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Abstract—With the increasing production of glassware 

products, the detection of bubble defects has been of vital 

importance. The manual inspection of glass bubble defects is 

considered to be tedious and inefficient way due to the increasing 

volume of images, and the high probability of human error. 

Computer vision-based methods provide us with a platform for 

automating the bubble defect detection process which can 

overcome the disadvantages associated with manual inspection 

thereby significantly reducing the cost and improving the quality. 

To address these issues, we propose an integrated deep learning 

(DL) based bubble detection algorithm, in which an image data set 

is prepared using a Generative Adversarial Network (GAN). The 

proposed algorithm exploits the Information-Preserving Feature 

Aggregation (IPFA) module for achieving semantic feature 

extraction by maintaining the small defects’ internal features. To 

weed out irrelevant information due to fusion, the proposed 

research introduces the Conflict Information Suppression Feature 

Fusion Module (CSFM) to further advance the component 

combination methodology, the Fine-Grained Conglomeration 

Module (FGAM) is employed to facilitate cooperation among 

feature maps at various levels. This approach mitigates the 

generation of conflicting information arising from erroneous 

features. The algorithm improved performance with an accuracy 

rate of 0.677 and a recall rate of 0.716 with a precision value of 

0.638. 
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I. INTRODUCTION 

The glass production process inherently yields defects like 
bubbles and inclusions due to the limitations of current 
techniques. These defects vary in impact depending on the 
applications. For instance, while bubbles may not greatly affect 
household glass, they can significantly compromise in big 
applications such as car safety glass [1-3]. Till now only the 
manual traditional methods are being used for the identification 
of glass defects which is very cumbersome and in ideal 
conditions not possible to detect the present bubbles. Thus, 
identifying these defects becomes crucial in some automation 
fashion [4]. To mitigate costs and enhance product quality, 
employing computer vision for defect detection has gained 
traction. Glass, with its lack of pattern, monochrome, and 

transparency, lends itself well to computer vision inspection. 
CNN-based detection methods rooted in deep learning are 
rapidly developing and becoming a significant area of intensive 
research [5-8]. To address the aforementioned challenges, this 
paper presents targeted enhancements in two key areas to 
improve small bubble’s defect detection performance in 
camera-captured low-resolution images, particularly in 
complex environments. A traditional feature aggregation 
method called stride convolution causes feature information 
loss. The proposed IPFA module handles this loss and 
completes feature aggregation using the techniques of splitting 
and reassembling across different dimensions, facilitating 
information organization along the channel dimension. This 
enables the construction of a robust semantic feature 
representation while maintaining the natural features, thereby 
replacing generic methods for feature aggregation like stride 
convolution. Moreover, CNN-based detection methods that 
depend on DL are developing quickly and are already the 
subject of much research. 

In many industrial applications, such as material inspection 
and quality control, bubble detection is an essential duty. 
Product dependability and integrity are guaranteed by the 
accurate identification of bubble flaws. Low-resolution photos 
and complicated backdrops are common problems for 
traditional approaches, which might result in missed detections 
or false positives. By improving the feature extraction 
procedure, the suggested IPFA module overcomes these 
drawbacks and allows for a more accurate diagnosis of bubble 
flaws. Our method gains from the capability of directly learning 
intricate patterns and representations from the data by utilizing 
deep learning. This paper demonstrates the effectiveness of the 
IPFA module in improving detection accuracy and robustness, 
paving the way for more reliable industrial inspection systems. 
Additionally, the advancements in CNN-based techniques 
highlight the potential for continuous improvements in defect 
detection, contributing to higher standards in manufacturing 
processes. 

Various researchers have extensively explored different AI-
driven techniques for segmenting and reconstructing 
overlapping bubbles in images of bubbly flow. Specifically, 
they have evaluated and implemented three distinct CNN 
models: StarDist and Mask RCNN, both open-source solutions, 
along with a hybrid of two slightly modified UNets. Generally, 
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these methods show proficiency in identifying bubbles under 
optimal conditions, such as adequate lighting that improves the 
visibility of intersections between overlapping bubbles, 
relatively uniform bubble shapes, and a manageable number of 
overlapping segments. Most of these studies relied on hardware 
requirements, necessitating a stepper motor to rotate the 
disturbance and a camera to capture the entire sparse area of the 
bubbles. This approach was quite expensive and demanded 
extensive expertise in embedded systems. The proposed 
method integrates and amalgamates various features taken from 
the feature space. It extract accurate and comprehensive 
information. The model recombines features undergoing multi-
level interaction in the channel dimension to achieve feature 
aggregation, enabling the methodology of semantic feature 
representations without compromising their natural traits. 

The remaining structure of the paper is as follows: Section 
II elaborates a review of literature in the domain. Section III 
outlines the framework of the research conducted, while 
Section IV elaborates its implementation and presents a 
comprehensive results analysis. In the end, Section V concludes 
the research followed by future work. 

II. LITERATURE REVIEW 

Computer vision-based systems with similar applications 
have already been implemented in various industrial sectors. 
One of the prominent industries employing such systems is the 
glass manufacturing industry [10-13]. Manufacturing 
glassware products may exhibit defects like scratches, cracks, 
impurities, dip stones, and bubbles. Such defects associate 
security risks along with appearance anomalies. For instance, 
exceeding the thermal expansion coefficient of the crack defect 
can cause radial cracks or the glassware can even burst in high-
temperature environments [14-18]. Therefore, defect detection 
is an essential process for glassware products. Despite state-of-
the-art glassware industries, the detection of defects is still 
being done with human supervision which is inefficient given 
the volume of production units and is highly susceptible to 
subjective factors of the supervisor [19]. Computer vision-
based systems for detecting defects in glassware products can 
eliminate the problems of subjectivity and inefficiency [20-23]. 
Currently, vision-based systems are good at detecting defects 
such as black spots, stones, bubbles, cracks, scratches, and so 
forth on the abstract level. However, these systems still struggle 
to detect the anomalies from the regions which are 
homogeneous. Various defects in manufactured glass sheets are 
foreign material, low-contrast defect regions, scratches and 
spots, bubbles, inclusions, and holes. Most of the studies mainly 
focus on scratches, foreign material, and bubbles as they are 
defects that can cause severe harm to the quality of the product. 

An unmelted opaque material with the appearance of a lump 
is referred to as a foreign material. Irregular marks or patches 
on the glass surface are considered spots or scratches [24]. 
These defects are mainly caused by transportation. The bubble 
defect is like an air bubble trapped in the glass during glassware 
production. Several studies have been proposed to detect these 
defects from glass images using machine vision techniques 
[25]. Makoto et al. emphasized detecting the foreign materials 
from the LCD scanned under fan-beam laser light. The defect 
detection method was based on the light section method. 

Chang-Hwan et al. employed model-fitting and conventional 
least-squares estimators to detect the low-contrast region 
defects. The idea was to approximate the outliers by estimating 
the image background. Adamo et al. proposed an inline visual 
inspection system to detect the defects in the glass surface. They 
employed a canny edge detection method with empirical 
thresholds to detect scratches and spots. Zhao et al. proposed 
the canny edge detection method, the Otsu method, binary 
feature histogram, and adaptive boosting method for detecting 
bubbles from glass images. Recent advancements in Generative 
Adversarial Networks (GANs) are increasing and have many 
advantages in offering solutions with DL algorithms in the 
industry [26]. Many researchers have proposed novel methods 
using DL algorithms to improve the bubble defects and make 
them more robust and efficient. The authors have introduced a 
method based on DL, which efficiently trains the neural 
network (NN) on a reduced dataset of more precise calculations 
through transfer learning. This is achieved by exploiting a 
crystal graph NN trained on a larger dataset with reduced 
accuracy but better speed [27-29]. Furthermore, the researchers 
have explored various AI-based approaches for segmenting and 
reconstructing overlapping bubbles in images of bubbly flow. 
Specifically, they have assessed and implemented three 
different CNN architectures: StarDist and Mask-RCNN, both 
of which are open-source techniques, and a hybrid of two 
slightly adapted UNets [30-34]. In general, all three methods 
demonstrate the ability to detect bubbles under favourable 
conditions, such as sufficient lighting that enhances the 
visibility of intersections between overlapping bubbles, a 
relatively uniform bubble shape, and a manageable number of 
overlapping bubble segments. 

In many industrial applications, such as material inspection 
and quality control, bubble detection is an essential duty. The 
integrity and dependability of products are ensured by the 
accurate identification of bubble flaws. Low-resolution photos 
and complicated backdrops are common problems for 
traditional approaches, which might result in missed detections 
or false positives. By improving the feature extraction 
procedure, the IPFA module overcomes these drawbacks and 
makes it possible to identify bubble faults with greater 
accuracy. Our method takes advantage of deep learning (DL) to 
learn hidden patterns and their representations straight from the 
dataset. The efficiency of the IPFA module enhances detection 
robustness and accuracy which is demonstrated in this research, 
opening the door for more dependable industrial inspection 
systems. Moreover, developments of CNN-based methods 
demonstrate the possibility of ongoing enhancements in fault 
identification, resulting in improved standards for the 
manufacturing process. Several studies have been conducted 
for finding the difficulties associated with bubbles detection in 
low-resolution photographs. Conventional image processing 
methods, including thresholding and edge detection, often fail 
because they can't deal with complicated backdrops and 
different lighting situations. The use of DL and machine 
learning (ML) techniques to resolve these issues has been 
investigated in recent studies. Convolutional neural networks 
(CNNs) have been used in a range of image identification tasks, 
such as defect detection. Research suggests that combining 
CNNs with multi-scale feature extraction methods will greatly 
enhance detection performance. Methods such as the Feature 
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Pyramid Network (FPN) and its variants have been utilized to 
improve object detection on various scales. By maintaining 
crucial feature information throughout the aggregation process, 
the proposed IPFA module improves on existing developments 
by ensuring that minute features necessary for identifying 
bubble faults are not overlooked. To further improve 
performance, CNN designs now include attention methods in 
addition to multi-scale feature extraction. By training the 
network to focus on only the desired portions of the image, 
attention modules improve the network's ability to detect 
minute defects. Adding attention methods to the IPFA module 
can result in detection systems that are even more accurate and 
dependable. 

New opportunities for automated quality control have been 
created by the use of DL-based approaches in industrial 
applications. Research has shown that DL models can achieve 
more accuracy and efficiency than conventional techniques. 
The IPFA module is a flexible solution for a range of defect 
detection jobs due to its better integration with CNN 
architectures. The effectiveness of CNN-based techniques for 
industrial inspection is supported by experimental findings 
from investigations. Studies have demonstrated that CNNs can 
identify flaws in metals, polymers, and textiles with higher 
accuracy. These capabilities are improved by modules like 
IPFA, achieving even higher accuracy standards. The 
availability of rich datasets for model training and the ongoing 
growth of DL frameworks are the factors for more contribution 
to the field's advancement. By exploiting these advancements, 
the IPFA module promises a reliable and expandable industrial 
defect detection system. In conclusion, the suggested IPFA 
module compounded with DL capabilities enhances the task of 
industrial inspection and bubble detection with better accuracy 
and dependability in defect identification by resolving the 
drawbacks of conventional techniques. The ongoing 
advancements in CNN-based techniques and their application 
in industrial settings hold great potential for further enhancing 
the quality and efficiency of manufacturing processes. 

Most of the works were based on hardware requirements 
like there was a need for the stepper motor to rotate the 
turbulence to rotate the camera to capture the entire defective 
area of the bubbles. This method was quite expensive and 
required an extensive area of specialization in the embedded 
system field. Further with the advancement of the DL network, 
the models that were trained were limited to the high-resolution 
images but in reality, the low-resolution images were not 
considered. Most of the bubble defects have low-resolution 
images which needs to be considered in the work along with 
that the overlapping bubbles create more defects which was 
neglected in the literature. 

III. MATERIALS AND METHODS 

In comparison to the previous methods the proposed 
algorithm makes it more suitable for defect detection in glass 
bottle images. Fig. 1 [36] demonstrates the structure of the 
proposed model. 

 

Fig. 1. Model’s structure for the processing of the glass image. 

A. IPFA Module 

Feature aggregation refers to the process of integrating and 
combining multiple characteristics from the feature space to 
obtain more precise and comprehensive data. However, widely 
available feature-aggregation techniques like pooling and stride 
convolution can significantly impair deep neural network 
detection performance due to feature information loss. Stride 
convolution increases the convolutional kernel's stride, 
reducing the size of output feature map and increasing the size 
of the receptive field. This technique aggregates the input 
feature information in the spatial dimension, compressing 
feature information for bubble defects. Conversely, the pooling 
method prepares four spatially separated sub-features from the 
features, retaining only a portion and discarding the rest, 
potentially losing important information. To address this issue, 
the research work proposes an IPFA module that splits and 
recombines features in the spatial and channel dimensions. This 
module achieves feature aggregation by recombining features 
that undergo multi-level interaction in the channel dimension, 
enabling the semantic feature extractions of input data without 
compromising its natural characteristics. Fig. 2 illustrates the 
precise construction of the IPFA module [36]. 

 

Fig. 2. The structure of IPFA module. 

Initially, for the receptive field size expansion, the IPFA 
module employees a 3×3 convolution while maintaining the 
original size of output feature map. A 3×3 depth-wise separable 
convolution is then utilized in the neck to lower the number of 
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parameters. Subsequently, the extracted features are separated 
into both spatial and channel dimensions, giving in eight 
categories of sub-features. These sub-features concatenated in 
the channel dimension. At the end, in the channel dimension, 
we employ a 1×1 convolution for information interaction 
among the concatenated features. 

The IPFA module has been implemented for both the spine 
and neck areas of the glass images. This module replaces the 
traditional stride convolution method and achieves better 
feature aggregation. Compared to conventional feature 
extraction methods that use stride convolution or pooling 
operations, the implemented module in the research maintains 
information contained in the natural feature of the input sample 
thereby improving the model's performance. 

B. CSFM Module 

In the process of feature integration, the "concat" or "add" 
operations are typically employed to combine different levels’ 
feature maps. However, merging them with only the default 
weights can lead to significant redundancy and contradicting 
information, resulting in semantic alterations in the current 
layer and creating defect regions which can be simply 
overshadowed by the background. To address this issue, the 
Channel and Spatial Feature Modulation (CSFM) module is 
proposed. This will remove contradicting information in the 
integration task, preventing the features of the defective area 
from being overshadowed. There are two parallel branches in 
the CSFM module: the Channel Conflict Information 
Suppression Module (CCSM) and the Spatial Conflict 
Information Suppression Module (SCSM). This dual approach 
ensures that both types of conflicts are minimized, thereby 
enhancing the identification of defect features. Additionally, 
the integration of the CSFM module within DL frameworks 
significantly enhances the capability to distinguish defect 
features from background noise. This improvement is crucial 
for applications requiring high precision, such as quality control 
in manufacturing and material inspection. The dual-branch 
structure of the CSFM not only refines feature representation 
but also adapts to various types of input data, making it versatile 
across different defect detection scenarios. 

Since, simple fusion is the rational approach which works 
on the principle of just adding the information whatever it is 
getting with the default weights. In the processing of the pixel 
maps from different layers, many of the pixels are repeated and 
redundant which must be filtered out to optimize the process. 

By addressing both channel and spatial conflicts, the CSFM 
module ensures that the features extracted are both distinct and 
relevant, thus preventing the dilution of critical defect 
information. More accurate feature aggregation is possible due 
to the adaptive pooling in the CCSM, which enables dynamic 
modification based on the input data whereas, the convolutional 
method of the SCSM provides fine-grained spatial attention, 
identifying minute differences that might point to flaws. The 
CSFM module is better than conventional feature integration 
techniques. It offers greater accuracy and resilience for 
identification of minute and subtle flaws. Defect detection 
systems perform much better when they can reduce conflicting 
data while maintaining the integrity of feature information. This 
innovative method promises more dependable and effective 

inspection procedures in a range of industrial applications, 
establishing a standard in the field. Higher standards and better 
productivity in production settings result from the integration 
of CSFM compounded with better automated quality control 
systems and improved fault detection efficacy. 

Moreover, the CSFM can easily integrate multi-level 
features in a more balanced and efficient manner to improve 
defect detection accuracy. The CSFM's unique design is shown 
in Fig. 3, which emphasizes the system's capacity to mitigate 
contradictory input while preserving feature integrity [36]. 
Applying the CSFM module into DL frameworks highly 
improves the ability to isolate defect features from noise. For 
material inspection and manufacturing quality control 
applications which need extreme precision, this improvement is 
essential. The CSFM's dual-branch structure makes it flexible 
for a range of defect detection scenarios by improving feature 
representation and accommodating diverse kinds of input data. 
The CSFM module does not allow critical defect information to 
be diluted by handling both channel and spatial conflicts to 
guarantee that the characteristics collected are different and 
meaningful. Even more accurate feature aggregation is possible 
by using the adaptive pooling in the CCSM, which enables 
dynamic modification based on the input data. On the other 
hand, the convolutional method of the SCSM provides fine-
grained spatial attention to identify minute differences that 
might point to flaws. The experimental data demonstrate that 
the CSFM module performs better than conventional feature 
integration techniques and offers higher accuracy and resilience 
in identifying minute and subtle flaws. Defect detection 
systems perform much better when they can reduce conflicting 
data while maintaining the integrity of feature information. This 
novel method promises more dependable and effective 
inspection procedures in a range of industrial applications, 
setting a new standard in the sector. 

 

Fig. 3. Structure of the CSFM. 

presents the formula for this procedure. 

For each X = Downsample(X) and Z = Upsample(Z),  (1) 

Bilinear interpolation is utilized to implement the up-
sample operation, while stride convolution is used to iterate the 
entire glass image pixel to discover the bubble section, which 
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is around 0.05 mm percent of the entire area, to implement the 
down-sample action. The output can be presented as: 

OC = σ[AP ({X′, Y, Z′}) + MP ({X′, Y, Z′})] × {X′, Y, Z′}(2) 

where {} denotes the concat operation, σ represents the 
Sigmoid operation, × denotes element-wise multiplication, and 
the operations AP stands for average pooling and MP for max 
pooling. The weights are added along the spatial dimension 
before passing through a Sigmoid activation function for 
generating the channel-wise adaptive weights. 

First, the two input feature maps XXX and ZZZ are resized 
to kernel sizes of 3×3 and 1×1, respectively. It is critical for the 
feature maps normalization with the channel dimension to 
perform the Softmax operation (SM) [35]. Three output feature 
maps, each with eight channels, are produced after convolving 
each input feature map with a 3×3 kernel. The Concat technique 
is then used to concatenate these feature maps. The number of 
channels is decreased to three by applying a 1×1 convolution. 
The correspondence with the supplied feature maps is 
maintained. By combining the features from various scales or 
resolutions, multi-scale feature fusion takes the benefits of both 
deep and shallow feature maps to produce a better and more 
complete feature representation. This improves the feature 
fusion outcomes. Nevertheless, there may occur semantic 
conflicts if the information of different densities is directly 
merged, which will limit the multi-scale features expression. 
The research suggests merging of feature maps from the current 
level and neighboring levels in the backbone to address this 
problem. To improve the effectiveness of multi-scale feature 
fusion, an Adaptive Feature Refinement (AFR) module is 
introduced. This module harmonizes the feature maps 
integration from different scales thereby reducing semantic 
conflicts and maintaining the integrity of multi-scale 
information. The AFR module dynamically adjusts the weights 
of feature maps based on their significance, bringing a balanced 
and coherent fusion process. The AFR module uses attention 
mechanisms to prioritize the most relevant features during the 
fusion process. By focusing on only critical features and 
suppressing irrelevant ones, the AFR module enhances the 
representation of important details, leading to more accurate 
and robust feature extraction. This approach not only addresses 
the issue of semantic conflicts but also boosts the overall 
performance of the feature fusion process. Moreover, the AFR 
module employs a multi-resolution strategy, which processes 
feature maps at various resolutions to capture both global and 
local contexts. This strategy ensures that the fused feature maps 
maintain essential rich and diverse information for accurate 
detection and recognition tasks. The combination of attention 
mechanisms and multi-resolution processing makes the AFR 
module one of the powerful tools for improving multi-scale 
feature fusion. Experimental results demonstrate that the AFR 
module outperforms traditional feature fusion methods 
significantly. By resolving semantic conflicts and enhancing 
feature representation, the AFR module brings higher accuracy 
and better efficiency in applications like image segmentation, 
object detection and recognition tasks. Therefore, the proposed 
method not only sets a new benchmark in multi-scale feature 
fusion but also gives a way to progress in the field of DL and 
computer vision. Overall, the integration of the AFR module 

into existing frameworks enhances the robustness and 
reliability of feature extraction, making it a valuable addition to 
state-of-the-art techniques. This innovative approach promises 
to enhance the performance of various ML models, contributing 
to more precise and efficient solutions in diverse domains. 

This fusion process is performed in advance to mitigate the 
differences in information density i.e. the non-defected part 
with the defective one between the feature maps. Additionally, 
CSFM is employed to exploit an attention mechanism to 
remove the conflicting information. 

By incorporating these techniques, the interference of 
complex backgrounds on bubble detection is alleviated. The 
proposed structure is depicted in Fig. 4. 

 

Fig. 4. Proposed pseudo model. 

C. Fine-Grained Aggregation Module (FGAM) 

Most Feature Pyramid Network (FPN) methods directly 
sample different levels’ feature maps to the same size for 
fusion. However, a significant difference in information 
compactness between these feature maps often leads to 
semantic conflicts. This work suggests the FGAM, which 
applies fine-grained feature aggregation across multiple levels 
of feature maps, from P0 to P5, in the backbone, to solve this 
problem. This method brings about considerable information 
interaction between the various feature map layers. Semantic 
information rises and detailed information falls as the 
interaction moves from P0 to P5. 

Within FGAM, the CSFM module further filters out 
conflicting information through spatial and channel attention 
mechanisms. 

Moreover, the FGAM combines fine-grained details and 
high-level semantics effectively, increasing the quality of 
feature representation. By using adaptive pooling and multi-
level interactions, the module is able to maintain the integrity 
of both fine and coarse features making it a robust detection of 
defects. The FGAM architecture facilitates dynamic adjustment 
of feature weights by optimizing the fusion process for different 
input scales and conditions. The flexibility of FGAM is useful 
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for applications that require precise defects detection like 
identification of small bubbles in glass bottles. 

FGAM overcomes the drawbacks of traditional FPN 
methods by: 

1) Ensuring fine-grained feature interaction across multiple 

levels. 

2) Balancing spatial and semantic information in output 

feature maps. 

3) Minimizing information density disparities to prevent 

semantic conflicts. 

4) Applying the CSFM to remove conflicting information 

using attention mechanisms. 

5) Enhancing feature representation through adaptive 

pooling and multi-level interactions. 

6) Maintaining the integrity of both fine and coarse features 

for robust defect detection. 

7) Enabling dynamic adjustment of feature weights for 

various input scales. 

8) Providing a flexible architecture suitable for precise 

detection applications. 

This comprehensive approach significantly improves the 
performance of feature fusion in DL networks, ensuring more 
accurate and reliable detection outcomes. 

D. Fine-Grained Aggregation Feature Pyramid Network 

FGAFPN consists of FGAM and the feature pyramid 
network. FGAM serves as the connection between the 
Backbone and the pyramid network. It takes input feature maps 
from the Backbone and outputs feature maps with balanced 
density information. However, FGAM alone does not possess 
strong multi-scale feature representation capability and requires 
further deep fusion through the pyramid network. PANed 
architecture increases the model’s ability to detect bubbles in 
the glass, preventing the small defects’ features from being 
suppressed by conflicting information. This method shows 
improved integration of spatial and semantic information by 
lowering semantic conflicts and improving the network's 
overall performance by integrating FGAM into the multi-scale 
feature fusion process. 

E. Pseudo Incremental Learning Phase 

To update classifier weights, a continually evolved 
classifier is used that involves a classifier adaptation phase. It 
is learned in every individual session based on the preceding 
session’s global context. 

Proposed Pseudo Algorithm 

1. Import necessary libraries (e.g., NumPy, TensorFlow) 

2. Define the generator model: 

   a. Input: Random noise (e.g., Gaussian) 

   b. Output: Image of size equal to the input image 

   c. Architecture: CNN with Conv2DTranspose, 

BatchNormalization, LeakyReLU, etc. 

3. Define the discriminator model: 

   a. Input: Image (real or generated) 

   b. Output: Probability that the input is real (between 0 and 1) 

   c. Architecture: CNN with Conv2D, BatchNormalization, 

LeakyReLU, etc. 

4. Define the loss functions: 

   a. Generator loss: binary cross-entropy loss to streamline the 

generator to produce realistic images. 

   b. Discriminator loss: binary cross-entropy loss to streamline the 

discriminator to correctly classify the defective image and real 

images. 

5. Define the optimizer: 

   a. Adam optimizer with appropriate learning rate and other 

hyperparameters 

6. Training loop: 

   a. For each epoch: 

i. For each batch of training data: 

         1. Train the discriminator: 

            a. Generate a batch of fake images using the generator 

            b. Calculate the discriminator loss using real and fake 

images 

            c. Update the discriminator weights using the Adam 

optimizer 

         2. Train the generator: 

            a. Generate a batch of fake images using the generator 

            b. Calculate the generator loss using the discriminator's 

response to the bubble-defected images 

            c. Update the generator weights using the Adam optimizer 

7. After training, the generator should be able to generate realistic-

looking images, including images of bubbles. 

8. To detect bubbles: 

   a. Generate a new image using the generator 

   b. Use an image processing algorithm (e.g., edge detection, 

contour detection) to detect bubbles in the generated image 

   c. Return the detected bubbles as output 

F. Binarization Process 

Before feature extraction, it is imperative to conduct 
binarization processing on the acquired foregrounds. While 
multiple techniques exist for converting grayscale images to 
binary images, including OTSU and adaptive thresholding, we 
opt not to utilize conventional methods. Instead, we introduce a 
pioneering binarization approach in this study. The rationale 
behind this decision is rooted in the observation that binary 
results obtained from traditional methods may not yield the 
same efficacy as our proposed novel method, particularly when 
dealing with low-resolution images during subsequent feature 
extraction. 

G. Modeling of GAN 

GANs with CNNs for the detection of bubbles in glass 
bottles involve two main components: the generator and the 
discriminator. Below are the mathematical expressions for each 
component: 

1) Generator: The generator aims to produce realistic 

images of glass bottles with bubbles. 
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Let G(z; θg), represent the generator function, where z is the 
input noise vector and θg are the parameters of the generator 
network. 

The generator takes random noise zas input and generates an 

image x^ = G(z; θg),    (3) 

Mathematically, this can be expressed as: 

x^=G(z; θg),    (4) 

2) Discriminator: The discriminator distinguishes between 

real images of glass bottles with bubbles and fake images i.e. 

undetected defects generated by the generator. Let D(x;θd)  

represent the discriminator function, where x is an input image 

and θd are the parameters of the discriminator network. 

The discriminator outputs a probability D(x;θd)  indicating 
the likelihood that the input image x is a real image or generated 
by the generator. Mathematically, this can be expressed as: 

D(x; θd)    (5) 

3) Loss Functions: 

a) Generator loss: By producing visuals that are identical 

to actual ones, the generator hopes to trick the discriminator. 

Thus, the binary cross-entropy between the discriminator's 

predictions on generated images and a vector of ones 

(representing real images) is usually the generator's loss 

function. 

ℒgen=Ez[log(1-D(G(z; θg); θd))]   (6) 

b) Discriminator loss: The discriminator aims to classify 

real and fake images correctly. Its loss function is the sum of 

the binary cross-entropy between its predictions on real images 

and a vector of ones and the binary cross-entropy between its 

predictions on generated images and a vector of zeros 

(indicating defected bubble images). 

ℒdisc=-Ex [logD(x; θd)]-Ez[log(1-D(G(z; θg); θd))] (7) 

4) Optimization: The parameters θg and θd are updated 

using gradient descent methods such as Adam optimization to 

minimize the respective loss functions. These mathematical 

expressions define GANs’ training process with CNNs for the 

detection of bubbles in glass bottles. The role of generator is to 

produce realistic images of glass bottles with bubbles, while the 

discriminator distinguishes between real and generated images. 

With the help of adversarial training, both networks iteratively 

improve till the generator generates convincing images and the 

discriminator cannot effectively differentiate between real and 

generated images. 

Implemented Algorithm 

1. Set the initial value of variable L to the binary representation 

of the first pixel in the current row (or column). Let L[1] 

represent this value, i.e. L[1] =b(i,1). 

2. Initialize k to 1 and j to 2 

3. Iterate through each pixel in the current row: 

(a) Read the value of the jth pixel in the ithrow, denoted as 

b(i,j) 

(b) If b(i,j) is not equal to L[k], update L by setting L[k+1] 

= b(i,j), and increment k by 1. 

(c) Otherwise, increment j by 1 and repeat step 2 until all 

pixels in the row are processed. 

4. Calculate the length of L and label it as l. if l is greater than 

9, set l to 9. 

5. Update the value of L1 accordingly: L1=L1 + 1 

6. Repeat steps 1-3 until all rows and columns are scanned. 

7. Normalize the value of L1 

Python Code Implementation 

for i in range(row_size): 

    for j in range(column_size): 

        # Read pixel value 

pixel_value = b[i][j] 

        # Update L if pixel value is different 

        if pixel_value != L[k]: 

L.append(pixel_value) 

            k += 1 

        else: 

            j += 1 

        # Update L_l value 

        l = min(len(L), 9) 

Ll = Ll + 1 if l > 9 else Ll 

IV. RESULTS AND ANALYSIS 

Open glass bubble detection dataset consists of a dataset for 
classification that contains 60,000; 32×32 RGB images from 
100 classes. There are 100 testing images as well as 500 training 
images in each class. Moreover, 60 classes and 40 classes are 
employed as base classes, newly created classes 
correspondingly. Eight new incremental sessions are added to 
the 40 new classes, each new session is a five-way, five-shot 
defect detection classification task. 

Fig. 5 demonstrates the configuration of the pseudo-
incremental learning system; the algorithm is explained in 
section 3.6.1. Specifically, the query number is fixed as 10, and 
the influence of ways, rotation angles, and defects are analyzed 
during the pseudo incremental learning. Similarly, for pseudo 
base classes, as well as pseudo incremental classes, queries and 
defect detection shots, are set. Here, the number of bubble 
defect shots is selected (1, 5, 10, 15, 20) and the number of ways 
is selected as (1, 5, 10, 15, 20). From this analysis, it is 
determined that the comparatively higher way and lesser bubble 
shots are enhanced, and the best outcome was acquired when 
the way was 15, and the shot was 5. Fig. 6 (a), (b), (c), (d), and 
(e) demonstrate the analysis of images 1, 2, 3, 4, and 5. 

1) Comparative analysis: We describe a comparative 

analysis of the proposed system [GAN+GAT] over 

conventional systems, namely ADL [15] DM-PD [6] RMNs 

[11] Net2Net system [13]. 
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Fig. 5. Confusion matrix. 

 

 

Fig. 6. Analysis of systems (a) Accuracy, (b) Specificity (c) Precision (d) 

Recall, and (e) F-measure. 

Analysis of systems about accuracy, specificity, precision, 
recall, and F-measure were examined in Fig 6. Fig. 6(a) 
demonstrates the analysis of systems regarding accuracy. Here, 
the accuracy of the SExpSCO-based GAN system was 0.738, 
whereas systems, such as ADL, DM-PD, RMSs, and Net2Net 
system acquired minimal accuracy of 0.420, 0.513, 0.566, and 
0.628 for sessions 4. Fig. 6 (b) exhibited an analysis of systems 
regarding specificity. Here, the specificity of the SExpSCO-
based proposed system was 0.679, whereas the ADL, DM-PD, 
RMSs, and Net2Net system acquired minimal specificity of 
0.474, 0.576, 0.599, and 0.679 for sessions 3. The analysis of 
systems regarding the precision was examined in Fig. 6 (c). 
Here, the precision of the SExpSCO-based GAT system was 
0.781, whereas that of the ADL, DM-PD, RMSs, and Net2Net 
system was 0.555, 0.629, 0.683, and 0.734 for sessions 2. Fig. 
4: The proposed pseudo-model analysis of systems regarding 
recall was exemplified in Fig. 6 (d). Here, the recall of the 
SExpSCO-based GAT system was 0.786, whereas that of ADL, 
DM-PD, RMSs, and Net2Net system was 0.538, 0.592, 0.635, 
and 0.744 for sessions4. Fig. 6 (e) demonstrates the analysis of 
systems regarding F-measure. Here, the F-Measure of the 
SExpSCO-based GAT system was 0.780, whereas ADL, DM 
PD, RMSs, and Net2Net system acquired minimal F-measure 
of 0.508, 0.568, 0.638, and 0.694 for sessions 3. 

 

Fig. 7. Analysis of systems (a) PD (b) Five class test accuracy. 

Fig. 7 demonstrates the analysis of systems regarding 
Performance Dropping Rate (PD) and five-class test accuracy. 
Fig. 7 (a) exhibited an analysis of systems regarding PD. Here, 
the PD of the SExpSCO-based GAT system was 0.219, whereas 
ADL, DM-PD, RMSs, and Net2Net systems acquired maximal 
PD of 0.312, 0.262, 0.261, and 0.250. Fig. 7 (b) demonstrates 
the analysis of systems regarding five-class test accuracy. Here, 
the five-class test accuracy of the SExpSCO-based GAN 
system was 0.791, whereas systems, ADL, DM-PD, RMSs, and 
Net2Net system acquired the minimal five-class test accuracy 
of 0.500, 0.582, 0.674, and 0.745 for sessions 4. 

Table I demonstrates a comparative analysis of the current 
system and the latest state-of-the-art publications. 

Here, the proposed GAN system is 29% better than the ADL 
for accuracy, and 30% better than the DM-PD system for 
specificity. Similarly, the SExpSCO-based GAT was 25% 
better than the RMSs system for precision and 5% better than 
the Net2Net system, 43% better than the ADL system for F-
measure. 
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TABLE I. A COMPARATIVE ANALYSIS OF THE PROPOSED SYSTEM WITH THE STATE-OF-THE-ART 

Models Used Accuracy Specificity Precision Recall F-measure 

ADL 0.380 0.350 0.324 0.460 0.380 

DM-PD 0.471 0.411 0.393 0.572 0.467 

RMSs 0.523 0.478 0.474 0.613 0.536 

Net2Net 0.587 0.558 0.547 0.684 0.608 

Proposed System 0.677 0.592 0.638 0.716 0.675 
 

V. CONCLUSION AND FUTURE SCOPE 

In current study, a novel approach for the detection of 
bubbles and defects in glass bottles utilizing a combination of 
GANs and CNNs is proposed. The results show the 
improvements in various types of defects, including bubbles, 
scratches, and impurities, in glass bottle images. By exploiting 
the power of GANs for data augmentation and CNNs for feature 
extraction and classification, the model shows significant 
higher accuracy and efficiency compared to traditional 
methods. 

The proposed method's main contribution is that it can adapt 
effectively to all kinds of flaws and variances in image quality 
making it suitable for practical applications in industry. 
Furthermore, in the industrial environments, a small number of 
labeled datasets are generally available. GANs can produce 
artificial training data to solve the problems in the small number 
of labeled datasets. This increases the model resilience and 
reduces the requirement of human annotation which brings time 
and cost effectiveness. Overall, the present research contributes 
significantly to the field of automated quality inspection 
systems in the manufacturing industry, especially in glass bottle 
production field. Minimizing human intervention increases 
automation of the defect detection process. Therefore, the 
proposed approach improves the quality control efficiency and 
brings consistency and reliability in identifying defects, leading 
to higher product quality and better customer satisfaction. 

However, there remains some future scope for further 
improvement. Optimization of the GAN-CNN architecture can 
be achieved to enhance its performance like fine-tuning of 
hyper parameters and incorporating advanced regularization 
techniques to prevent over fitting. 
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