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Abstract—The widespread use of Internet of Things (IoT) 

technology has triggered unparalleled data creation and 

processing needs, necessitating effective computation offloading 

solutions. Conventional edge computing approaches have 

difficulties in dealing with rising energy usage issues and task 

allocation delays. This study introduces a novel hybrid 

metaheuristic algorithm called ACO-RSA, which synergizes two 

metaheuristic algorithms, Ant Colony Optimization (ACO) and 

Reptile Search Algorithm (RSA). The proposed approach 

addresses the energy and latency issues associated with offloading 

computations in IoT edge computing environments. A 

comprehensive system design that effectively encapsulates the 

uplink transmission communication model and a personalized 

multi-user computing task load model is developed. The system 

considers various constraints, such as network latency, task 

complexity, and available computing resources. Based on this, we 

formulate an optimization objective suitable for computing 

outsourcing in the IoT ecosystem. Simulations conducted in a real-

world IoT scenario demonstrate that ACO-RSA significantly 

reduces both time delay and energy consumption compared to 

benchmark algorithms, achieving up to 27.6% energy savings and 

25.4% reduction in time delay. ACO-RSA exhibits robustness and 

scalability when optimizing task offloading in IoT edge computing 

environments. 

Keywords—Task offloading; edge computing; ant colony 

optimization; reptile search algorithm; Internet of Things; energy 
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I. INTRODUCTION 

The exponential growth of Internet of Things (IoT) devices 
has fundamentally transformed how data is produced, analyzed, 
and used in numerous sectors, including smart cities [1], 
healthcare [2], and automated manufacturing [3]. Nevertheless, 
the substantial increase in data flow places substantial 
computing requirements on centralized and distributed systems, 
requiring the investigation of sophisticated task offloading 
strategies [4]. Conventional cloud computing models encounter 
delay and data transfer capacity limitations. In this regard, edge 
computing presents a viable option by bringing computing 
resources close to data sources [5]. However, improving task 
offloading in edge computing contexts has distinct difficulties 
related to energy use and latency [6]. 

Heuristic optimization techniques have contributed to 
overcoming these issues by evaluating a variety of task 
offloading policies. An influential group of these heuristics is 
Ant Colony Optimization (ACO), a group of algorithms based 
on the pheromone-based learning of ants foraging [7]. Similar 

algorithms, such as the Reptile Search Algorithm (RSA), can 
overcome the exploration versus exploitation challenge by 
imitating hunter-reptile foraging strategies [8]. The methods 
have been proven to work on optimization problems across 
various applications, including image processing, power 
systems, and edge computing. While the former is difficult to 
pull out of premature convergence, the latter must be carefully 
controlled judiciously to avoid falling into unoptimal solutions. 

In light of the aforementioned, this paper presents a new 
metaheuristic method called ACO-RSA, which merges two 
metaheuristic methods, ACO and RSA, to solve offloading 
problems in IoT edge computing. Our strategy aims to achieve 
the benefit of both ACO and RSA by minimizing energy use 
and time delays. The paper presents the system architecture, 
with a communication model relying on an uplink transmission 
and the distribution task model between multiple users. This 
paper next introduces an objective function for IoT context 
optimization. 

The system design also includes a multi-user task 
distribution model and an uplink transmission communication 
model that considers transmission delays, the complexity of the 
tasks to be solved by standalone devices, and the available 
computing resources. We design an optimization target 
specifically for these systems to adapt to IoT task offloading 
mechanisms and conduct extensive simulations to demonstrate 
the effectiveness of ACO-RSA. Experimental results show that 
our solution ACO-RSA can effectively reduce the energy 
consumption and latency of existing algorithms, which has 
obvious advantages in practical IoT application scenarios. 

The rest of this paper is organized as follows. Section II 
contains a detailed literature review, including previous work 
on task offloading and metaheuristic optimization techniques. 
Section III discusses the system model and problem 
formulation. Section IV discusses our ACO-RSA algorithm in 
detail. An experimental setup and simulation results are 
presented in Section V for evaluating the proposed approach's 
performance. Lastly, Section VI summarizes the key insights, 
limitations, and future research possibilities concluding the 
paper. 

II. BACKGROUND 

A. Edge Computing in IoT 

In recent years, cloud computing platforms have evolved 
into the first choice for provisioning services because of their 
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flexibility and cost-effectiveness [9]. Fundamentally, there has 
been a shift towards centralized systems for processing and 
storing data in large data centers [10]. The IoT is advancing 
rapidly, with major effects on various sectors of society, mainly 
healthcare, transportation, and manufacturing [11]. They have 
many IoT devices at the edge producing huge volumes of data, 
which may require very little or significant resources (e.g., 
storage and processing) [12]. Service delivery is a big problem 
in cloud systems. Additional challenges involve the placement 
of sensors and actuators in space, response time constraints, 
privacy issues, and data processing. Apart from cloud 
computing, these barriers are a driving force for innovation in 
solutions [13]. 

Edge computing places servers for computation and storage 
at the edges of the internet, relatively closer to where data is 
generated. The above approximations are due to the lower 
latencies, more privacy concerns considering data being 
transferred, and suboptimal energy overhead [14]. This 
hybridization extends edge computing capabilities to distribute 
and gradually interconnect with cloud-based processing 
components. 

Fig. 1 shows the hybrid edge-cloud reference design 
encompasses a range of computing and storage capabilities. 
Thing nodes are small and constrained devices with limited 
computing and storage capabilities, so they can only do basic 
functions like detecting, acting in response to certain events, 
and sending and receiving data. In contrast to Thing nodes, 
local nodes are capable of more processing, storing, and 
communicating. This allows them to process, analyze, and send 
data and interface with both the cloud and thing nodes. A local 
node may also host IoT applications at the network edge.  

A local node can be any device such as a gateway, access 
point, router, switch, local server, cellphone, or linked vehicle. 
Furthermore, various physical gadgets can fulfill certain 

functions. A traffic light, for example, can be both a thing node 
that detects its surroundings and acts accordingly and a local 
node that collects and analyzes data. Centralized data centers 
provide extensive processing, storage, and communication 
capabilities in the cloud. Due to these characteristics, cloud 
solutions can accommodate many IoT components that require 
substantial physical resources. 

B. Task Offloading Challenges 

In edge computing settings, task offloading has distinct 
issues that must be addressed for efficient and effective task 
distribution. As shown in Fig. 2, the problems arise from IoT 
devices' intrinsic attributes, edge computing's decentralized 
nature, and dynamic and unexpected network circumstances. 
IoT devices are often situated in geographically scattered 
locations with diverse network conditions. Latency may impede 
communication between these devices and edge servers, 
particularly in cases of network congestion or when the devices 
are placed far from the edge nodes. In addition, a restricted 
amount of available bandwidth might result in congestion 
during data transmission, which causes delay problems. 

IoT applications can include a wide range of functions with 
different levels of complexity, including basic data processing 
and more demanding processes like real-time video analysis or 
machine learning inference [15]. Because different workloads 
may have no shared characteristics and time constraints, the 
diversity of these jobs adds difficulty for offloading methods. 
In addition, edge servers could differ widely in the processing 
power, memory, and storage they support [16]. 

Energy efficiency is crucial in IoT systems since devices 
often have limited battery capacity. Task offloading may 
mitigate the computing burden on IoT devices, thereby 
conserving their energy [17]. Nevertheless, offloading 
necessitates energy use, particularly in data transmission to 
edge servers and the reception of results. 

 
Fig. 1. Edge-cloud reference architecture. 
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Fig. 2. Task offloading challenges. 

IoT applications, including autonomous cars, smart 
manufacturing, and healthcare monitoring, need immediate 
processing. During these situations, even a small delay in 
carrying out a job might result in significant repercussions, 
highlighting the need to reduce latency and guarantee prompt 
task fulfillment [18]. The task involves creating offloading 
algorithms that provide real-time performance while 
distributing the computing workload across several edge 
servers. 

Transmitting sensitive data via networks might expose it to 
interception or unwanted access. Moreover, the decentralized 
structure of edge computing increases attack vulnerability, 
making it more difficult to protect all nodes from possible risks. 
The IoT ecosystem is intrinsically characterized by its dynamic 
nature, including fluctuating network conditions, shifting 
workloads, and varied resource availability at edge servers. 
These variables contribute to an uncertain environment that 
complicates the job offloading process. 

C. Edge Computing-Enabled Task Offloading Mechanisms 

Xiao, et al. [19] proposed a three-layer IoT structure that 
addresses different aspects of tasks. Edge computing and 
blockchain architectures address the problem of sensitivity to 
task delays and enable service providers to maximize their 
profits. In addition, due to the features of the edge computing 
server in the second layer, the proposed algorithm is executed 
as a smart contract. This smart contract is responsible for 
managing and distributing edge computing resources. In 
particular, a complementary approach called stacked cache is 
proposed to facilitate the fair distribution of resources on edge 
computing servers. 

You and Tang [20] proposed an energy-efficient, low-delay 
PSO-based task offloading technique for low-resource edge 
devices. The problem formulated is a multi-objective 

optimization incorporating latency, task execution cost, and 
energy usage. The offloading of all tasks to different mobile 
edge servers represents the particle's fitness function. 
Simulation experiments compare the PSO offloading strategy 
with simulated annealing and genetic algorithms. Based on the 
experimental results, PSO-based task offloading reduces edge 
server latency, balances energy consumption, and achieves 
reasonable resource allocation. 

Chen, et al. [21] combined two contradictory offloading 
objectives, namely increasing the job completion rate with an 
acceptable delay and decreasing the energy consumption of 
devices. The task offloading issue was established to achieve 
equilibrium between two challenging aims. Subsequently, they 
clarified it as a problem of dynamic task offloading based on 
Markov Decision Processes (MDP). A Deep Reinforcement 
Learning (DRL)-based dynamic task offloading 
(DDTO) method was developed to address this issue. The 
DDTO algorithm adapts to the constantly changing and 
intricate context and appropriately modifies the way tasks are 
offloaded. Experiments demonstrate DDTO's rapid 
convergence. The trial findings confirm the efficiency of the 
DDTO algorithm in achieving a balance between the finish 
ratio and power. 

Kong, et al. [22] introduced a dependable and effective 
approach for task offloading using the multi-feedback trust 
strategy. A reliable and effective framework is built, which may 
significantly enhance trust computing and job offloading. 
Furthermore, the broker utilizes dynamic data monitoring to 
offer a multi-feedback trust management design using 
interaction frequency and time attenuation. This model aims to 
establish a trustworthy operating setting. Moreover, a trust-
weighted K-means clustering approach is developed using 
resource qualities to improve service dependability. This 
algorithm efficiently and correctly groups the resource nodes 
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needed for the job. A job offloading model uses trust clustering 
to improve user experience and enhance system performance. 
In contrast to current task processing models prioritizing task 
offloading, the suggested approach further incorporates 
resource pretreatment, trust assessment, and resource clustering 
before task processing. 

Aghapour, et al. [23] presented a solution using deep 
reinforcement learning to break down offloading and resource 
allocation into two elementary issues. The Salp Swarm 
Algorithm (SSA) optimizes resource allocation by updating 
offloading policy according to environmental data. The 
proposed method investigates various deep-learning tasks of 
IoT devices under different cloudlet server capacities. 
Simulation findings demonstrate that the suggested approach 
has the lowest latency and power consumption cost. On 
average, 92%, 17%, and 12% improvements were shown 
compared to the full local, full offload, joint resource allocation, 
and computation offloading techniques, respectively. 

Bolourian and Shah-Mansouri [24] developed a wireless-
powered mobile edge computing system divided into three 
tiers: IoT devices, edge servers, and cloud. A formulation of a 
combinatorial optimization problem is presented to minimize 
wireless energy transmission. Bipartite graph matching is 
employed to address the issue's complexity, and a harvest-then-
offload technique is suggested for IoT devices. The proposed 
approach utilizes parallel processing to enhance its 
performance. Empirical tests demonstrate that the 
recommended technique substantially decreases the energy 
demand for operating IoT devices compared to other offloading 
strategies. 

Nandi, et al. [25] developed a task offloading strategy to 
achieve a compromise between device usefulness and 
execution cost. Utility is determined by job execution delay and 
energy usage in energy-harvesting IoT devices. The task 
offloading issue is a problem of selecting a subset that achieves 
the required trade-off. Social Cognitive Optimization (SCO) 
addresses the offloading issue and achieves the required 
polynomial time of execution. The findings confirm the 
superior effectiveness of the approach regarding job execution 
speed, energy use, cost efficiency, and task abandonment rate 
when compared to the most advanced existing methods. 

Due to its unique features, the proposed ACO-RSA 
provides a result-oriented solution to address the issues of 
energy consumption and latency in task offloading. While ACO 
has excellent exploration performance thanks to pheromone-
assisted learning, it also has premature convergence. As RSA 
learns adaptively, it can utilize space better and more 
efficiently; however, exploration capacity may be limited, 
resulting in suboptimal outcomes. As a result of combining the 
advantages of both ACO exploration and RSA exploitation, the 
ACO-RSA hybrid method eliminates these disadvantages. It 
improves task-shifting efficiency, as illustrated by evaluation 
results. Using a more balanced and robust approach, we achieve 
significant reductions in energy consumption and latency, in 
contrast to existing research that proposes single-objective 
optimizations or scalability issues. The ACO-RSA can also 
achieve convergence more quickly and accurately than the 
current research literature. 

III. SYSTEM DESIGN 

A. System Model 

Consider a defined geographic region containing a 
population of N mobile user devices, each denoted by n in the 
range 1 to N. Each device is assigned a unique computing task 
with different priorities, such as energy efficiency or latency 
minimization. This region has a base station equipped with 
several Mobile Edge Computing (MEC) servers. Mobile 
devices can communicate with MEC servers via a radio access 
network to reduce their computing load. The base station is 
configured with M-channels, each supporting a single 
connection between the device and the MEC server. 

Mobile devices are assigned static channels, and edge 
servers have limited computing resources. The model also 
assumes a central cloud server with unlimited capacity. A 
single-edge server can handle the computing needs of only one 
device at a time. Tasks that exceed the capacity of an edge 
server are shifted to the cloud via the backbone network. The 
mobile edge computing architecture is shown in Fig. 3. 

 
Fig. 3. Network model. 

Mobile device offloading involves three steps. First, the 
device determines whether the task should be executed locally 
or offloaded to an edge server. During offloading, the system 
assesses the availability of the edge server resources. 
Insufficient resources require a decision between queuing at the 
current edge server or offloading to the cloud. 

Orthogonal uplink channels ensure non-interference 
between devices in the proposed system. According to Eq. 1, 
the uplink rate Rn is calculated by denoting the transmission 
power of device n as Pn. Here, Sn refers to the device n's uplink 
bandwidth, zn is the channel gain coefficient, and 𝛿𝑛

2 represents 
the noise power. 
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𝑅𝑛 = 𝑆𝑛𝑙𝑜𝑔2 (1 +
𝑃𝑛𝑧𝑛
𝛿𝑛
2
),      ∀𝑛 ∈ 𝑁 (1) 

B. Multi-User Computing Task Load Model 

This subsection presents a computational task model to 
simplify the analysis. A computing task is characterized by 
three main components: (1) volume of data, including program 
code and input parameters, that needs to be uploaded for 
outsourced tasks; (2) computing capacity, typically measured in 
CPU cycles; and (3) results in data to be downloaded for 
outsourced tasks. Eq. 2 formally defines a computing task Qv as 
a function of the result data Rv, the computing capacity Cv, and 
the data volume Dv. 

𝑄𝑣 ∆
=
(𝐷𝑣 , 𝐶𝑣 , 𝑅𝑣) (2) 

Using a program called graph analysis, mobile devices can 
discover these components. A multi-user delay and energy 
consumption load model is built to meet personalized user 
needs by analyzing different application types and 
corresponding data. This model evaluates the impact of local 
and cloud task execution on performance. 

Initially, each mobile device determines whether to execute 
its task locally or offload it. For locally executed tasks, the 
computational requirements of device n are denoted by Jn1 CPU 
cycles, and the task itself requires jn1 CPU cycles. The local 
execution time, tn1, is calculated according to Eq. 3. Energy 
consumption, En1, for local execution is determined by Eq. 4, 
where λ is a constant energy consumption coefficient related to 
the device's chip structure, typically set to 10-26. The total local 
overhead, Wn1, is calculated using Eq. 5, incorporating trade-off 
coefficients αn1 and αn2 for energy consumption and task 
execution time, respectively. These coefficients must adhere to 
the constraints outlined in Eq. 6. 

𝑡𝑛1 =
𝑗𝑛1
𝐽𝑛1

 (3) 

𝐸𝑛1 = 𝜆𝑗𝑛1(𝐽𝑛1)
2 (4) 

𝑊𝑛1 = 𝑎𝑛1𝐸𝑛1 + 𝑎𝑛2𝑡𝑛1 (5) 

{
𝑎𝑛1, 𝑎𝑛2 ∈ [0,1]

𝑎𝑛1 + 𝑎𝑛2 = 1  
 (6) 

When the nth user's task is offloaded to an edge server, the 
processing delay is determined by Eq. 7. This delay comprises 
two components: the uplink transmission delay for task input 
data and the edge server execution time. The energy 
consumption for transferring the task to the edge server is 
computed using Eq. 10, where β represents the device's power 
amplifier efficiency. Eq. 11 formulates the total offloading 
overhead. 

𝑡𝑛2(𝑃𝑛 , 𝐽𝑛2) = 𝑡𝑛2(1)(𝑃𝑛) + 𝑡𝑛2(2)(𝐽𝑛2) (7) 

𝑡𝑛2(1)(𝑃𝑛) =
𝑠𝑛

𝑊𝑛𝑙𝑜𝑔2(1 + 𝜎𝑛𝑃𝑛)
 (8) 

𝑡𝑛2(2)(𝐽𝑛2) =
𝑗𝑛
𝐽𝑛2

 (9) 

𝐸𝑛2 =
𝑃𝑛
𝛽
𝑡𝑛2(1)(𝑃𝑛) =

𝑃𝑛
𝛽

𝑠𝑛
𝑊𝑛𝑙𝑜𝑔2(1 + 𝜎𝑛𝑃𝑛)

 (10) 

𝑊𝑛2 = 𝑎𝑛1𝐸𝑛2 + 𝑎𝑛2𝑡𝑛2(𝑃𝑛 , 𝐽𝑛2) (11) 

C. Optimization Objective Function 

The total overhead incurred by mobile device n during task 
offloading is calculated according to Eq. 12. The objective 
function is formulated to minimize the aggregate overhead 
across all devices. To achieve this minimum overhead, the 
optimal offloading strategy (X), uplink power allocation (P), 
and edge computing resource allocation (M) are determined. 
Eq. 13 expresses the optimization goal. 

𝑊𝑛 = (1 − 𝑥𝑛)𝑊𝑛1 + 𝑥𝑛𝑊𝑛2 (12) 

min
𝑋,𝑃,𝑀

𝑊 =∑(1 − 𝑥𝑛)𝑊𝑛1 + 𝑥𝑛𝑊𝑛2

𝑁

𝑛=1

 (13) 

Eq. 14 details the constraints. The binary variable xn 
indicates the offloading decision for device n (1 for offloading, 
0 for local execution). Pmax represents the maximum 
transmission power, Jmax is the maximum computational 
resource, and N2 is the set of devices opting for offloading. The 
first constraint specifies which devices should be offloaded. 
The maximum power of the uplink device is limited by 
constraint 2. With constraint 3, edge computing resources are 
not allocated beyond the server's capacity. Negative resource 
allocation is prevented by constraint 4. As a final constraint, 
uplink transmissions are concurrently limited to N. 

{
 
 
 

 
 
 
1: 𝑥𝑛 ∈ {0,1}, ∀𝑛 ∈ 𝑁                  
2: 0 < 𝑃𝑛 ≤ 𝑃𝑚𝑎𝑥 , ∀𝑛 ∈ 𝑁2        

3: ∑ 𝐽2 ≤ 𝐽𝑚𝑎𝑥
𝑛∈𝑁2

                          

4: 𝐽𝑛2 > 0, ∀𝑛 ∈ 𝑁2                      

5: ∑ 𝑥𝑛𝑆𝑛 ≤ 𝐵

𝑛∈𝑁

                           

 (14) 

IV. THE ACO-RSA ALGORITHM 

A. Ant Colony Optimization 

The ACO algorithm is a metaheuristic inspired by the 
foraging behavior of real ants. Artificial ants iteratively 
construct solutions to optimization problems by laying down 
and following virtual pheromone trails. These paths represent 
solution components whose intensity correlates with the 
solution quality. Ants will likely select subsequent solution 
components based on pheromone levels and problem-specific 
heuristic information. Pheromone levels are dynamically 
updated to amplify high-quality solutions. ACO is a 
probabilistic search method that does not guarantee optimal 
solutions but often provides acceptable approximations within 
reasonable computing time. 

Mathematically, ACO can be described in the following 
manner. A population of artificial ants is created. Pheromone 
levels on all potential solution components are initialized to a 
small positive value. Ants construct solutions by iteratively 
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selecting components. The probability of selecting component 
j after component i is determined by Eq. 15: 

𝑃𝑖𝑗 =
𝜏𝑖𝑗
𝛼 . 𝜂𝑖𝑗

𝛽

∑(𝜏𝑖𝑘
𝛼 . 𝜂𝑖𝑘

𝛽
)
 (15) 

Where α and β are parameters balancing pheromone and 
heuristic influence, ηij is the heuristic information of 
components i and j, and τij is the pheromone level of two 
components. After selecting a component, an ant updates its 
pheromone level according to Eq. 16. 

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 + 𝜌∆𝜏𝑖𝑗  (16) 

Where ρ is the pheromone evaporation rate and Δτij is the 
pheromone the ant deposits. Once all ants have created 
solutions, pheromone levels are updated globally based on the 
overall quality of the solution. Combining probabilistic 
selection, pheromone amplification, and evaporation, this 
iterative process allows ACO to explore the solution space 
effectively. 

B. Reptile Search Algorithm 

RSA is a swarm intelligence metaheuristic derived from 
crocodile hunting strategies. By modeling competitive and 
cooperative interactions within a reptile population, RSA 
determines the global optima for optimization problems. 
Known for its simplicity, flexibility, and efficiency, RSA has 
found applications in image processing, power systems, and 
engineering. 

RSA's optimization methodology, outlined in Eq. 17, 
involves iteratively refining a population of solutions (X). Eq. 
18 details the random generation of candidate solutions, where 
xi,k represents the kth position of the ith individual, N refers to 
the population size, D specifies the problem dimension, and rd 
indicates a random value within the problem's lower (LB) and 
upper (UB) bounds. 

𝑋 = [

𝑥1,1 𝑥1,2 … 𝑥1,𝐷
𝑥2,1 𝑥2,2 … 𝑥2,𝐷
⋮ ⋯ ⋯ ⋮

𝑥𝑁,1 𝑥𝑁,2 … 𝑥𝑁,𝐷

] (17) 

𝑥𝑖,𝑘 = 𝑟𝑑 × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑘 = 1,2, … , 𝑛 (18) 

RSA is divided into two stages: exploration (encircling) and 
exploitation (hunting). During exploration, crocodiles exhibit 
two distinct movement patterns: high walking and belly 
walking. Unlike focused hunting, exploratory behaviors allow 
for a wider range of search areas. RSA emulates these 
mechanisms during its exploration phase, as defined in Eq. 19. 

𝑥𝑖,𝑘(𝑡 + 1)

= {
𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝜂𝑖,𝑘(𝑡) × 𝛽 − 𝑅𝑖,𝑘(𝑡) × 𝑟𝑑,    𝑡 ≤

𝑇𝑚
4

𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝑥𝑟1,𝑘(𝑡) × 𝐸𝑆(𝑡) × 𝑟𝑑, 𝑡 ≤ 2
𝑇𝑚
4
 𝑎𝑛𝑑 𝑡 >

𝑇𝑚
4

 

(19

) 

Bestk represents the best kth position of the optimal 
individual, T is the current iteration, and Tm is the maximum 
iteration. Parameter 𝛽 controls the exploration extent. Random 
numbers rd and r1 are employed for stochasticity. The hunting 

operator, 𝜂𝑖,𝑘, calculated in Eq. 20, influences the exploration 

process. 

𝜂𝑖,𝑘 = 𝐵𝑒𝑠𝑡𝑘(𝑡) × 𝑃𝑖,𝑘(𝑡) (20) 

To refine the search, a reduced function, Ri,k, is introduced 
in Eq. 21, where 𝜀 is a small constant and r2 is another random 
number. This function minimizes the search space. The 
evolutionary phase, ES(t), calculated in Eq. 22, is a probability 
ratio that fluctuates between -2 and 2 over iterations, guided by 
the random number r3. Pi,k, the percentage difference between 
the Bestkth value of the optimal and current solutions, as 
computed in Eq. 23. The average solution, calculated in Eq. 24, 
contributes to the overall exploration strategy. 

𝑅𝑖,𝑘 =
𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝑥𝑟2,𝑘
𝐵𝑒𝑠𝑡𝑘(𝑡) + 𝜀

 (21) 

𝐸𝑆(𝑡) = 2 × 𝑟3 × (1 −
1

𝑇𝑚
) (22) 

𝑃𝑖,𝑘 = 𝛼 +
𝑥𝑖,𝑘−𝑀𝑥𝑖

𝐵𝑒𝑠𝑡𝑘 × (𝑈𝐵𝑘 − 𝐿𝐵𝑘) + 𝜖
 (23) 

𝑀𝑥𝑖
=
1

𝐷
∑𝑥𝑖,𝑘

𝐷

𝑘=1

 (24) 

Cooperation and coordination are the two main foraging 
behaviors of crocodiles. These strategies represent different 
approaches to intensified exploitation. Eq. 25 determines the 
specific behavior. Hunting coordination is performed when the 
current iteration (t) falls within the range of 2Tm/4 to 3Tm/4, 
where Tm is the maximum iteration. Conversely, hunting 
cooperation occurs when t is between 0 and Tm/4 or 3Tm/4 and 
Tm. 

𝑥𝑖,𝑘

= {
𝐵𝑒𝑠𝑡𝑘(𝑡) × 𝑃𝑖,𝑘(𝑡) × 𝑟𝑑,                                𝑡 ≤ 3

𝑇𝑚
4
 𝑎𝑛𝑑 𝑡 > 2

𝑇𝑚
4

𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝜂𝑖,𝑘(𝑡) × 𝜖 − 𝑅𝑖,𝑘 × 𝑟𝑑,            𝑡 ≤ 𝑇𝑚 𝑎𝑛𝑑 𝑡 ≤ 3
𝑇𝑚
4
    

 

(2

5) 

C. Integration of ACO and RSA 

Because ACO relies on pheromone trails, exploration of the 
solution space is hampered by premature convergence. While 
strong exploration prevents local optima, excessive exploitation 
impairs solution quality. RSA effectively balances exploration 
and exploitation and demonstrates superior performance in 
various technical areas. We propose a hybrid ACO-RSA 
strategy based on a high-level relay hybrid (HRH) approach to 
further improve this balance. ACO and RSA are applied 
sequentially, homogeneously, or heterogeneously. The 
proposed method uses a heterogeneous HRH strategy to 
combine the exploitation of ACO with the exploration of RSA. 

Initially, ACO, RSA, and shared parameters are initialized. 
N candidate solutions, each represented by an M-dimensional 
feature vector, are randomly generated within the range of -1 to 
1. These solutions are evaluated using a fitness function to 
assess their quality relative to previous iterations. Superior 
solutions are retained, while inferior ones are discarded. 
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Afterward, the optimal solution is identified and assigned to 
the initial ACO population. The candidate solutions are then 
designated as initial ant paths. The ants update candidate 
solutions based on a subset of features initialized with 
pheromone values exceeding 0.5. Improvements are based on 
fitness evaluations, with updates only applied to the fittest 
solutions (Eq. 26). 

𝑥𝑖(𝑔 + 1)

= {
𝑥𝑖
𝑛𝑒𝑤(𝑔),   𝑖𝑓 𝐹𝐹(𝑥𝑖(𝑔)) > 𝐹𝐹(𝑥𝑖(𝑔 + 1))

𝑥𝑖(𝑔),        𝑒𝑙𝑠𝑒                                                    
 

(26) 

ACO or RSA uses the refined candidate solutions as input 
to explore new promising regions in successive iterations. An 
algorithm switch occurs when ACO does not improve the 
solutions, indicating a trap in local optima. RSA is then used to 
diversify the search space. The iterative process continues until 
the termination criterion (maximum iterations) is reached. 

Initialization is an initial process that randomly generates 
candidate solutions (using 50 population sizes) to ensure a 
diverse solution space. We set pheromone levels for ACO to be 
initialized with small positive values, and we made the 
pheromone evaporation rate 0.1 (to balance exploration and 
exploitation). Inspired by the reptile-hunting dielectric 
technique, the RSA reacts to evolve optimal solutions and seeks 
convergence of its best solutions. The algorithm stops when 100 
iterations are achieved or there hasn't been a significant 
improvement in loss over ten consecutive iterations. 
Incorporating ACO exploration with RSA adaptive learning 
compensates for both suboptimal aspects of the algorithms, 
avoids premature convergence typical of ACO, and optimizes 
the exploitation phase of RSA. During task scheduling, each 
task's priority is assigned based on its scale and complexity 
(energy-sensitive or latency-sensitive) through the optimization 
process, as shown in Fig. 2. The system's energy consumption 
and latency are reduced by balancing the distribution of tasks 
across available resources, including edge servers or the cloud. 

V. EXPERIMENTAL SETUP AND RESULTS 

To validate the effectiveness of the proposed ACO-RSA 
algorithm, we conducted an extensive series of simulations. The 
simulation environment is designed to mimic real-world IoT 
scenarios with varying numbers of mobile user devices and data 
transfer rates. The environment includes multiple edge servers 
with different computational capabilities, simulating a typical 
edge computing context. The primary performance metrics 
evaluated in the simulations are average time delay and energy 
consumption. Time delay is the total time required for task 
completion, while energy consumption is calculated based on 
the power needed for data transmission and processing. 

The simulation parameters were configured according to the 
3GPP standard. The simulation considers an area with a 1 km 
radius, where users transmit data at a maximum power of 25 
dBm over a system bandwidth of 15 MHz and user bandwidth 
of 0.5 MHz. The noise power in the uplink bandwidth is set at 
−108 dBm. Tasks have input data volumes ranging from 300 to 
1500 KB and require CPU cycles between 0.1 and 0.8 GHz. 
The users' computing power varies from 0.2 to 1.2 GHz, while 
the MEC server has a computing power of 3 GHz. The 

simulation also involves a population size of 50 and a maximum 
of 100 evolutions, with a maximum allowable time delay of 3 
to 5 seconds. 

To evaluate the convergence of the proposed computation 
offloading algorithm, a simulation was conducted with 80 
users, 15 servers, and 5MB tasks. Fig. 4 illustrates the time 
delay of the system over different iteration numbers. Fast 
convergence was observed after 20 iterations, with minimal 
delay improvements after that, indicating the achievement of a 
global optimum. This demonstrates the algorithm's strong 
global optimization and search capabilities and reduces the 
overall system delay from 0.268 s to 0.194 s, representing a 
significant performance improvement. 

 
Fig. 4. Stability diagram. 

Comparative analyses used algorithms from [26, 27] to 
assess delay and energy consumption. Fig. 5 shows the average 
delay for different numbers of users. Energy consumption was 
evaluated at various transmission rates (Fig. 6). Due to the lack 
of data transfer, local execution was independent of the transfer 
rate. All algorithms showed lower energy consumption with 
increasing transfer rates due to lower offloading overhead. The 
proposed method showed the largest decrease and lowest 
overall energy consumption, enabled by more frequent and 
fine-grained discharge decisions. 

 
Fig. 5. Delay vs. Number of mobile devices. 
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Fig. 6. Energy consumption vs. data transmission rate. 

Fig. 7 illustrates the relationship between energy 
consumption and number of users. The proposed method 
consistently outperformed others with the lowest energy 
consumption and growth rate, achieving 0.2 J for 80 users. The 
local execution caused the highest energy consumption. The 
proposed strategy's efficiency in task offloading and reduced 
local execution contributed to overall energy savings. 

 
Fig. 7. Energy consumption vs. number of mobile devices. 

The results confirm that the ACO-RSA algorithm can 
effectively solve major task offloading problems in IoT edge 
computing, such as energy consumption and latency. By 
combining ACO’s exploration and RSA’s adaptive learning, 
the proposed approach distributes tasks efficiently and 
minimizes system overhead. The proposed ACO-RSA provides 
an average of 27.6% energy savings and 25.4% latency 
reduction compared to other existing techniques, resulting in 
better resource scheduling and task completion. 

These results confirm the algorithm's ability to optimize 
task shifting while balancing energy and performance metrics. 
Nevertheless, the study emulates the simulation environment of 
static network states and operational case functions within 
devices, which may not correspond to the realistic conditions in 
ideas in IoT environments. Fluctuating network traffic or 
device roaming can affect the algorithm's performance. Finally, 
future work should focus on extending ACO-RSA to dynamic 
edge computing scenarios and incorporating other 

considerations, such as security and privacy, to improve the 
robustness and applicability of ACO-RSA in various IoT 
contexts. 

VI. CONCLUSION 

To the best of our knowledge, this is the first study to 
introduce a new metaheuristic algorithm by combining ACO 
and RSA into a hybrid version named ACO-RSA, which can 
overcome the challenges of efficient task offloading in IoT 
environments powered by edge computing. This feature, 
therefore, allows the ACO-RSA classifier to make a remarkable 
compromise between energy consumption and latency, two 
main components of IoT ecosystems, by utilizing both ACO 
and RSA within an integrated classification framework. By 
using ACO, the algorithm takes inspiration from how ants 
collect food to search for optimal paths; meanwhile, with RSA, 
it can adaptively explore the IoT environments that are highly 
dynamic and unpredictable, proposing a strong solution. 

ACO-RSA is designed based on an optimization objective 
function aiming to minimize energy consumption while at the 
same time reducing task offloading latency. Thus, it is well 
suited for resource-limited IoT devices that run in edge 
computing environments. We conducted a series of extensive 
simulations to verify the feasibility of the proposed algorithm. 
Results confirmed that the proposed ACO-RSA operates better 
than the traditional benchmark algorithms. The hybrid 
algorithm minimizes energy consumption and operates with 
low latency as the number of mobile users and data rates 
increase. This result illustrates the promise of ACO-RSA in 
enhancing resource utilization and prolonging the lifecycle of 
IoT applications by tuning task offloading policies. 

Future work will address the scalability and robustness of 
ACO-RSA, especially within larger and more complex IoT 
networks with an assorted range of applications and diverse 
task requirements. Moreover, investigation into the integration 
between machine learning and ACO-RSA could enhance 
adaptivity capabilities even more and aid in better addressing 
dynamic changes in network conditions and resource 
availability. In conclusion, the proposed ACO-RSA algorithm 
is an important step towards an efficient and energy-greedy task 
offloading strategy in edge computing-enabled IoT 
environments. 

REFERENCES 

[1] A. A. Anvigh, Y. Khavan, and B. Pourghebleh, "Transforming Vehicular 
Networks: How 6G can Revolutionize Intelligent Transportation?," 
Science, Engineering and Technology, vol. 4, no. 1, pp. 80-93, 2024. 

[2] J. Valizadeh et al., "An operational planning for emergency medical 
services considering the application of IoT," Operations Management 
Research, vol. 17, no. 1, pp. 267-290, 2024. 

[3] B. Pourghebleh and V. Hayyolalam, "A comprehensive and systematic 
review of the load balancing mechanisms in the Internet of Things," 
Cluster Computing, pp. 1-21, 2019. 

[4] B. Pourghebleh and N. J. Navimipour, "Data aggregation mechanisms in 
the Internet of things: A systematic review of the literature and 
recommendations for future research," Journal of Network and Computer 
Applications, vol. 97, pp. 23-34, 2017. 

[5] N. M. Quy, L. A. Ngoc, N. T. Ban, N. V. Hau, and V. K. Quy, "Edge 
computing for real-time Internet of Things applications: Future internet 
revolution," Wireless Personal Communications, vol. 132, no. 2, pp. 
1423-1452, 2023. 

0.7

0.8

0.9

1

1.1

1.2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
n

er
g
y
 c

o
n

su
m

p
ti

o
n

 (
J)

Data transmission rate (Kb-s-1)

Reference 16 Reference 17 ACO-RSA

0.1

0.3

0.5

0.7

0.9

1.1

20 40 60 80 100 120 140 160 180 200

E
n

er
g
y
 c

o
n

su
m

p
ti

o
n

 (
J)

Number of mobile devices

Reference 16 Reference 17 ACO-RSA



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

596 | P a g e  

www.ijacsa.thesai.org 

[6] Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan, and K. B. Letaief, "Delay-
sensitive task offloading in vehicular fog computing-assisted platoons," 
IEEE Transactions on Network and Service Management, 2023. 

[7] S. E. Comert and H. R. Yazgan, "A new approach based on hybrid ant 
colony optimization-artificial bee colony algorithm for multi-objective 
electric vehicle routing problems," Engineering Applications of Artificial 
Intelligence, vol. 123, p. 106375, 2023. 

[8] L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, and A. H. 
Gandomi, "Reptile Search Algorithm (RSA): A nature-inspired meta-
heuristic optimizer," Expert Systems with Applications, vol. 191, p. 
116158, 2022. 

[9] R. Chataut, A. Phoummalayvane, and R. Akl, "Unleashing the power of 
IoT: A comprehensive review of IoT applications and future prospects in 
healthcare, agriculture, smart homes, smart cities, and industry 4.0," 
Sensors, vol. 23, no. 16, p. 7194, 2023. 

[10] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji 
Kazem, "Single‐ objective service composition methods in cloud 
manufacturing systems: Recent techniques, classification, and future 
trends," Concurrency and Computation: Practice and Experience, vol. 34, 
no. 5, p. e6698, 2022. 

[11] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and M. Sadeghi, "A roadmap 
towards energy‐efficient data fusion methods in the Internet of Things," 
Concurrency and Computation: Practice and Experience, vol. 34, no. 15, 
p. e6959, 2022. 

[12] F. Kamalov, B. Pourghebleh, M. Gheisari, Y. Liu, and S. Moussa, 
"Internet of medical things privacy and security: Challenges, solutions, 
and future trends from a new perspective," Sustainability, vol. 15, no. 4, 
p. 3317, 2023. 

[13] N. A. Angel, D. Ravindran, P. D. R. Vincent, K. Srinivasan, and Y.-C. 
Hu, "Recent advances in evolving computing paradigms: Cloud, edge, 
and fog technologies," Sensors, vol. 22, no. 1, p. 196, 2021. 

[14] G. Baranwal, D. Kumar, and D. P. Vidyarthi, "Blockchain based resource 
allocation in cloud and distributed edge computing: A survey," Computer 
Communications, 2023. 

[15] B. Pourghebleh, K. Wakil, and N. J. Navimipour, "A comprehensive study 
on the trust management techniques in the Internet of Things," IEEE 
Internet of Things Journal, vol. 6, no. 6, pp. 9326-9337, 2019. 

[16] J. Ge, B. Liu, T. Wang, Q. Yang, A. Liu, and A. Li, "Q‐learning based 
flexible task scheduling in a global view for the Internet of Things," 
Transactions on Emerging Telecommunications Technologies, p. e4111, 
2020. 

[17] P. V. B. C. d. Silva, C. Taconet, S. Chabridon, D. Conan, E. Cavalcante, 
and T. Batista, "Energy awareness and energy efficiency in internet of 
things middleware: a systematic literature review," Annals of 
Telecommunications, vol. 78, no. 1, pp. 115-131, 2023. 

[18] I. Vlachos, R. M. Pascazzi, M. Ntotis, K. Spanaki, S. Despoudi, and P. 
Repoussis, "Smart and flexible manufacturing systems using Autonomous 
Guided Vehicles (AGVs) and the Internet of Things (IoT)," International 
Journal of Production Research, vol. 62, no. 15, pp. 5574-5595, 2024. 

[19] K. Xiao, Z. Gao, W. Shi, X. Qiu, Y. Yang, and L. Rui, "EdgeABC: An 
architecture for task offloading and resource allocation in the Internet of 
Things," Future generation computer systems, vol. 107, pp. 498-508, 
2020. 

[20] Q. You and B. Tang, "Efficient task offloading using particle swarm 
optimization algorithm in edge computing for industrial internet of 
things," Journal of Cloud Computing, vol. 10, pp. 1-11, 2021. 

[21] Y. Chen, W. Gu, and K. Li, "Dynamic task offloading for internet of 
things in mobile edge computing via deep reinforcement learning," 
International Journal of Communication Systems, p. e5154, 2022. 

[22] W. Kong, X. Li, L. Hou, J. Yuan, Y. Gao, and S. Yu, "A reliable and 
efficient task offloading strategy based on multifeedback trust mechanism 
for IoT edge computing," IEEE Internet of Things Journal, vol. 9, no. 15, 
pp. 13927-13941, 2022. 

[23] Z. Aghapour, S. Sharifian, and H. Taheri, "Task offloading and resource 
allocation algorithm based on deep reinforcement learning for distributed 
AI execution tasks in IoT edge computing environments," Computer 
Networks, vol. 223, p. 109577, 2023. 

[24] M. Bolourian and H. Shah-Mansouri, "Energy-efficient task offloading 
for three-tier wireless-powered mobile-edge computing," IEEE Internet 
of Things Journal, vol. 10, no. 12, pp. 10400-10412, 2023. 

[25] P. K. Nandi, M. R. I. Reaj, S. Sarker, M. A. Razzaque, M. Mamun-or-
Rashid, and P. Roy, "Task offloading to edge cloud balancing utility and 
cost for energy harvesting internet of things," Journal of Network and 
Computer Applications, vol. 221, p. 103766, 2024. 

[26] M. Zhao and K. Zhou, "Selective offloading by exploiting ARIMA-BP 
for energy optimization in mobile edge computing networks," 
Algorithms, vol. 12, no. 2, p. 48, 2019. 

[27] Y. Shi, Y. Xia, and Y. Gao, "Cross-server computation offloading for 
multi-task mobile edge computing," Information, vol. 11, no. 2, p. 96, 
2020. 


