the hybrid deep neural 
network that integrates the Involution operator and Convolution 
operator. This approach significantly enhances the model's 
ability to capture spatial information, surpassing the 
performance of traditional convolutional neural networks. A 
parallel spatial-temporal attention mechanism is further 
designed to operate in a decoupled manner and focused 
separately on temporal and spatial dimensions. It facilitates the 
neural network's ability to identify crucial movements and detect 
subtle variations across different frames. Finally, a sports pose 
prediction method is proposed based on the multiscale graph 
convolutional networks, thereby optimizing the effectiveness 
and practicability when applied to sports skill training. 

*Corresponding Author 
This work is supported by University-level scientific research project 

(Social science) in 2023: Research on the construction of National fitness 

public service system embedded in digital technology in Yangzhou (Project 
Number: 2023xjsk003) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

548 | P a g e  

www.ijacsa.thesai.org 

II. LITERATURE REVIEW 

This section will present existing works that are the most 
relevant methods related to our work, including human action 
recognition, human pose estimation, and human motion 
prediction. 

A. Human Action Recognition Methods 

Human action recognition is a vision task centered on 
humans, aiming to identify the classification results 
corresponding to the input action sequences. It has extensive 
applications in fields such as human-computer interaction, 
sports training, and smart security [3]. Human action 
recognition has evolved from the use of hand-crafted features to 
features automatically obtained via deep neural networks. Early 
research primarily focused on extracting shallow information 
from input images, such as angles, edges, or contours [4]. To 
effectively recognize the motion information contained in 
human actions, optical flow and Histograms of Oriented 
Gradients (HOG) are often adopted as part of the feature set. For 
instance, FarajiDavar et al. [5] utilized HOG3D features to 
describe tennis actions and explored feature re-weighting and 
feature translation methods based on these features. Calandre et 
al. [6] employed optical flow information to detect table tennis 
stroke actions, thereby identifying the most relevant frames in 
the input videos. However, the use of manual features and 
machine learning methods suffers from poor generalization, 
complex feature extraction processes, and reliance on shallow 
features that inadequately describe the action information 
reflected in the original inputs, especially in the domain of sports 
action recognition. 

Currently, deep learning techniques, represented by deep 
neural networks, have become the predominant method for 
human action recognition. By establishing methods for human 
action recognition based on deep learning, it is possible to 
construct more efficient and comprehensive sports training 
systems, pushing the development of sports skills learning in a 
more intelligent direction. Simonyan et al. [7] proposed a two-
stream convolutional network for action recognition, which 
utilizes both input RGB images and optical flow images to 
extract spatial and temporal features respectively, with the 
recognition results obtained through the fusion at the decision 
layer. Moreover, utilizing human posture information to 
enhance action recognition results is also considered an effective 
means. Nie et al. [8] proposed a hierarchical structure to capture 
the geometric and appearance variations in posture. Notably, the 
lateral connections between adjacent frames were considered to 
describe the action-specific information. Furthermore, Lin et al. 
[9] developed a Temporal Shift Network (TSN), which can 
switch feature channels along the temporal dimension to 
exchange temporal information between adjacent frames. This 
module can also be embedded as an independent structure into 
any deep convolutional network model and can significantly 
improve recognition performance while maintaining lower 
FLOPs. 

On the other hand, as the primary data for action recognition 
often comprises video data, deep models based on 3D 
convolution have also received considerable attention. Cao et al. 
[10] proposed a dual-stream bilinear 3D-CNN model that 
utilizes selective convolutional layer activations to form 

discriminative descriptors for videos, ultimately achieving a 
recognition accuracy of 95.3% on the PENN Dataset. 
Additionally, Baradel et al. [11] introduced a novel attention 
mechanism known as Glimpse Clouds, which learns to focus on 
specific image patches in space and time, aggregating the 
patterns and softly assigning each feature. Overall, action 
recognition methods based on deep learning, allowing for fully 
automated feature extraction and action classification, avoiding 
the influence of subjective factors, and having high accuracy and 
generalizability, becoming the mainstream approach in action 
recognition tasks. 

B. Human Pose Estimation Methods 

Human pose estimation involves determining the location of 
body joints and the connections between various body parts in 
2D/3D spaces. This field has been actively researched over the 
past few years, evolving from conceptual frameworks such as 
Pictorial Structures [12] to recent deep neural network-based 
approaches. An effective approach considers human pose 
estimation as a detection task, specifically by obtaining 
heatmaps at body joints based on detection scores. Newell et al. 
[13] proposed a novel CNN architecture that employs repeated 
bottom-up and top-down processing. The proposed Stacked 
Hourglass networks were evaluated on the FLIC and MPII 
benchmarks, demonstrating improvements in 2D pose 
estimation. Pishchulin et al. [14] introduced the DeepCut 
method, which initially detects regions potentially containing 
human key joints, followed by creating a connection graph 
encompassing all regions. However, detection-based methods 
do not directly provide coordinates of human keypoints and 
instead infer them indirectly by maximizing the posterior 
probability. 

Regression-based approaches involve projecting input 
actions onto desired keypoint coordinates through nonlinear 
functions. Toshev et al. [12] were pioneers in proposing a 
method for human pose estimation based on DNNs and cascade 
regression, which avoids the need for explicitly designing 
feature representations or detectors for body parts. Cheng et al. 
[15] addressed the issue of scale variation in multi-person pose 
estimation by proposing a method that utilizes a high-resolution 
feature pyramid to learn scale-aware representations, thereby 
achieving more precise keypoint localization in multi-person 
pose estimation. The proposed method achieved an Average 
Precision (AP) of 67.6% in the CrowdPose test. 

In recent years, a key research focus has been on calculating 
the spatial information of each keypoint based on their 2D 
coordinates to obtain the 3D position of human posture. With 
the release of more high-accuracy 3D data, it has become 
feasible to train 3D human pose estimation models using deep 
neural network algorithms. Chen et al. [16] innovatively 
decomposed the 3D pose estimation problem into a 2D 
estimation based on camera coordinates and a 2D-to-3D 
matching using a non-parametric shape model. Pavllo et al. [17] 
proposed a multi-view fusion 3D pose estimation algorithm 
based on 2D keypoint trajectories, utilizing 2D keypoints to 
estimate 3D poses and back-projecting to 2D space to enable 
semi-supervised training. The proposed method reduced the 
error by 11% compared to the previous state-of-the-art on the 
Human3.6M dataset. 
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C. Research Gaps 

Although deep learning has achieved significant success in 
human-centered fields such as action recognition, its application 
in sports skill training still presents numerous challenges, 
particularly when dealing with rapid pose movements and the 
diversity of actions under the same sports skill. Based on these 
considerations, this paper aims to address the following key 
issues: 

1) Limitations of traditional CNN models in sports skills 

training: The utilization of traditional Convolutional Neural 

Networks (CNNs) in the domain of sports skill training, 

particularly for sports action recognition and human pose 

estimation, has exposed specific deficiencies. Standard CNN 

architectures are characterized by fixed, limited receptive fields 

and inherent spatial invariance, which compromise their 

capacity to effectively model the contextual nuances of complex 

athletic movements and limit their sensitivity to variations in 

spatial configurations. Furthermore, the generalization of 

conventional CNNs is predominantly contingent upon the 

original training dataset, typically necessitating substantial 

retraining or fine-tuning to adapt these models for diverse sports 

training applications. 

2) Lack of Multitask Framework for Sports Action 

Recognition and Pose Estimation: Contemporary studies in 

implementing action recognition and human pose estimation for 

sports skill training typically utilize independent operational 

frameworks. While this method permits the tailored algorithmic 

development specific to each task, it frequently neglects the 

potential synergistic interactions between these intimately 

connected tasks. Furthermore, both pose estimation and action 

recognition generally share analogous feature extraction phases 

and operating these models independently leads to repetitive 

processing steps, thereby diminishing computational efficiency 

and increasing the complexity of real-time applications. 

Employing a multitask framework to concurrently learn shared 

features from pose estimation and action recognition can 

facilitate the acquisition of more robust and extensible features, 

offering a more holistic comprehension of sports actions and 

markedly enhancing the support for the learning and 

optimization of sports skills. 

3) Limitations of CNN models in sports pose prediction: 

Although CNN backbone networks are widely used in action 

recognition and pose estimation, the inherent non-Euclidean 

nature of human keypoints makes it challenging for CNN 

models to achieve satisfactory results in human pose prediction. 

Particularly when dealing with the relationships or constraints 

between human keypoints and body parts, models based on 

CNN backbones struggle to incorporate such information in a 

priori manner, which is crucial for accurate human pose 

prediction. Representing the human pose in the form of a graph 

allows for a more precise reflection of the structural and 

functional relationships between different body parts. Thus, 

constructing a backbone model based on GCNs (Graph 

Convolutional Networks) to model the spatiotemporal 

relationships of human poses better meets the requirements of 

motion pose prediction. 

In summary, future studies should concentrate on creating 
innovative models and approaches that tackle the existing 
challenges in sports skill training, aiming to not only boost the 
practicability but also enhance the efficacy and accuracy of 
sports training. 

III. RESEARCH ON RECOGNITION METHODS OF SPORTS 

ACTION AND HUMAN POSE BASED ON DEEP NEURAL 

NETWORKS AND ATTENTION MECHANISM 

In this section, a novel multitask framework based on deep 
neural networks and attention mechanisms is proposed for sports 
action recognition and human pose estimation. Furthermore, a 
novel multiscale model is proposed for human pose prediction 
based on the estimated body keypoints. The preliminary 
knowledge of Hybrid Involution and Convolution Neural 
Networks (HICNN) is first introduced, followed by the proposed 
multitask framework and parallel spatial-temporal attention 
(PSTA). Finally, the multiscale Graph Convolutional Network 
(MS-GCN) is designed to predict human poses for sports skill 
training. 

A. Hybrid Involution and Convolution Neural Network 

As a primary component of deep neural networks, 
Convolutional Neural Networks (CNNs) utilize the spatial 
invariance and channel specificity of convolution kernels to 
enhance computational efficiency and the ability to interpret 
translation equivalency. However, these characteristics hinder 
the adaptability of convolution kernels to different spatial 
positions, and their limited receptive fields pose challenges in 
modeling long-distance relationships. To address these issues, 
the involution operator, which possesses symmetrically inverse 
inherent characteristics, has been proposed. Specifically, the 
involution operator shares weights across different channels 
while varying spatially, thereby compensating for the 
deficiencies of convolution kernels in capturing long-distance 
relationships [18]. 

Given the input feature map as H W C X , where , ,H W C  

represent its height, width, and channels. By applying multiply-
add operations in a sliding-window manner, the output feature 
map can be expressed as 

, , , ,, , / 2 , / 2
1 ( , ) K

C

i j k i u j v ck c u K v K
c u v

        
 

  Y X              (1) 

where 0 iC C K K  
  represents the convolution filters with 

the fixed kernel size of K K , and 2

K   refers to the set of 

offsets in the neighborhood considering convolution conducted 
on the center pixel, written as 

[ / 2 , , / 2 ] [ 2 , / 2 ]K K K K K                          (2) 

Compared to the standard convolution kernel, involution 
kernels are devised with the inverse characteristics in the spatial 
and channel dimension, expressed as H W K K G    . 
Specifically, an involution kernel is tailored for the pixel 

,

C

i j X  but shared over different channels. The output feature 
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map of involution can be obtained by applying multiply-add 
operations with involution kernels, that is 

, , , ,, , / 2 , / 2 , /
( , ) K

i j k i u j v ki j u K v K KG C
u v

            


 Y X             (3) 

To fully leverage the capabilities of convolution and involution, 
this section explores the alternating stacking of these two types 
of operators, constructing the Hybrid Incolution and 
Convolution Neural Networks (HICNN). This hybrid architec- -
ture serves as the backbone extractor aiming to enhance the 
model’s ability to discern complex spatial relationships while 
maintaining computational efficiency. 

B. HICNN-PSTA  for Sports Action Recognition and Pose 

Estimation  

In this section, we introduced the HICNN-PSTA (Hybrid 
Involution and Convolution Neural Network with Parallel 
Spatial-Temporal Attention (PSTA), which is specially 
designed for joint sports action recognition and human pose 
estimation, as shown in Fig. 1. 

Different from the previous work, this section attempts to 
establish a multitasking framework by predicting human poses 
and recognizing sports actions in parallel. The input RGB 
frames are first fed into the HICNN model to extract low-level 
visual features. Besides, a novel two-pathway attention 
mechanism, namely PSTA, is proposed to model spatial and 
temporal information in parallel. The PSTA mechanism 
significantly enhances the processing capabilities for both 
single-frame image and image sequences, which is crucial for 
multitask frameworks. Specifically, spatial attention aids in 
focusing on critical human-related information within individual 
frames, thereby increasing the accuracy of human pose 
estimation. Temporal attention, on the other hand, concentrates 
on the continuity of actions, which is essential for understanding 
action sequences and patterns. 

The proposed PSTA is illuminated in Fig. 2 that originates 
from the vanilla multi-head self attention module, defined as 

( , , ) softmax( )
TQ K

MSA Q K V V
C


 

       (4) 

where , , N CQ K V   denote the queies, keys and values. In 

PSTA module, the input embedding T N CE    are firstly 
mapped into queries, keys and values with the same dimensions. 
Then, the mapped tensors are evenly divided into two groups 
along the channel dimension, results in time group { , , }T T TQ K V  

and space group { , , }S S SQ K V . To model the spatial-temporal 

dependencies between joints avoiding the quadratic 
computation, the temporal and spatial correlations are calculated 
in two separate self-attention modules, which can be expressed 
as, 

( , , )

( , , )

( , )

T T T T

S S S S

T S

H MSA Q K V

H MSA Q K V

cat H H





H
                (5) 

Based on the latent representation, the multi-task prediction 
block produces single frame features, multi-task features, and 
image sequence features, which is defined as 

, ,f f f f f f j vH W N H W N T N N

t t t  
     

   . For pose estimation, 

prediction blocks take as input the multi-task features to predict 
body joint probability maps, expressed as 

( ), f f jH W N

t h t th W h
 

  
                    (6) 

The elastic net loss between the predicted human poses and 
ground-truth values is adopted for model training, which is 
defined as 

2

1 2
1

1
ˆ ˆ( )

jN

j j j j

p

jj

L p p p p
N 

   
                (7) 

Furthermore, the multi-task features are multiplied by 
probability maps th  at channel dimension to obtain the 

appearance features j fT N N
V

 
  that describe the entire image 

sequences, thus recognizing sports actions by categorical cross-
entropy loss on predicted actions. 
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Fig. 1. Network structure diagram of sports action recognition and pose estimation based on HICNN-PSTA. 
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Fig. 2. An overview of the proposed PSTA. 

C. MS-GCN for Sports Pose Prediction 

Human pose prediction is of paramount importance in the 
field of sports skills training, as it assists participants in 
optimizing their skills and avoiding potential hazards. The key 
to effective prediction of human poses lies in a comprehensive 
understanding of the intrinsic correlations among sequences of 
human keypoints. To address these issues, this section 
introduces a Multi-Scale Graph Convolution Network (MS-
GCN) that predicts future human poses based on the estimated 
sequences of human keypoints. MS-GCN extends conventional 
keypoints analysis by integrating single-scale graph and multi-
scale graphs at various levels to connect body components. The 
single-scale graph provides a multi-granularity representation of 
the body skeleton, while the multi-scale graph, initialized by 
predefined physical connections, reflects the interconnections 
between different single-scale graphs and adjusts to poses 
sensitivity during training. 

Suppose the estimated 2D skeleton-based poses are 
( 1) 2

:0 0[ , , ] h

h h

M T

T TP P   

  P  and the future poses are 

2

1: 1[ , , ] f

f f

M T

T TP P
 

 P . The goal of pose prediction is to 

generate future poses by the past observed ones, which can be 

expressed as 
1: :0
ˆ ( )

f HT pred TM P P . To construct the MS-GCN, 

two body scales are first initialized, expressed as a trainable 

adjacency matris s sM M

sA 
  at scale s. Based on the single-

scale graph, the GCN block extract spatial features of body 
components as well as temporal features from poses sequences, 
defined as, 

, ReLU( )s sp s s s s sA PW PU P
                     (8) 

where, ,s sW U  are trainable parameters. To enable 

information exchange across scales, a cross-scake fusion block 
is adopted to convert features from one scale to another. The 
cross-scale graph is a bipartite graph that corresponds the nodes 
in one single-scale graph to the nodes in another graph. 
Assuming the cross-scale graph with adjacent matrix as 

1 2s sA , 

and the vectorized features of human joint and part are defined 
as 

1 1 1 2 2 2, , :, ,: , , :, ,:( (( ) ; )), ( (( ) ; ))s i s s i s k s s kv vec conv P v vec conv P     to 

leverage temporal information, where ,   represent the 

temporal convolution kernel size and stride. Then, the edge 
weight between the joint and part can be inferred as 

1

1 1 1 1 1

1 1 1 1

2

2 2 2 2 2

2 2 2 2

1 2 2 1

, , , ,

1

, , ,

, , , ,

1

, , ,

, , ,

( , )

([ , ])

( , )

([ , ])

( ) softmax( ) [0,1]

s

s

M

s i s s i s j s i

j

s i s s i s i

M

s k s s k s j s k

j

s k s s k s k

T

s s k i s k s i

r f v v v

h g v r

r f v v v

h g v r

A h h





 



 



 





              (9) 

where, the ( ), ( )f g   denotes multi-layer perceptrons. Given 

the joint features at a certain time stamp, the part-scale feature 
can be updated by the edge weight. 

To accurately predict the future human poses, the MS-GCN 
adopted encoder-decoder architecture, where a graph-based 
GRU is utilized to learn and update hidden states with the guide 

of a graph. Let M M

HA   be the adjacent matrix of the inbuilt 

graph, which is initialized with the skeleton-graph, and 
0 hM DH   be the initial state of GRU. The processing 

procedures of GRU are defined as 
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Fig. 3. Network structure diagram of pose prediction based on MS-GCN. 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( )

( ( ) ( ))

( ( ) ( ))

tanh( ( ) ( ))

(1 )

t t t

in hid H H

t t t

in hid H H

t t t t

in hid H H

t t t t t

r r I r A H W

u u I u A H W

c c I r c A H W

H u H u c







 

 

 

  
         (10) 

At the end, the future pose is predicted by the decoder as  

 ( 1) ( ) ( ) ( )ˆ ˆ ˆ(GRU( ( ), ))t t t t

predP P f diff P H    (11) 

where diff represents difference operator that calculate 
velocity and acceleration of human body keypoints. The entire 
structure diagram is shown in Fig. 3, which is trained end-to-end 
by the loss function as  

1: 1:

1 1

1 ˆ( ) ( )
f f

N

pred T n T n

n

L
N 

  P P

                     (12) 

IV. CASE VERIFICATION 

This section will validate the effectiveness of the proposed 
method based on a self-made experimental dataset. 

A. Dataset Preparation and Experimental Environment 

To advance the application of action recognition and human 
pose understanding in sports skills training, this paper has 
developed a basketball motion dataset by collecting internet data 
and filming original content. This dataset comprises 400 RGB 
videos of various basketball actions such as dribbling, passing, 
shooting, and dunking, performed by different individuals in 
diverse settings. From this collection, approximately 6,000 
images were meticulously selected and manually annotated with 
human keypoints for 2D pose estimation and prediction. The 
dataset is divided into training, validation, and testing sets in a 
ratio of [6 : 2 : 2] . Effective data augmentation techniques, 

including random flipping and the addition of random noise, 
have been applied. This dataset served as the basis for validating 
the proposed HICNN-PSTA and MS-GCN models. Detailed 
information on the hardware and software used in the 
experiments is provided in Table I. 

TABLE I. EXPERIMENTAL SOFTWARE AND HARDWARE ENVIRONMENT 

TABLE 

CPU  Intel(R) Core(TM) i5-13400F 

GPU  NVIDIA GeForce RTX 4070 

Operating System  Ubuntu 18.04 

CUDA  11.1 

Programming  Pytorch1.10.0, Python 3.8 

To fully demonstrate the effectiveness of the proposed 
methods, this study conducted a series of comparative 
experiments to comprehensively evaluate the performance of the 
proposed algorithms in sports action recognition and human 
pose estimation and prediction. Given that the initial part of this 
research utilized a multi-task framework, we selected 
appropriate models for comparison based on the specific 
problems addressed. For sports action recognition, the AGC-
LSTM [19] model was chosen as the benchmark, whereas the 
HPRNet [20] model was used as the comparative standard in the 
domain of 2D human pose estimation. The specific content of 
the experiments is as follows: the action recognition accuracy 

for different basketball skills, the results of 2D human keypoint 
estimation and pose prediction for various basketball skills, and 
ablation studies conducted on the proposed algorithm. During 
the training process, an Adam optimizer with an initial learning 
rate of 0.001 was employed, accompanied by a linear learning 
rate decay coefficient set at 0.95. The training batch size was 
configured to 64, and the number of epochs for iteration was set 
to 50. 

B. Experimental Results 

To fully demonstrate the effectiveness of the proposed 
algorithm, this section first explores the performance of the 
proposed HICNN-PSTA in basketball skill action recognition, 
building on the experimental setup described above. The model 
was trained using a supervised learning approach on the dataset 
constructed for this study, and the classification cross-entropy 
error variation curve during the training process is shown in Fig. 
4. It is evident that the error rapidly decreased and stabilized  

shortly after training commenced, reflecting the model's 
capability to effectively adjust model weights using error 
gradients and ultimately achieve convergence. Additionally, the 
proposed HICNN-PSTA was also subjected to quantitative 
experiments, as shown in Table II, which includes the 
recognition accuracies of various models for different basketball 
skill actions. The proposed algorithm achieved the highest 
recognition accuracy across all skills, likely benefiting from the 
PSTA module's superior ability to capture temporal-spatial 
information, particularly crucial for the rapid and complex 
movements characteristic of basketball and other sports skills. 

 

Fig. 4. Training loss rate curve. 

TABLE II. QUANTITATIVE COMPARISON OF SPORTS ACTION 

RECOGNITION 

Method 
Accuracy 

Dribbling Shooting Passing Dunk 

AGC-LSTM 94.53 90.24 92.50 85.02 

Proposed 96.11 91.15 93.87 91.52 

Furthermore, to delve deeper into the performance of the 
proposed method in sports action recognition, we conducted 
several ablation experiments, the results of which are presented 
in Table III. This experiment compared the proposed model with 
two variants: one substituting the backbone network with 
ResNet, referred to as ResNet-PSTA, and another omitting the 
PSTA module, referred to simply as HICNN. The assessment 
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criterion was the F1-score on the test set, and performance 
across four types of sports skills was evaluated. The results 
indicate that the proposed HICNN-PSTA model achieved the 
best performance in recognizing different sports skills. This 
demonstrates the superior capability of the proposed modules in 
capturing latent movement information and modeling spatio-
temporal relationships, which are crucial for sports action 
recognition. The effectiveness of the HICNN-PSTA model 
underscores its significant role in accurately recognizing 
complex sports actions. 

TABLE III. ABLATION STUDY OF SPORTS ACTION RECOGNITION 

Method 
F1-score 

Dribbling Shooting Passing Dunk 

ResNet-PSTA 0.81 0.79 0.70 0.68 

HICNN 0.76 0.73 0.61 0.71 

Proposed 0.88 0.81 0.76 0.80 

 

 Dribbling  Shooting 

RGB 

Frames

Ground Truth

HPRNet

Proposed

 

Fig. 5. Qualitative comparison of sports pose estimation based on the HICNN-PSTA. 

Additionally, we further explored the performance of 
HICNN-PSTA in sports pose estimation, as shown in Table IV 
and Fig. 5. Table IV employs the Percentage of Correct 
Keypoint Percentage (PCK) as the evaluation metric under 
thresholds of [0.2, 0.1, 0.05], demonstrating the model's 
performance in dribbling pose estimation. It is observable that 
HICNN-PSTA achieved the best recognition results across all 
thresholds, reflecting the model's capability to utilize effective 
information from action recognition to enhance the accuracy of 
human pose estimation in a multi-task framework. The results 
of human pose estimation for dribbling and shooting are 
illustrated in Fig. 5. 

In addition, we conducted multiple experiments to evaluate 
the performance of the proposed MS-GCN in human pose 
prediction and compared it with two widely-used models, TP-
RNN [21] and Traj-GCN [22], as shown in Table V. This table 
employs the Mean Angle Error (MAE) as the evaluation metric, 
detailing the prediction results for different sports skills over 
various time intervals. It is evident that, compared to the other 
two algorithms, MS-GCN achieved the best prediction results in 
the pose prediction for shooting and dunking across different 
time intervals. Although Traj-GCN outperforms MS-GCN in 
predicting these two skills, overall, MS-GCN still demonstrates 
substantial potential and practicality in predicting sports skills. 

TABLE IV. QUANTITATIVE COMPARISON OF SPORTS POSE ESTIMATION  

Method PCK@0.2 PCK@0.1 PCK@0.05 

HPRNet 82.11 75.8 70.01 

Proposed 90.08 81.47 79.34 

TABLE V. QUANTITATIVE COMPARISON OF SPORTS POSE PREDICTION 

Sports Skills ms TP-RNN Traj-GCN Proposed 

Dribbling 

80 0.34 0.32 0.33 

160 0.61 0.50 0.42 

320 1.25 1.19 0.88 

Shooting 

80 0.56 0.45 0.41 

160 1.48 0.86 0.78 

320 1.97 1.28 1.01 

Passing 

80 0.66 0.59 0.47 

160 1.01 1.13 0.92 

320 1.68 1.45 1.47 

Dunk 

80 0.30 0.38 0.28 

160 0.75 0.49 0.50 

320 1.32 1.06 0.92 
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V. CONCLUSION 

This study aims to explore how to better utilize neural 
network models to optimize sports skill training, with a focus on 
achieving sports action recognition and the estimation and 
prediction of athletes' poses, thereby advancing the application 
of neural networks and other artificial intelligence algorithms in 
the field of sports training. To address these challenges, we first 
propose a multi-task framework-based HICNN-PSTA model. 
This model enhances the feature extraction capabilities of the 
conventional CNN by integrating the Involution operator into 
the backbone network. Additionally, this study constructs a 
PSPA module based on the attention mechanism to fully capture 
the latent spatio-temporal information of sports actions, thereby 
improving the efficiency of the algorithm with the help of the 
multi-task framework. Furthermore, to accurately predict future 
poses of athletes and provide training recommendations, this 
paper introduces an MS-GCN model based on a multi-scale 
graph. This algorithm considers the constraints between human 
body keypoints and segments, significantly enhancing the 
capability to model the complex sports skills. Detailed 
experiments validate that the proposed algorithms can 
effectively recognize sports actions and also demonstrate 
excellent performance in human pose estimation and prediction. 
In the future, we plan to integrate more advanced neural network 
algorithms to address the generalization deficiencies across 
different sports, thereby further optimizing sports skill training. 
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