
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

588 | P a g e

www.ijacsa.thesai.org

Efficient Task Offloading Using Ant Colony

Optimization and Reptile Search Algorithms in Edge

Computing for Things Context

Ting Zhang*, Xiaojie Guo

School of Information Engineering, Jiaozuo University, Jiaozuo 454000, China

Abstract—The widespread use of Internet of Things (IoT)

technology has triggered unparalleled data creation and

processing needs, necessitating effective computation offloading

solutions. Conventional edge computing approaches have

difficulties in dealing with rising energy usage issues and task

allocation delays. This study introduces a novel hybrid

metaheuristic algorithm called ACO-RSA, which synergizes two

metaheuristic algorithms, Ant Colony Optimization (ACO) and

Reptile Search Algorithm (RSA). The proposed approach

addresses the energy and latency issues associated with offloading

computations in IoT edge computing environments. A

comprehensive system design that effectively encapsulates the

uplink transmission communication model and a personalized

multi-user computing task load model is developed. The system

considers various constraints, such as network latency, task

complexity, and available computing resources. Based on this, we

formulate an optimization objective suitable for computing

outsourcing in the IoT ecosystem. Simulations conducted in a real-

world IoT scenario demonstrate that ACO-RSA significantly

reduces both time delay and energy consumption compared to

benchmark algorithms, achieving up to 27.6% energy savings and

25.4% reduction in time delay. ACO-RSA exhibits robustness and

scalability when optimizing task offloading in IoT edge computing

environments.

Keywords—Task offloading; edge computing; ant colony

optimization; reptile search algorithm; Internet of Things; energy

efficiency

I. INTRODUCTION

The exponential growth of Internet of Things (IoT) devices
has fundamentally transformed how data is produced, analyzed,
and used in numerous sectors, including smart cities [1],
healthcare [2], and automated manufacturing [3]. Nevertheless,
the substantial increase in data flow places substantial
computing requirements on centralized and distributed systems,
requiring the investigation of sophisticated task offloading
strategies [4]. Conventional cloud computing models encounter
delay and data transfer capacity limitations. In this regard, edge
computing presents a viable option by bringing computing
resources close to data sources [5]. However, improving task
offloading in edge computing contexts has distinct difficulties
related to energy use and latency [6].

Heuristic optimization techniques have contributed to
overcoming these issues by evaluating a variety of task
offloading policies. An influential group of these heuristics is
Ant Colony Optimization (ACO), a group of algorithms based
on the pheromone-based learning of ants foraging [7]. Similar

algorithms, such as the Reptile Search Algorithm (RSA), can
overcome the exploration versus exploitation challenge by
imitating hunter-reptile foraging strategies [8]. The methods
have been proven to work on optimization problems across
various applications, including image processing, power
systems, and edge computing. While the former is difficult to
pull out of premature convergence, the latter must be carefully
controlled judiciously to avoid falling into unoptimal solutions.

In light of the aforementioned, this paper presents a new
metaheuristic method called ACO-RSA, which merges two
metaheuristic methods, ACO and RSA, to solve offloading
problems in IoT edge computing. Our strategy aims to achieve
the benefit of both ACO and RSA by minimizing energy use
and time delays. The paper presents the system architecture,
with a communication model relying on an uplink transmission
and the distribution task model between multiple users. This
paper next introduces an objective function for IoT context
optimization.

The system design also includes a multi-user task
distribution model and an uplink transmission communication
model that considers transmission delays, the complexity of the
tasks to be solved by standalone devices, and the available
computing resources. We design an optimization target
specifically for these systems to adapt to IoT task offloading
mechanisms and conduct extensive simulations to demonstrate
the effectiveness of ACO-RSA. Experimental results show that
our solution ACO-RSA can effectively reduce the energy
consumption and latency of existing algorithms, which has
obvious advantages in practical IoT application scenarios.

The rest of this paper is organized as follows. Section II
contains a detailed literature review, including previous work
on task offloading and metaheuristic optimization techniques.
Section III discusses the system model and problem
formulation. Section IV discusses our ACO-RSA algorithm in
detail. An experimental setup and simulation results are
presented in Section V for evaluating the proposed approach's
performance. Lastly, Section VI summarizes the key insights,
limitations, and future research possibilities concluding the
paper.

II. BACKGROUND

A. Edge Computing in IoT

In recent years, cloud computing platforms have evolved
into the first choice for provisioning services because of their

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

589 | P a g e

www.ijacsa.thesai.org

flexibility and cost-effectiveness [9]. Fundamentally, there has
been a shift towards centralized systems for processing and
storing data in large data centers [10]. The IoT is advancing
rapidly, with major effects on various sectors of society, mainly
healthcare, transportation, and manufacturing [11]. They have
many IoT devices at the edge producing huge volumes of data,
which may require very little or significant resources (e.g.,
storage and processing) [12]. Service delivery is a big problem
in cloud systems. Additional challenges involve the placement
of sensors and actuators in space, response time constraints,
privacy issues, and data processing. Apart from cloud
computing, these barriers are a driving force for innovation in
solutions [13].

Edge computing places servers for computation and storage
at the edges of the internet, relatively closer to where data is
generated. The above approximations are due to the lower
latencies, more privacy concerns considering data being
transferred, and suboptimal energy overhead [14]. This
hybridization extends edge computing capabilities to distribute
and gradually interconnect with cloud-based processing
components.

Fig. 1 shows the hybrid edge-cloud reference design
encompasses a range of computing and storage capabilities.
Thing nodes are small and constrained devices with limited
computing and storage capabilities, so they can only do basic
functions like detecting, acting in response to certain events,
and sending and receiving data. In contrast to Thing nodes,
local nodes are capable of more processing, storing, and
communicating. This allows them to process, analyze, and send
data and interface with both the cloud and thing nodes. A local
node may also host IoT applications at the network edge.

A local node can be any device such as a gateway, access
point, router, switch, local server, cellphone, or linked vehicle.
Furthermore, various physical gadgets can fulfill certain

functions. A traffic light, for example, can be both a thing node
that detects its surroundings and acts accordingly and a local
node that collects and analyzes data. Centralized data centers
provide extensive processing, storage, and communication
capabilities in the cloud. Due to these characteristics, cloud
solutions can accommodate many IoT components that require
substantial physical resources.

B. Task Offloading Challenges

In edge computing settings, task offloading has distinct
issues that must be addressed for efficient and effective task
distribution. As shown in Fig. 2, the problems arise from IoT
devices' intrinsic attributes, edge computing's decentralized
nature, and dynamic and unexpected network circumstances.
IoT devices are often situated in geographically scattered
locations with diverse network conditions. Latency may impede
communication between these devices and edge servers,
particularly in cases of network congestion or when the devices
are placed far from the edge nodes. In addition, a restricted
amount of available bandwidth might result in congestion
during data transmission, which causes delay problems.

IoT applications can include a wide range of functions with
different levels of complexity, including basic data processing
and more demanding processes like real-time video analysis or
machine learning inference [15]. Because different workloads
may have no shared characteristics and time constraints, the
diversity of these jobs adds difficulty for offloading methods.
In addition, edge servers could differ widely in the processing
power, memory, and storage they support [16].

Energy efficiency is crucial in IoT systems since devices
often have limited battery capacity. Task offloading may
mitigate the computing burden on IoT devices, thereby
conserving their energy [17]. Nevertheless, offloading
necessitates energy use, particularly in data transmission to
edge servers and the reception of results.

Fig. 1. Edge-cloud reference architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

590 | P a g e

www.ijacsa.thesai.org

Fig. 2. Task offloading challenges.

IoT applications, including autonomous cars, smart
manufacturing, and healthcare monitoring, need immediate
processing. During these situations, even a small delay in
carrying out a job might result in significant repercussions,
highlighting the need to reduce latency and guarantee prompt
task fulfillment [18]. The task involves creating offloading
algorithms that provide real-time performance while
distributing the computing workload across several edge
servers.

Transmitting sensitive data via networks might expose it to
interception or unwanted access. Moreover, the decentralized
structure of edge computing increases attack vulnerability,
making it more difficult to protect all nodes from possible risks.
The IoT ecosystem is intrinsically characterized by its dynamic
nature, including fluctuating network conditions, shifting
workloads, and varied resource availability at edge servers.
These variables contribute to an uncertain environment that
complicates the job offloading process.

C. Edge Computing-Enabled Task Offloading Mechanisms

Xiao, et al. [19] proposed a three-layer IoT structure that
addresses different aspects of tasks. Edge computing and
blockchain architectures address the problem of sensitivity to
task delays and enable service providers to maximize their
profits. In addition, due to the features of the edge computing
server in the second layer, the proposed algorithm is executed
as a smart contract. This smart contract is responsible for
managing and distributing edge computing resources. In
particular, a complementary approach called stacked cache is
proposed to facilitate the fair distribution of resources on edge
computing servers.

You and Tang [20] proposed an energy-efficient, low-delay
PSO-based task offloading technique for low-resource edge
devices. The problem formulated is a multi-objective

optimization incorporating latency, task execution cost, and
energy usage. The offloading of all tasks to different mobile
edge servers represents the particle's fitness function.
Simulation experiments compare the PSO offloading strategy
with simulated annealing and genetic algorithms. Based on the
experimental results, PSO-based task offloading reduces edge
server latency, balances energy consumption, and achieves
reasonable resource allocation.

Chen, et al. [21] combined two contradictory offloading
objectives, namely increasing the job completion rate with an
acceptable delay and decreasing the energy consumption of
devices. The task offloading issue was established to achieve
equilibrium between two challenging aims. Subsequently, they
clarified it as a problem of dynamic task offloading based on
Markov Decision Processes (MDP). A Deep Reinforcement
Learning (DRL)-based dynamic task offloading
(DDTO) method was developed to address this issue. The
DDTO algorithm adapts to the constantly changing and
intricate context and appropriately modifies the way tasks are
offloaded. Experiments demonstrate DDTO's rapid
convergence. The trial findings confirm the efficiency of the
DDTO algorithm in achieving a balance between the finish
ratio and power.

Kong, et al. [22] introduced a dependable and effective
approach for task offloading using the multi-feedback trust
strategy. A reliable and effective framework is built, which may
significantly enhance trust computing and job offloading.
Furthermore, the broker utilizes dynamic data monitoring to
offer a multi-feedback trust management design using
interaction frequency and time attenuation. This model aims to
establish a trustworthy operating setting. Moreover, a trust-
weighted K-means clustering approach is developed using
resource qualities to improve service dependability. This
algorithm efficiently and correctly groups the resource nodes

Task offloading
challenges

Network latency
and bandwidth

constraints

Task complexity
and heterogeneity

Energy
consumption

Real-time
processing

requirements

Security and
privacy concerns

Dynamic and
unpredictable
Environments

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

591 | P a g e

www.ijacsa.thesai.org

needed for the job. A job offloading model uses trust clustering
to improve user experience and enhance system performance.
In contrast to current task processing models prioritizing task
offloading, the suggested approach further incorporates
resource pretreatment, trust assessment, and resource clustering
before task processing.

Aghapour, et al. [23] presented a solution using deep
reinforcement learning to break down offloading and resource
allocation into two elementary issues. The Salp Swarm
Algorithm (SSA) optimizes resource allocation by updating
offloading policy according to environmental data. The
proposed method investigates various deep-learning tasks of
IoT devices under different cloudlet server capacities.
Simulation findings demonstrate that the suggested approach
has the lowest latency and power consumption cost. On
average, 92%, 17%, and 12% improvements were shown
compared to the full local, full offload, joint resource allocation,
and computation offloading techniques, respectively.

Bolourian and Shah-Mansouri [24] developed a wireless-
powered mobile edge computing system divided into three
tiers: IoT devices, edge servers, and cloud. A formulation of a
combinatorial optimization problem is presented to minimize
wireless energy transmission. Bipartite graph matching is
employed to address the issue's complexity, and a harvest-then-
offload technique is suggested for IoT devices. The proposed
approach utilizes parallel processing to enhance its
performance. Empirical tests demonstrate that the
recommended technique substantially decreases the energy
demand for operating IoT devices compared to other offloading
strategies.

Nandi, et al. [25] developed a task offloading strategy to
achieve a compromise between device usefulness and
execution cost. Utility is determined by job execution delay and
energy usage in energy-harvesting IoT devices. The task
offloading issue is a problem of selecting a subset that achieves
the required trade-off. Social Cognitive Optimization (SCO)
addresses the offloading issue and achieves the required
polynomial time of execution. The findings confirm the
superior effectiveness of the approach regarding job execution
speed, energy use, cost efficiency, and task abandonment rate
when compared to the most advanced existing methods.

Due to its unique features, the proposed ACO-RSA
provides a result-oriented solution to address the issues of
energy consumption and latency in task offloading. While ACO
has excellent exploration performance thanks to pheromone-
assisted learning, it also has premature convergence. As RSA
learns adaptively, it can utilize space better and more
efficiently; however, exploration capacity may be limited,
resulting in suboptimal outcomes. As a result of combining the
advantages of both ACO exploration and RSA exploitation, the
ACO-RSA hybrid method eliminates these disadvantages. It
improves task-shifting efficiency, as illustrated by evaluation
results. Using a more balanced and robust approach, we achieve
significant reductions in energy consumption and latency, in
contrast to existing research that proposes single-objective
optimizations or scalability issues. The ACO-RSA can also
achieve convergence more quickly and accurately than the
current research literature.

III. SYSTEM DESIGN

A. System Model

Consider a defined geographic region containing a
population of N mobile user devices, each denoted by n in the
range 1 to N. Each device is assigned a unique computing task
with different priorities, such as energy efficiency or latency
minimization. This region has a base station equipped with
several Mobile Edge Computing (MEC) servers. Mobile
devices can communicate with MEC servers via a radio access
network to reduce their computing load. The base station is
configured with M-channels, each supporting a single
connection between the device and the MEC server.

Mobile devices are assigned static channels, and edge
servers have limited computing resources. The model also
assumes a central cloud server with unlimited capacity. A
single-edge server can handle the computing needs of only one
device at a time. Tasks that exceed the capacity of an edge
server are shifted to the cloud via the backbone network. The
mobile edge computing architecture is shown in Fig. 3.

Fig. 3. Network model.

Mobile device offloading involves three steps. First, the
device determines whether the task should be executed locally
or offloaded to an edge server. During offloading, the system
assesses the availability of the edge server resources.
Insufficient resources require a decision between queuing at the
current edge server or offloading to the cloud.

Orthogonal uplink channels ensure non-interference
between devices in the proposed system. According to Eq. 1,
the uplink rate Rn is calculated by denoting the transmission
power of device n as Pn. Here, Sn refers to the device n's uplink
bandwidth, zn is the channel gain coefficient, and 𝛿𝑛

2 represents
the noise power.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

592 | P a g e

www.ijacsa.thesai.org

𝑅𝑛 = 𝑆𝑛𝑙𝑜𝑔2 (1 +
𝑃𝑛𝑧𝑛
𝛿𝑛
2
), ∀𝑛 ∈ 𝑁 (1)

B. Multi-User Computing Task Load Model

This subsection presents a computational task model to
simplify the analysis. A computing task is characterized by
three main components: (1) volume of data, including program
code and input parameters, that needs to be uploaded for
outsourced tasks; (2) computing capacity, typically measured in
CPU cycles; and (3) results in data to be downloaded for
outsourced tasks. Eq. 2 formally defines a computing task Qv as
a function of the result data Rv, the computing capacity Cv, and
the data volume Dv.

𝑄𝑣 ∆
=
(𝐷𝑣 , 𝐶𝑣 , 𝑅𝑣) (2)

Using a program called graph analysis, mobile devices can
discover these components. A multi-user delay and energy
consumption load model is built to meet personalized user
needs by analyzing different application types and
corresponding data. This model evaluates the impact of local
and cloud task execution on performance.

Initially, each mobile device determines whether to execute
its task locally or offload it. For locally executed tasks, the
computational requirements of device n are denoted by Jn1 CPU
cycles, and the task itself requires jn1 CPU cycles. The local
execution time, tn1, is calculated according to Eq. 3. Energy
consumption, En1, for local execution is determined by Eq. 4,
where λ is a constant energy consumption coefficient related to
the device's chip structure, typically set to 10-26. The total local
overhead, Wn1, is calculated using Eq. 5, incorporating trade-off
coefficients αn1 and αn2 for energy consumption and task
execution time, respectively. These coefficients must adhere to
the constraints outlined in Eq. 6.

𝑡𝑛1 =
𝑗𝑛1
𝐽𝑛1

 (3)

𝐸𝑛1 = 𝜆𝑗𝑛1(𝐽𝑛1)
2 (4)

𝑊𝑛1 = 𝑎𝑛1𝐸𝑛1 + 𝑎𝑛2𝑡𝑛1 (5)

{
𝑎𝑛1, 𝑎𝑛2 ∈ [0,1]

𝑎𝑛1 + 𝑎𝑛2 = 1
 (6)

When the nth user's task is offloaded to an edge server, the
processing delay is determined by Eq. 7. This delay comprises
two components: the uplink transmission delay for task input
data and the edge server execution time. The energy
consumption for transferring the task to the edge server is
computed using Eq. 10, where β represents the device's power
amplifier efficiency. Eq. 11 formulates the total offloading
overhead.

𝑡𝑛2(𝑃𝑛 , 𝐽𝑛2) = 𝑡𝑛2(1)(𝑃𝑛) + 𝑡𝑛2(2)(𝐽𝑛2) (7)

𝑡𝑛2(1)(𝑃𝑛) =
𝑠𝑛

𝑊𝑛𝑙𝑜𝑔2(1 + 𝜎𝑛𝑃𝑛)
 (8)

𝑡𝑛2(2)(𝐽𝑛2) =
𝑗𝑛
𝐽𝑛2

 (9)

𝐸𝑛2 =
𝑃𝑛
𝛽
𝑡𝑛2(1)(𝑃𝑛) =

𝑃𝑛
𝛽

𝑠𝑛
𝑊𝑛𝑙𝑜𝑔2(1 + 𝜎𝑛𝑃𝑛)

 (10)

𝑊𝑛2 = 𝑎𝑛1𝐸𝑛2 + 𝑎𝑛2𝑡𝑛2(𝑃𝑛 , 𝐽𝑛2) (11)

C. Optimization Objective Function

The total overhead incurred by mobile device n during task
offloading is calculated according to Eq. 12. The objective
function is formulated to minimize the aggregate overhead
across all devices. To achieve this minimum overhead, the
optimal offloading strategy (X), uplink power allocation (P),
and edge computing resource allocation (M) are determined.
Eq. 13 expresses the optimization goal.

𝑊𝑛 = (1 − 𝑥𝑛)𝑊𝑛1 + 𝑥𝑛𝑊𝑛2 (12)

min
𝑋,𝑃,𝑀

𝑊 =∑(1 − 𝑥𝑛)𝑊𝑛1 + 𝑥𝑛𝑊𝑛2

𝑁

𝑛=1

 (13)

Eq. 14 details the constraints. The binary variable xn
indicates the offloading decision for device n (1 for offloading,
0 for local execution). Pmax represents the maximum
transmission power, Jmax is the maximum computational
resource, and N2 is the set of devices opting for offloading. The
first constraint specifies which devices should be offloaded.
The maximum power of the uplink device is limited by
constraint 2. With constraint 3, edge computing resources are
not allocated beyond the server's capacity. Negative resource
allocation is prevented by constraint 4. As a final constraint,
uplink transmissions are concurrently limited to N.

{

1: 𝑥𝑛 ∈ {0,1}, ∀𝑛 ∈ 𝑁
2: 0 < 𝑃𝑛 ≤ 𝑃𝑚𝑎𝑥 , ∀𝑛 ∈ 𝑁2

3: ∑ 𝐽2 ≤ 𝐽𝑚𝑎𝑥
𝑛∈𝑁2

4: 𝐽𝑛2 > 0, ∀𝑛 ∈ 𝑁2

5: ∑ 𝑥𝑛𝑆𝑛 ≤ 𝐵

𝑛∈𝑁

 (14)

IV. THE ACO-RSA ALGORITHM

A. Ant Colony Optimization

The ACO algorithm is a metaheuristic inspired by the
foraging behavior of real ants. Artificial ants iteratively
construct solutions to optimization problems by laying down
and following virtual pheromone trails. These paths represent
solution components whose intensity correlates with the
solution quality. Ants will likely select subsequent solution
components based on pheromone levels and problem-specific
heuristic information. Pheromone levels are dynamically
updated to amplify high-quality solutions. ACO is a
probabilistic search method that does not guarantee optimal
solutions but often provides acceptable approximations within
reasonable computing time.

Mathematically, ACO can be described in the following
manner. A population of artificial ants is created. Pheromone
levels on all potential solution components are initialized to a
small positive value. Ants construct solutions by iteratively

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

593 | P a g e

www.ijacsa.thesai.org

selecting components. The probability of selecting component
j after component i is determined by Eq. 15:

𝑃𝑖𝑗 =
𝜏𝑖𝑗
𝛼 . 𝜂𝑖𝑗

𝛽

∑(𝜏𝑖𝑘
𝛼 . 𝜂𝑖𝑘

𝛽
)
 (15)

Where α and β are parameters balancing pheromone and
heuristic influence, ηij is the heuristic information of
components i and j, and τij is the pheromone level of two
components. After selecting a component, an ant updates its
pheromone level according to Eq. 16.

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 + 𝜌∆𝜏𝑖𝑗 (16)

Where ρ is the pheromone evaporation rate and Δτij is the
pheromone the ant deposits. Once all ants have created
solutions, pheromone levels are updated globally based on the
overall quality of the solution. Combining probabilistic
selection, pheromone amplification, and evaporation, this
iterative process allows ACO to explore the solution space
effectively.

B. Reptile Search Algorithm

RSA is a swarm intelligence metaheuristic derived from
crocodile hunting strategies. By modeling competitive and
cooperative interactions within a reptile population, RSA
determines the global optima for optimization problems.
Known for its simplicity, flexibility, and efficiency, RSA has
found applications in image processing, power systems, and
engineering.

RSA's optimization methodology, outlined in Eq. 17,
involves iteratively refining a population of solutions (X). Eq.
18 details the random generation of candidate solutions, where
xi,k represents the kth position of the ith individual, N refers to
the population size, D specifies the problem dimension, and rd
indicates a random value within the problem's lower (LB) and
upper (UB) bounds.

𝑋 = [

𝑥1,1 𝑥1,2 … 𝑥1,𝐷
𝑥2,1 𝑥2,2 … 𝑥2,𝐷
⋮ ⋯ ⋯ ⋮

𝑥𝑁,1 𝑥𝑁,2 … 𝑥𝑁,𝐷

] (17)

𝑥𝑖,𝑘 = 𝑟𝑑 × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑘 = 1,2, … , 𝑛 (18)

RSA is divided into two stages: exploration (encircling) and
exploitation (hunting). During exploration, crocodiles exhibit
two distinct movement patterns: high walking and belly
walking. Unlike focused hunting, exploratory behaviors allow
for a wider range of search areas. RSA emulates these
mechanisms during its exploration phase, as defined in Eq. 19.

𝑥𝑖,𝑘(𝑡 + 1)

= {
𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝜂𝑖,𝑘(𝑡) × 𝛽 − 𝑅𝑖,𝑘(𝑡) × 𝑟𝑑, 𝑡 ≤

𝑇𝑚
4

𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝑥𝑟1,𝑘(𝑡) × 𝐸𝑆(𝑡) × 𝑟𝑑, 𝑡 ≤ 2
𝑇𝑚
4
 𝑎𝑛𝑑 𝑡 >

𝑇𝑚
4

(19

)

Bestk represents the best kth position of the optimal
individual, T is the current iteration, and Tm is the maximum
iteration. Parameter 𝛽 controls the exploration extent. Random
numbers rd and r1 are employed for stochasticity. The hunting

operator, 𝜂𝑖,𝑘, calculated in Eq. 20, influences the exploration

process.

𝜂𝑖,𝑘 = 𝐵𝑒𝑠𝑡𝑘(𝑡) × 𝑃𝑖,𝑘(𝑡) (20)

To refine the search, a reduced function, Ri,k, is introduced
in Eq. 21, where 𝜀 is a small constant and r2 is another random
number. This function minimizes the search space. The
evolutionary phase, ES(t), calculated in Eq. 22, is a probability
ratio that fluctuates between -2 and 2 over iterations, guided by
the random number r3. Pi,k, the percentage difference between
the Bestkth value of the optimal and current solutions, as
computed in Eq. 23. The average solution, calculated in Eq. 24,
contributes to the overall exploration strategy.

𝑅𝑖,𝑘 =
𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝑥𝑟2,𝑘
𝐵𝑒𝑠𝑡𝑘(𝑡) + 𝜀

 (21)

𝐸𝑆(𝑡) = 2 × 𝑟3 × (1 −
1

𝑇𝑚
) (22)

𝑃𝑖,𝑘 = 𝛼 +
𝑥𝑖,𝑘−𝑀𝑥𝑖

𝐵𝑒𝑠𝑡𝑘 × (𝑈𝐵𝑘 − 𝐿𝐵𝑘) + 𝜖
 (23)

𝑀𝑥𝑖
=
1

𝐷
∑𝑥𝑖,𝑘

𝐷

𝑘=1

 (24)

Cooperation and coordination are the two main foraging
behaviors of crocodiles. These strategies represent different
approaches to intensified exploitation. Eq. 25 determines the
specific behavior. Hunting coordination is performed when the
current iteration (t) falls within the range of 2Tm/4 to 3Tm/4,
where Tm is the maximum iteration. Conversely, hunting
cooperation occurs when t is between 0 and Tm/4 or 3Tm/4 and
Tm.

𝑥𝑖,𝑘

= {
𝐵𝑒𝑠𝑡𝑘(𝑡) × 𝑃𝑖,𝑘(𝑡) × 𝑟𝑑, 𝑡 ≤ 3

𝑇𝑚
4
 𝑎𝑛𝑑 𝑡 > 2

𝑇𝑚
4

𝐵𝑒𝑠𝑡𝑘(𝑡) − 𝜂𝑖,𝑘(𝑡) × 𝜖 − 𝑅𝑖,𝑘 × 𝑟𝑑, 𝑡 ≤ 𝑇𝑚 𝑎𝑛𝑑 𝑡 ≤ 3
𝑇𝑚
4

(2

5)

C. Integration of ACO and RSA

Because ACO relies on pheromone trails, exploration of the
solution space is hampered by premature convergence. While
strong exploration prevents local optima, excessive exploitation
impairs solution quality. RSA effectively balances exploration
and exploitation and demonstrates superior performance in
various technical areas. We propose a hybrid ACO-RSA
strategy based on a high-level relay hybrid (HRH) approach to
further improve this balance. ACO and RSA are applied
sequentially, homogeneously, or heterogeneously. The
proposed method uses a heterogeneous HRH strategy to
combine the exploitation of ACO with the exploration of RSA.

Initially, ACO, RSA, and shared parameters are initialized.
N candidate solutions, each represented by an M-dimensional
feature vector, are randomly generated within the range of -1 to
1. These solutions are evaluated using a fitness function to
assess their quality relative to previous iterations. Superior
solutions are retained, while inferior ones are discarded.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

594 | P a g e

www.ijacsa.thesai.org

Afterward, the optimal solution is identified and assigned to
the initial ACO population. The candidate solutions are then
designated as initial ant paths. The ants update candidate
solutions based on a subset of features initialized with
pheromone values exceeding 0.5. Improvements are based on
fitness evaluations, with updates only applied to the fittest
solutions (Eq. 26).

𝑥𝑖(𝑔 + 1)

= {
𝑥𝑖
𝑛𝑒𝑤(𝑔), 𝑖𝑓 𝐹𝐹(𝑥𝑖(𝑔)) > 𝐹𝐹(𝑥𝑖(𝑔 + 1))

𝑥𝑖(𝑔), 𝑒𝑙𝑠𝑒

(26)

ACO or RSA uses the refined candidate solutions as input
to explore new promising regions in successive iterations. An
algorithm switch occurs when ACO does not improve the
solutions, indicating a trap in local optima. RSA is then used to
diversify the search space. The iterative process continues until
the termination criterion (maximum iterations) is reached.

Initialization is an initial process that randomly generates
candidate solutions (using 50 population sizes) to ensure a
diverse solution space. We set pheromone levels for ACO to be
initialized with small positive values, and we made the
pheromone evaporation rate 0.1 (to balance exploration and
exploitation). Inspired by the reptile-hunting dielectric
technique, the RSA reacts to evolve optimal solutions and seeks
convergence of its best solutions. The algorithm stops when 100
iterations are achieved or there hasn't been a significant
improvement in loss over ten consecutive iterations.
Incorporating ACO exploration with RSA adaptive learning
compensates for both suboptimal aspects of the algorithms,
avoids premature convergence typical of ACO, and optimizes
the exploitation phase of RSA. During task scheduling, each
task's priority is assigned based on its scale and complexity
(energy-sensitive or latency-sensitive) through the optimization
process, as shown in Fig. 2. The system's energy consumption
and latency are reduced by balancing the distribution of tasks
across available resources, including edge servers or the cloud.

V. EXPERIMENTAL SETUP AND RESULTS

To validate the effectiveness of the proposed ACO-RSA
algorithm, we conducted an extensive series of simulations. The
simulation environment is designed to mimic real-world IoT
scenarios with varying numbers of mobile user devices and data
transfer rates. The environment includes multiple edge servers
with different computational capabilities, simulating a typical
edge computing context. The primary performance metrics
evaluated in the simulations are average time delay and energy
consumption. Time delay is the total time required for task
completion, while energy consumption is calculated based on
the power needed for data transmission and processing.

The simulation parameters were configured according to the
3GPP standard. The simulation considers an area with a 1 km
radius, where users transmit data at a maximum power of 25
dBm over a system bandwidth of 15 MHz and user bandwidth
of 0.5 MHz. The noise power in the uplink bandwidth is set at
−108 dBm. Tasks have input data volumes ranging from 300 to
1500 KB and require CPU cycles between 0.1 and 0.8 GHz.
The users' computing power varies from 0.2 to 1.2 GHz, while
the MEC server has a computing power of 3 GHz. The

simulation also involves a population size of 50 and a maximum
of 100 evolutions, with a maximum allowable time delay of 3
to 5 seconds.

To evaluate the convergence of the proposed computation
offloading algorithm, a simulation was conducted with 80
users, 15 servers, and 5MB tasks. Fig. 4 illustrates the time
delay of the system over different iteration numbers. Fast
convergence was observed after 20 iterations, with minimal
delay improvements after that, indicating the achievement of a
global optimum. This demonstrates the algorithm's strong
global optimization and search capabilities and reduces the
overall system delay from 0.268 s to 0.194 s, representing a
significant performance improvement.

Fig. 4. Stability diagram.

Comparative analyses used algorithms from [26, 27] to
assess delay and energy consumption. Fig. 5 shows the average
delay for different numbers of users. Energy consumption was
evaluated at various transmission rates (Fig. 6). Due to the lack
of data transfer, local execution was independent of the transfer
rate. All algorithms showed lower energy consumption with
increasing transfer rates due to lower offloading overhead. The
proposed method showed the largest decrease and lowest
overall energy consumption, enabled by more frequent and
fine-grained discharge decisions.

Fig. 5. Delay vs. Number of mobile devices.

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

T
im

e
d

el
ay

 o
f

th
e

sy
st

em
 (

s)

Numer of iterations

0.2

0.22

0.24

0.26

0.28

0.3

20 40 60 80 100 120 140 160 180 200

A
v
ar

eg
e

ti
m

e
d

el
ay

 (
s)

Number of mobile devices

Reference 16 Reference 17 ACO-RSA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

595 | P a g e

www.ijacsa.thesai.org

Fig. 6. Energy consumption vs. data transmission rate.

Fig. 7 illustrates the relationship between energy
consumption and number of users. The proposed method
consistently outperformed others with the lowest energy
consumption and growth rate, achieving 0.2 J for 80 users. The
local execution caused the highest energy consumption. The
proposed strategy's efficiency in task offloading and reduced
local execution contributed to overall energy savings.

Fig. 7. Energy consumption vs. number of mobile devices.

The results confirm that the ACO-RSA algorithm can
effectively solve major task offloading problems in IoT edge
computing, such as energy consumption and latency. By
combining ACO’s exploration and RSA’s adaptive learning,
the proposed approach distributes tasks efficiently and
minimizes system overhead. The proposed ACO-RSA provides
an average of 27.6% energy savings and 25.4% latency
reduction compared to other existing techniques, resulting in
better resource scheduling and task completion.

These results confirm the algorithm's ability to optimize
task shifting while balancing energy and performance metrics.
Nevertheless, the study emulates the simulation environment of
static network states and operational case functions within
devices, which may not correspond to the realistic conditions in
ideas in IoT environments. Fluctuating network traffic or
device roaming can affect the algorithm's performance. Finally,
future work should focus on extending ACO-RSA to dynamic
edge computing scenarios and incorporating other

considerations, such as security and privacy, to improve the
robustness and applicability of ACO-RSA in various IoT
contexts.

VI. CONCLUSION

To the best of our knowledge, this is the first study to
introduce a new metaheuristic algorithm by combining ACO
and RSA into a hybrid version named ACO-RSA, which can
overcome the challenges of efficient task offloading in IoT
environments powered by edge computing. This feature,
therefore, allows the ACO-RSA classifier to make a remarkable
compromise between energy consumption and latency, two
main components of IoT ecosystems, by utilizing both ACO
and RSA within an integrated classification framework. By
using ACO, the algorithm takes inspiration from how ants
collect food to search for optimal paths; meanwhile, with RSA,
it can adaptively explore the IoT environments that are highly
dynamic and unpredictable, proposing a strong solution.

ACO-RSA is designed based on an optimization objective
function aiming to minimize energy consumption while at the
same time reducing task offloading latency. Thus, it is well
suited for resource-limited IoT devices that run in edge
computing environments. We conducted a series of extensive
simulations to verify the feasibility of the proposed algorithm.
Results confirmed that the proposed ACO-RSA operates better
than the traditional benchmark algorithms. The hybrid
algorithm minimizes energy consumption and operates with
low latency as the number of mobile users and data rates
increase. This result illustrates the promise of ACO-RSA in
enhancing resource utilization and prolonging the lifecycle of
IoT applications by tuning task offloading policies.

Future work will address the scalability and robustness of
ACO-RSA, especially within larger and more complex IoT
networks with an assorted range of applications and diverse
task requirements. Moreover, investigation into the integration
between machine learning and ACO-RSA could enhance
adaptivity capabilities even more and aid in better addressing
dynamic changes in network conditions and resource
availability. In conclusion, the proposed ACO-RSA algorithm
is an important step towards an efficient and energy-greedy task
offloading strategy in edge computing-enabled IoT
environments.

REFERENCES

[1] A. A. Anvigh, Y. Khavan, and B. Pourghebleh, "Transforming Vehicular
Networks: How 6G can Revolutionize Intelligent Transportation?,"
Science, Engineering and Technology, vol. 4, no. 1, pp. 80-93, 2024.

[2] J. Valizadeh et al., "An operational planning for emergency medical
services considering the application of IoT," Operations Management
Research, vol. 17, no. 1, pp. 267-290, 2024.

[3] B. Pourghebleh and V. Hayyolalam, "A comprehensive and systematic
review of the load balancing mechanisms in the Internet of Things,"
Cluster Computing, pp. 1-21, 2019.

[4] B. Pourghebleh and N. J. Navimipour, "Data aggregation mechanisms in
the Internet of things: A systematic review of the literature and
recommendations for future research," Journal of Network and Computer
Applications, vol. 97, pp. 23-34, 2017.

[5] N. M. Quy, L. A. Ngoc, N. T. Ban, N. V. Hau, and V. K. Quy, "Edge
computing for real-time Internet of Things applications: Future internet
revolution," Wireless Personal Communications, vol. 132, no. 2, pp.
1423-1452, 2023.

0.7

0.8

0.9

1

1.1

1.2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
n

er
g
y
 c

o
n

su
m

p
ti

o
n

 (
J)

Data transmission rate (Kb-s-1)

Reference 16 Reference 17 ACO-RSA

0.1

0.3

0.5

0.7

0.9

1.1

20 40 60 80 100 120 140 160 180 200

E
n

er
g
y
 c

o
n

su
m

p
ti

o
n

 (
J)

Number of mobile devices

Reference 16 Reference 17 ACO-RSA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

596 | P a g e

www.ijacsa.thesai.org

[6] Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan, and K. B. Letaief, "Delay-
sensitive task offloading in vehicular fog computing-assisted platoons,"
IEEE Transactions on Network and Service Management, 2023.

[7] S. E. Comert and H. R. Yazgan, "A new approach based on hybrid ant
colony optimization-artificial bee colony algorithm for multi-objective
electric vehicle routing problems," Engineering Applications of Artificial
Intelligence, vol. 123, p. 106375, 2023.

[8] L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, and A. H.
Gandomi, "Reptile Search Algorithm (RSA): A nature-inspired meta-
heuristic optimizer," Expert Systems with Applications, vol. 191, p.
116158, 2022.

[9] R. Chataut, A. Phoummalayvane, and R. Akl, "Unleashing the power of
IoT: A comprehensive review of IoT applications and future prospects in
healthcare, agriculture, smart homes, smart cities, and industry 4.0,"
Sensors, vol. 23, no. 16, p. 7194, 2023.

[10] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐ objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[11] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and M. Sadeghi, "A roadmap
towards energy‐efficient data fusion methods in the Internet of Things,"
Concurrency and Computation: Practice and Experience, vol. 34, no. 15,
p. e6959, 2022.

[12] F. Kamalov, B. Pourghebleh, M. Gheisari, Y. Liu, and S. Moussa,
"Internet of medical things privacy and security: Challenges, solutions,
and future trends from a new perspective," Sustainability, vol. 15, no. 4,
p. 3317, 2023.

[13] N. A. Angel, D. Ravindran, P. D. R. Vincent, K. Srinivasan, and Y.-C.
Hu, "Recent advances in evolving computing paradigms: Cloud, edge,
and fog technologies," Sensors, vol. 22, no. 1, p. 196, 2021.

[14] G. Baranwal, D. Kumar, and D. P. Vidyarthi, "Blockchain based resource
allocation in cloud and distributed edge computing: A survey," Computer
Communications, 2023.

[15] B. Pourghebleh, K. Wakil, and N. J. Navimipour, "A comprehensive study
on the trust management techniques in the Internet of Things," IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 9326-9337, 2019.

[16] J. Ge, B. Liu, T. Wang, Q. Yang, A. Liu, and A. Li, "Q‐learning based
flexible task scheduling in a global view for the Internet of Things,"
Transactions on Emerging Telecommunications Technologies, p. e4111,
2020.

[17] P. V. B. C. d. Silva, C. Taconet, S. Chabridon, D. Conan, E. Cavalcante,
and T. Batista, "Energy awareness and energy efficiency in internet of
things middleware: a systematic literature review," Annals of
Telecommunications, vol. 78, no. 1, pp. 115-131, 2023.

[18] I. Vlachos, R. M. Pascazzi, M. Ntotis, K. Spanaki, S. Despoudi, and P.
Repoussis, "Smart and flexible manufacturing systems using Autonomous
Guided Vehicles (AGVs) and the Internet of Things (IoT)," International
Journal of Production Research, vol. 62, no. 15, pp. 5574-5595, 2024.

[19] K. Xiao, Z. Gao, W. Shi, X. Qiu, Y. Yang, and L. Rui, "EdgeABC: An
architecture for task offloading and resource allocation in the Internet of
Things," Future generation computer systems, vol. 107, pp. 498-508,
2020.

[20] Q. You and B. Tang, "Efficient task offloading using particle swarm
optimization algorithm in edge computing for industrial internet of
things," Journal of Cloud Computing, vol. 10, pp. 1-11, 2021.

[21] Y. Chen, W. Gu, and K. Li, "Dynamic task offloading for internet of
things in mobile edge computing via deep reinforcement learning,"
International Journal of Communication Systems, p. e5154, 2022.

[22] W. Kong, X. Li, L. Hou, J. Yuan, Y. Gao, and S. Yu, "A reliable and
efficient task offloading strategy based on multifeedback trust mechanism
for IoT edge computing," IEEE Internet of Things Journal, vol. 9, no. 15,
pp. 13927-13941, 2022.

[23] Z. Aghapour, S. Sharifian, and H. Taheri, "Task offloading and resource
allocation algorithm based on deep reinforcement learning for distributed
AI execution tasks in IoT edge computing environments," Computer
Networks, vol. 223, p. 109577, 2023.

[24] M. Bolourian and H. Shah-Mansouri, "Energy-efficient task offloading
for three-tier wireless-powered mobile-edge computing," IEEE Internet
of Things Journal, vol. 10, no. 12, pp. 10400-10412, 2023.

[25] P. K. Nandi, M. R. I. Reaj, S. Sarker, M. A. Razzaque, M. Mamun-or-
Rashid, and P. Roy, "Task offloading to edge cloud balancing utility and
cost for energy harvesting internet of things," Journal of Network and
Computer Applications, vol. 221, p. 103766, 2024.

[26] M. Zhao and K. Zhou, "Selective offloading by exploiting ARIMA-BP
for energy optimization in mobile edge computing networks,"
Algorithms, vol. 12, no. 2, p. 48, 2019.

[27] Y. Shi, Y. Xia, and Y. Gao, "Cross-server computation offloading for
multi-task mobile edge computing," Information, vol. 11, no. 2, p. 96,
2020.

