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Abstract—This study presents a novel energy-saving data 

storage algorithm designed to enhance data storage efficiency 

and reduce energy consumption in cloud computing 

environments. By intelligently discerning and categorizing 

various cloud computing tasks, the algorithm dynamically adapts 

data storage strategies, resulting in a targeted optimization 

methodology that is both devised and experimentally validated. 

The study findings demonstrate that the optimized model 

surpasses comparative models in accuracy, precision, recall, and 

F1-score, achieving peak values of 0.863, 0.812, 0.784, and 0.798, 

respectively, thereby affirming the efficacy of the optimized 

approach. In simulation experiments involving tasks with 

varying data volumes, the optimized model consistently exhibits 

lower latency compared to Attention-based Long Short-Term 

Memory Encoder-Decoder Network and Deep Reinforcement 

Learning Task Scheduling models. Furthermore, across tasks 

with differing data volumes, the optimized model maintains high 

throughput levels, with only marginal reductions in throughput 

as data volume increases, indicating sustained and stable 

performance. Consequently, this study is pertinent to cloud 

computing data storage and energy-saving optimization, offering 

valuable insights for future research and practical applications. 
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I. INTRODUCTION 

With the rapid development of cloud computing, the 
demand for data storage has surged, rendering traditional 
centralized storage solutions inadequate for managing vast data 
volumes and diverse task requirements [1]. The data storage 
landscape in cloud computing is characterized by its large scale 
and the variety of data types, encompassing different task types 
and service models, such as big data analysis, real-time 
processing, and archival storage. Each task possesses unique 
resource requirements and storage characteristics, leading to 
significant variations in performance requirements across tasks 
[2-4]. To enhance overall performance, data storage algorithms 
in cloud computing must balance data accuracy, reliability, 
real-time performance, and energy consumption. However, 
existing storage strategies frequently overlook the distinctions 
between diverse tasks, resulting in wasted storage resources, 
performance degradation, and elevated energy consumption. 

Previous studies have highlighted the substantial 
differences in resource requirements among various task types 
in cloud computing environments. For instance, Yang et al. 
demonstrated that these disparities significantly influence the 

selection and optimization of data storage strategies [5]. 
Saravanan et al. conducted an analysis of big data and real-time 
processing tasks, emphasizing fundamental differences in data 
access patterns and response time requirements, thereby 
underscoring the necessity for targeted algorithm design [6]. 
Additionally, Manukumar and Muthuswamy elucidated the 
variations in persistence and reliability requirements between 
archival storage and high-frequency access data, providing a 
theoretical foundation for the diversification of data storage 
strategies [7]. Furthermore, Hamid et al. proposed an energy-
saving storage algorithm predicated on data access frequency, 
which markedly reduced energy consumption in data centers 
through intelligent data migration and caching strategies [8]. 
Zhang et al. developed a storage management system based on 
data hotness and task priority, effectively enhancing the 
utilization of storage resources and decreasing the energy 
consumption associated with redundant data [9]. Finally, 
Rahimikhanghah et al. conducted simulation experiments to 
compare the performance of various data storage algorithms 
under diverse cloud computing tasks, revealing that targeted 
optimization algorithms exhibit significant advantages in terms 
of accuracy and response time [10]. El-Menbawy et al. 
validated the improvements in throughput and storage 
efficiency of their proposed energy-saving storage algorithm 
through testing in a real cloud environment, providing robust 
data to support its practical application [11]. Dong et al. 
assessed the performance of various storage algorithms using 
metrics such as accuracy, recall, F1-score, and precision. Their 
findings indicated that algorithms that comprehensively 
accounted for task differences demonstrated superior 
performance across multiple indicators [12]. Al-Masri et al. 
applied machine learning techniques to predict and adjust the 
performance of storage systems, optimizing data distribution 
and replication strategies while minimizing energy 
consumption, all while maintaining data reliability [13]. 

Although previous studies have recognized the differences 
in cloud computing tasks, many have lacked in-depth analysis 
of their specific characteristics and requirements, leading to 
suboptimal performance of storage algorithms when faced with 
diverse task types. Moreover, most energy-saving storage 
algorithms are typically designed for specific tasks or scenarios, 
making it difficult for them to adapt flexibly to varied task 
environments, thereby diminishing overall performance and 
energy-saving effectiveness. By conducting a detailed analysis 
of the data characteristics and performance requirements of 
different cloud computing tasks, this study provides a clear 
optimization framework and decision-making basis for the 
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design of energy-saving data storage algorithms. Additionally, 
the proposed algorithm can identify and adapt to diverse task 
environments, dynamically adjusting data storage strategies 
according to task types, thereby achieving an optimal balance 
between energy efficiency and performance under different 
task scenarios. This study first analyzes the differences in cloud 
computing tasks, revealing that a detailed analysis and 
understanding of these tasks can provide clearer directions for 
optimizing energy-saving data storage algorithms, enabling 
them to adapt to task variability and achieve a balance between 
energy efficiency and performance in diverse task 
environments. Secondly, the design of the energy-saving data 
storage algorithm is studied, emphasizing that through the 
comprehensive application of these strategies, the algorithm 
can effectively meet the demands of different cloud computing 
tasks, ensuring an optimal balance between performance, 
reliability, and energy consumption in data storage systems. 
Furthermore, by incorporating strategies for data distribution, 
load balancing, data replication, fault tolerance, data access, 
migration, and energy consumption optimization with 
performance evaluation, the model is refined. Finally, the 
effectiveness of the model is validated through experiments. 

II. OPTIMIZATION OF THE ENERGY-SAVING DATA 

STORAGE ALGORITHM FOR DIFFERENTIATED CLOUD 

COMPUTING TASKS 

A. Analysis of Differentiated Cloud Computing Tasks 

Before designing and optimizing energy-saving data 
storage algorithms tailored to differentiated cloud computing 
tasks, a comprehensive analysis of the characteristics and 
requirements of each task is essential. Additionally, it is critical 
to establish a clear mapping between data storage models and 
task types, while identifying the key factors that influence the 
selection of storage algorithms [14-16]. The variety of cloud 
computing tasks is considerable, and the common task types 
are presented in Table I: 

TABLE I. TYPES OF CLOUD COMPUTING TASKS 

Task types Description 

Real-time 

processing 
tasks 

Real-time tasks, such as financial transactions and online 

games, require extremely low latency to guarantee a quick 

response to user requests. They often rely on caching 
strategies that ensure efficient reading and immediate 

updating of data. 

Big data 
analysis 

tasks 

They involve large-scale data processing and analysis, such 

as data mining, machine learning, and business intelligence. 
These tasks require high storage performance and require fast 

data transfer between distributed storage systems to meet 

computing and analysis requirements. 

Archive 
storage tasks 

For instance, long-term storage of logs, backups, and legal 
files requires high data persistence and security, but 

relatively low access speed. Data backup, fault tolerance, and 

tiered storage are often required to balance cost and 
performance. 

Content 
delivery 

tasks 

Examples include video streaming and large file downloads, 

emphasizing high throughput and efficiency of data 

distribution. Content Delivery Network (CDN) and multi-
layer caching are needed to accelerate content distribution. 

A well-designed data storage model is crucial for meeting 
the performance requirements of different tasks. Cache modes 
are commonly employed for real-time processing and content 
delivery tasks, with the primary goal of minimizing data access 
latency while dynamically adjusting data distribution across 
various cache layers. Distributed file systems are typically 
utilized in large-scale data processing and transmission, 
ensuring reliable data distribution and fast access for big data 
analysis tasks [17-18]. For archival storage tasks, hierarchical 
storage strategies are applied, utilizing cold and hot data layers 
to manage data accessed at varying frequencies, thereby 
reducing overall storage costs while maintaining data 
persistence and security. Replication strategies are adapted 
based on task characteristics: real-time processing tasks often 
require leader-follower replication to ensure low-latency 
responses, while big data analysis tasks generally employ 
distributed replication with high redundancy to guarantee data 
reliability and persistence [19-21]. The selection and 
optimization of storage algorithms are influenced by a range of 
critical factors, depending on the task types and storage modes, 
as summarized in Table II: 

TABLE II. KEY FACTORS INFLUENCING THE SELECTION OF STORAGE 

ALGORITHMS 

Factor Analysis 

Task priority 

Various tasks have different priorities in the system. High-

priority tasks such as financial transactions should be 

allocated more resources, while low-priority archiving tasks 
can use more energy-efficient storage strategies. 

Data access 
mode 

The data access mode of the task directly affects the design 

of the storage algorithm. The frequent read and write 

requirements of real-time processing tasks are different 
from the sequential batch processing of big data analysis 

tasks, and differentiated caching and migration strategies 

are required. 

Data 

consistency 

Different tasks have diverse requirements for data 

consistency. Real-time tasks require strong consistency, 

while analytical tasks can accept some degree of ultimate 
consistency. 

Energy 

consumption 
and cost 

Low energy consumption and storage costs are the focus of 

most missions. According to the performance and budget 

requirements of different tasks, a proper storage strategy 
can effectively reduce the cost of data migration and 

redundant copies. 

A detailed analysis and understanding of various cloud 
computing tasks can provide clearer guidance for optimizing 
energy-saving data storage algorithms. This allows them to 
adapt to task variability and achieve a balance between energy 
efficiency and performance across diverse task environments 
[22]. 

B. Design of the Energy-Saving Data Storage Algorithm 

The design of the energy-saving data storage algorithm 
adheres to the following principles and objectives. First, the 
algorithm must be adaptive, capable of recognizing and 
responding to the diverse requirements of different cloud 
computing tasks, and dynamically adjusting data storage and 
distribution strategies based on the tasks' characteristics and 
priorities. Second, reducing energy consumption in data centers 
through efficient data migration and replication strategies is a 
primary goal, focusing on minimizing hardware resource 
idleness and reducing redundant data replication. Third, the 
algorithm must ensure data availability and persistence across 
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various task scenarios, maintaining data consistency even 
under high-load conditions. Lastly, it is essential to balance 
performance metrics such as response time, throughput, and 
accuracy while addressing the diverse demands of different 
tasks. This study proposes an energy-saving data storage 
algorithm designed to accommodate the diversity of cloud 
computing tasks while minimizing energy consumption. The 
framework of the proposed algorithm comprises several key 
modules, as illustrated in Fig. 1. 

The identification and classification of differentiated task 
data form the foundational basis of the energy-saving storage 
algorithm. By analyzing task-specific characteristics, such as 
real-time requirements, priority levels, and data access modes, 
the data can be categorized into distinct types, as outlined in 
Table III: 

TABLE III. DATA TYPES 

Type Analysis 

High-priority real-

time data 

This type of data is used for real-time processing tasks, 

usually has high priority and low latency requirements, 

and is mainly stored in the cache layer to meet fast 
access demands. 

Batch analysis data 

It is suitable for big data analysis tasks that need to 
maintain the reliability and distribution of data in a 

distributed file system to ensure efficient computation 

and analysis. 

Long-term 

archived data 

The data access frequency is low and data is stored at 
the cold layer. The hierarchical storage strategy 

minimizes space and power consumption. 

Building on the identification and classification of 
differentiated task data, appropriate energy-saving data storage 
strategies can be developed. First, the intelligent data migration 
strategy dynamically adjusts the distribution of data across 
various storage system tiers based on task characteristics and 
data access patterns. This ensures that high-frequency data is 
cached, while low-frequency data is archived, optimizing the 
hierarchical management of data. Second, the replication 
strategy is determined by task type and priority. High-priority 
tasks utilize a leader-follower replication model to meet low-
latency response requirements, whereas batch analysis tasks 
implement a multi-replica distribution strategy to guarantee 
data reliability and consistency. In addition, the resource 
balancing strategy employs load-balancing algorithms to 
distribute access loads evenly across data nodes, mitigating 
resource idleness and avoiding bottlenecks caused by hot data, 
thereby enhancing resource utilization. Moreover, the dynamic 
optimization strategy continuously monitors the storage 
system’s performance and energy consumption in real-time, 
using machine learning algorithms to optimize data storage 
strategies and adapt to evolving task demands. Through the 
comprehensive implementation of these energy-saving data 
storage strategies, the proposed algorithm effectively addresses 
the requirements of diverse cloud computing tasks, ensuring an 
optimal balance between performance, reliability, and energy 
efficiency in the data storage system. 

 

Fig. 1. The framework of energy-saving data storage algorithms. 
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C. Algorithm Optimization and Implementation 

The optimization and implementation of the energy-saving 
data storage algorithm are designed to enhance the efficiency 
and reliability of the data storage system while minimizing 
energy consumption, all without compromising performance. 
Central to cloud computing data storage are effective data 
distribution strategies, which significantly influence the 
system's performance and stability. The algorithm proposed 
here is founded on three key principles: task priority, data 
hotness, and load balancing. Task data is allocated to various 
storage nodes based on the real-time nature and priority of the 
tasks, facilitating hierarchical management of data access. 
High-priority tasks with stringent real-time requirements are 
directed to nodes that offer faster response times, while lower-
priority tasks are assigned to nodes with slower response 
capabilities. By analyzing the frequency and hotness of data 
access, high-demand (hot) data is stored in the high-speed 
cache layer to ensure efficient access, whereas low-demand 
(cold) data is migrated to the cold storage layer to alleviate 
pressure on the cache. The load balancing algorithm 
dynamically adjusts the data distribution across nodes to 
achieve an equitable distribution of access loads among all 
storage nodes, thus preventing resource idleness and mitigating 
the occurrence of bottlenecks due to hot data. Furthermore, 
replication and fault tolerance mechanisms within the data 
storage framework ensure data persistence and reliability, as 
illustrated in Table IV. 

TABLE IV. DATA REPLICAS AND FAULT TOLERANCE MECHANISMS 

Dimension Analysis 

Copy replication 

strategy 

According to the requirements of different tasks, 
various copy replication strategies are designed. 

Leader-follower replication is adopted for high-

priority tasks to ensure real-time performance and fast 
recovery. Multiple replicas are used for batch 

processing and archiving tasks to ensure reliable data 

recovery in case of faults. 

Fault tolerance  

Regular data integrity checks and replica status 

monitoring should be implemented to promptly detect 

and handle storage node failures, restore damaged 
data to healthy nodes, and ensure data availability and 

consistency. 

Data access and migration strategies significantly influence 
the performance and flexibility of the data repository. Access 
optimization employs caching strategies and data layering to 
refine access pathways in accordance with task type and data 
popularity, ensuring that frequently accessed data resides in the 
cache layer while infrequently accessed data is relegated to 
secondary storage. Dynamic migration adjusts data storage 
locations in response to evolving access patterns, transferring 
data between cold and hot layers to meet shifting task 
requirements and sustain optimal system performance. In 
pursuit of a comprehensive reduction in energy consumption 
and an evaluation of storage system performance, this study 
delineates the following strategies, as outlined in Table V: 

TABLE V. OPTIMIZATION STRATEGY 

Strategy Analysis 

Energy consumption 

optimization 

By adjusting data distribution, and reducing node idle 

rates and redundant copies, unnecessary energy 
consumption is reduced. Meanwhile, energy-saving 

storage hardware and resource hibernation 

mechanisms are employed to mitigate system energy 
consumption while maintaining high performance. 

Performance 

evaluation 

Comprehensive performance evaluation indicators 

are established to identify system bottlenecks and 
optimize storage strategies, thereby achieving a 

balance between performance and energy 

consumption. 

By integrating a comprehensive array of data distribution 
strategies, load balancing, data duplication, fault tolerance 
mechanisms, data access, migration strategies, energy 
consumption optimization, and performance assessment, the 
algorithm proposed herein ensures that the data storage system 
achieves an optimal amalgamation of high performance and 
low energy consumption across various task environments. 

III. ANALYSIS OF PERFORMANCE AND SIMULATION 

RESULTS OF ENERGY-SAVING STORAGE ALGORITHMS 

A. Analysis of Performance Comparison Results of Energy-

Saving Storage Algorithms 

The dataset utilized for this experiment is the Alibaba 
Cluster dataset, a comprehensive resource derived from 
Alibaba's production cluster, specifically designed to facilitate 
research on cluster management. The dataset spans multiple 
versions from 2017 to 2023, offering valuable insights into 
various facets of cloud computing tasks. It is publicly 
accessible via the official repository at 
https://github.com/alibaba/clusterdata. Details of the 
experimental environment are presented in Table VI. 

TABLE VI. EXPERIMENTAL ENVIRONMENT 

Equipment type Parameter configuration 

Processor Inter(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 

Graphics card NVIDIA Titan Xp 12GB 

Memory 128 GB 

Operating system Ubuntu 16.04 LTS 

Programming 
language 

Python 3.6 

The model parameters are uniformly configured to ensure 
experimental accuracy. Specifically, the learning rate is set to 
0.01, with a batch size of 64, two hidden layers, each 
containing 128 hidden units. The Adam optimizer is employed, 
and training is conducted over 50 epochs with a dropout 
probability of 0.02. For comparative analysis, the Attention-
based Long Short-Term Memory Encoder-Decoder (Attention-
LSTM-ED) and Deep Reinforcement Learning Task 
Scheduling (DRL-TS) models are selected due to their 
representative and practical applications within the cloud 
computing domain. The Attention-LSTM-ED model leverages 
the LSTM network and attention mechanism to effectively 
handle time series data, making it suitable for applications such 
as task load prediction. In contrast, the DRL-TS model utilizes 
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deep reinforcement learning for task scheduling, offering an 
efficient solution to challenges related to resource allocation 
and task scheduling. These models provide a robust 
comparison, enabling a thorough evaluation of the proposed 
model’s improvements in terms of performance, efficiency, 
and energy consumption. The performance metrics compared 
in this study include accuracy, recall, precision, and F1-score, 
with the results illustrated in Fig. 2. 

Fig. 2 demonstrates that the accuracy of the optimized 

model reaches 0.815, 0.842, and 0.863 for data volumes of 

1000, 2000, and 3000, respectively, consistently surpassing 

the performance of the Attention-LSTM-ED and DRL-TS 

models. This suggests that the optimized model maintains 

high accuracy across varying data sizes, highlighting its 

superior generalization ability and stability. While the 

Attention-LSTM-ED and DRL-TS models exhibit relatively 

strong performance with smaller data volumes, their accuracy 

decreases as data volume increases, underscoring the 

optimized model's advantage in handling large-scale datasets. 

In terms of precision, the optimized model consistently 
achieves stable and high precision levels of 0.768, 0.793, and 
0.812 across different data volumes. In comparison, the 
precision of the Attention-LSTM-ED and DRL-TS models is 
0.710 and 0.735, respectively, at a data volume of 1000, and 
0.732 and 0.754, respectively, at a data volume of 2000. 
Overall, the optimized model outperforms the other two 
models across all data volumes. This performance advantage 
likely stems from the optimized model's enhanced data 
recognition and classification capabilities, which allow it to 
adapt more effectively to varying data volumes and task 
requirements. Even at smaller data volumes, the optimized 
model demonstrates efficient precision, which improves further 
as data volume increases. In contrast, the precision 
improvement of the Attention-LSTM-ED and DRL-TS models 
is relatively slow, suggesting that they may struggle to 
maintain stable performance as data size grows. These 
comparative results highlight the significant advantage of the 
optimized model in terms of precision, particularly in large-
scale data environments, where it can more accurately process 
cloud computing tasks. 
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Fig. 2. Performance comparison results (a): Accuracy; (b): Precision; (c): Recall; (d): F1-score. 

In terms of recall, the optimized model achieves recall 
values of 0.743, 0.769, and 0.784 for data volumes of 1000, 
2000, and 3000, respectively, consistently outperforming the 
other models at each data level. For a data volume of 1000, the 
recall for the Attention-LSTM-ED model is 0.683, while the 
DRL-TS model achieves 0.712. At a data volume of 2000, their 
recall values are 0.701 and 0.730, respectively. This 
consistency indicates that the optimized model exhibits lower 
sensitivity to varying data scales in terms of recall, allowing it 
to effectively capture relevant information and enhance data 
processing performance across a range of task conditions. As 
data volume increases, the recall of the optimized model 
improves steadily, demonstrating its robustness and reliability 
in handling large-scale datasets. 

With respect to the F1-score, the optimized model achieves 
values of 0.753, 0.781, and 0.798 for data volumes of 1000, 
2000, and 3000, respectively, outperforming both the 

Attention-LSTM-ED and DRL-TS models. At a data volume 
of 1000, the F1-scores for Attention-LSTM-ED and DRL-TS 
are 0.697 and 0.724, respectively, while at a data volume of 
2000, these values are 0.722 and 0.743. The optimized model 
consistently maintains higher F1-scores across various data 
volumes, indicating superior performance and stability in task 
recognition and classification. As data volume increases, the 
F1-score of the optimized model steadily improves, 
underscoring its consistency and superiority in managing large-
scale data. In contrast, the F1-scores of the Attention-LSTM-
ED and DRL-TS models are comparatively lower, particularly 
at larger data volumes, and their rate of improvement is 
relatively slow. This suggests that their generalization ability is 
not as strong as that of the optimized model, and they struggle 
to maintain the same level of accuracy and stability in 
environments with expanding data scales and evolving task 
requirements. 
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B. Analysis of Simulation Results of Energy-Saving Storage 

Algorithms 

To further validate the effectiveness of the optimized model, 
simulation experiments are conducted to compare key 

performance indicators, including delay, throughput, energy 
consumption, and storage efficiency. The results of these 
experiments are presented in Fig. 3. 
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Fig. 3. Analysis of simulation experiment results (a): Latency; (b): Throughput; (c): Energy Consumption; (d): Storage Efficiency. 

Fig. 3 illustrates the delay comparison across different data 
volumes, demonstrating the superior performance of the 
optimized model. Specifically, the optimized model exhibits 
delays of 0.295 seconds, 0.312 seconds, and 0.324 seconds for 
data volumes of 1000, 2000, and 3000, respectively. At each 
data volume, its delay is notably lower than that of the 
Attention-LSTM-ED and DRL-TS models. For instance, at 
1000 data volumes, the Attention-LSTM-ED and DRL-TS 
models report delays of 0.352 and 0.328 seconds, respectively, 
and at 2000 data volumes, the delays increase to 0.369 and 
0.341 seconds. These results underscore the optimized model’s 
significantly lower processing delay, reflecting a marked 
advantage in task completion speed. Furthermore, as the data 
size increases, the delay of the optimized model shows only a 
modest increase, illustrating its strong scalability and 
adaptability to large-scale data processing. In contrast to the 
other two models, the optimized model consistently 
demonstrates superior stability and efficiency in terms of 
latency. This performance advantage can be attributed to the 
model’s enhanced ability to recognize and classify task data, 
coupled with its flexible data storage strategies across varying 
data scales. 

In terms of throughput, the optimized model consistently 
maintains relatively high values across all data volumes. At 
1000, 2000, and 3000 data volumes, it achieves throughput 
values of 157.832, 156.321, and 154.888, respectively, 
surpassing the Attention-LSTM-ED and DRL-TS models. For 
instance, at a data volume of 1000, the throughputs of the 
Attention-LSTM-ED and DRL-TS models are 148.237 and 
152.435, and at 2000, they decrease to 146.789 and 150.942, 
respectively. This analysis reveals that, even as the data 
volume increases, the optimized model experiences only a 
slight decline in throughput, maintaining relatively stable 
performance. Such stability highlights the model’s efficiency 
and ability to adapt to diverse data sizes. By contrast, the 
Attention-LSTM-ED and DRL-TS models exhibit a more 
pronounced reduction in throughput, suggesting potential 

bottlenecks as data volume increases. This further emphasizes 
the optimized model’s distinct advantages in handling large-
scale data, attributed to its ability to effectively identify and 
classify task-specific data while employing energy-efficient 
storage strategies. As a result, the optimized model meets the 
demands for high data processing efficiency across varying 
task requirements. 

In the comparison of energy consumption, the optimized 
model consistently demonstrates lower energy usage across 
data volumes of 1000, 2000, and 3000, with consumption rates 
of 10.428 KWH, 10.836 KWH, and 11.257 KWH, respectively. 
This highlights its significant energy-saving potential. In 
contrast, the Attention-LSTM-ED model consumes 13.752 
KWH at a data volume of 1000, while the DRL-TS model 
consumes 12.639 KWH. As data volumes increase, both 
models experience a substantial rise in energy consumption, 
revealing their inefficiency in managing large datasets. The 
optimized model, however, exhibits only a modest increase in 
energy consumption, maintaining consistently low levels 
across all data volumes. This underscores its advantage and 
innovation in energy-efficient data storage algorithms. By 
leveraging advanced storage strategies, the model effectively 
reduces overall energy consumption while handling complex 
tasks, striking an optimal balance between performance and 
energy efficiency. In terms of storage efficiency, the optimized 
model achieves rates of 0.913, 0.906, and 0.895 for data 
volumes of 1000, 2000, and 3000, respectively. Its efficiency 
remains consistently superior to other models under all data 
volume conditions, demonstrating the clear advantages of the 
optimization. In comparison, the Attention-LSTM-ED and 
DRL-TS models exhibit slightly lower efficiency. At a data 
volume of 1000, the Attention-LSTM-ED model records an 
efficiency of 0.854, while the DRL-TS model achieves 0.889. 
As data volumes increase, their efficiency declines further to 
0.839 and 0.872, respectively. This comparison highlights the 
optimized model’s exceptional performance in maximizing 
storage space utilization, allowing it to maintain higher storage 
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efficiency. By classifying task-specific data and applying 
storage strategies tailored to diverse task characteristics, the 
optimized model fully capitalizes on available resources, 
meeting the storage efficiency demands of various tasks. Its 
stability and superior efficiency render it particularly well-
suited for large-scale data environments. 

IV. DISCUSSION 

In cloud computing environments, the characteristics of 
different tasks can significantly impact data storage efficiency 
and energy consumption performance. These tasks often vary 
in terms of data volume, computational complexity, I/O 
requirements, and latency demands. To address these variations, 
this study proposes an energy-efficient data storage algorithm 
that intelligently identifies and classifies tasks, dynamically 
adjusting data storage strategies to maximize storage efficiency 
and reduce energy consumption. Experimental results show 
that the proposed algorithm maintains high accuracy, precision, 
recall, and F1 scores when processing large-scale data, with 
low latency and stable throughput performance. Notably, the 
algorithm exhibits minimal throughput decline under varying 
data volumes, while energy consumption shows a steady 
growth, demonstrating its strong adaptability—especially 
suited for cloud computing scenarios with diverse task 
characteristics and fluctuating data volumes. Additionally, the 
algorithm's optimized approach to storage strategy adjustment 
significantly reduces energy consumption during large-scale 
data processing. For instance, with data volumes ranging from 
1,000 to 3,000, the algorithm consistently consumes less 
energy than the comparative models. The energy-saving effect 
is particularly evident, as large data processing tasks typically 
involve extensive data read/write operations and substantial 
computational resource consumption. By intelligently 
identifying task characteristics and optimizing data storage 
strategies, the proposed algorithm reduces energy consumption 
and enhances processing efficiency, making it especially 
applicable to platforms with growing data analysis demands. 
Cloud storage systems often need to handle diverse storage 
requirements, where fluctuations in data volume make storage 
efficiency and energy consumption critical issues. The 
proposed algorithm significantly reduces energy consumption 
while ensuring storage efficiency, making it suitable for long-
term, continuous cloud storage services, such as CDN or 
enterprise cloud storage systems. Compared to the research by 
Shi et al., this study focuses more on optimizing energy 
savings when handling large-scale heterogeneous tasks. Their 
model, based on static storage strategies, demonstrates some 
energy-saving effects in small-scale tasks, but as data volume 
increases, their model’s energy consumption rises significantly. 
In contrast, the proposed algorithm dynamically adjusts data 
storage strategies, further improving energy efficiency in large-
scale task processing, particularly when data volumes fluctuate 
sharply, with much lower energy consumption growth than 
their model. Therefore, this study demonstrates stronger 
adaptability in big data environments, addressing the 
shortcomings of their research in large-scale task processing 
[23]. In comparison with Zhang et al.’s research, this study not 
only emphasizes storage efficiency optimization but also 
introduces a more detailed mechanism for identifying 
heterogeneous tasks. Zhang et al. primarily focused on 

improving storage efficiency by simplifying the task 
identification process to reduce computational overhead. 
However, simplified task identification strategies may lead to 
fluctuations in storage efficiency when dealing with complex 
and dynamic tasks. The proposed algorithm, by intelligently 
identifying heterogeneous tasks and dynamically adjusting 
storage strategies, strikes a balance between task processing 
accuracy and storage efficiency. As a result, this study not only 
compensates for the deficiencies in their research related to 
task identification and data storage but also offers a more 
generalized solution [24]. 

Through experimental analysis and application scenarios, 
the proposed energy-efficient storage algorithm for 
heterogeneous cloud computing tasks demonstrates significant 
advantages across multiple dimensions, particularly in meeting 
the storage and processing needs of large-scale heterogeneous 
tasks. Future research directions could focus on further 
enhancing the scalability and dynamic adaptability of the 
algorithm to better handle increasingly complex cloud 
computing task environments. 

V. CONCLUSION 

This study proposes and implements an energy-efficient 
data storage algorithm that intelligently identifies and classifies 
data characteristics for differentiated cloud computing tasks. 
Based on this, the dynamic adjustment of data storage 
strategies has optimized storage performance, reduced energy 
consumption, and enhanced overall system efficiency. 
Compared to existing models, the proposed optimized model 
demonstrates distinct advantages, not only in storage efficiency 
but also in throughput, latency, and energy consumption. 
Despite the significant advantages in performance and energy 
savings, this study has several limitations. First, the model 
shows limitations in adapting to certain anomalous data 
features specific to particular task types, indicating that the 
current task classification approach requires further refinement 
to ensure high accuracy and efficiency across a broader range 
of data characteristics. Second, the algorithm's performance 
optimization under high concurrency conditions requires 
further testing and improvement. It remains to be verified 
whether the algorithm can maintain its superior performance in 
more complex task environments, such as high-concurrency 
task processing scenarios. Future research will focus on several 
key areas for improvement. First, a multi-task concurrency 
mechanism will be introduced to enhance the efficiency of data 
allocation and resource utilization across different task types. 
By improving parallel processing capabilities, the optimized 
model will be able to maintain stability in high-concurrency 
environments. Second, machine learning methods will be 
incorporated to develop more refined adaptive storage 
strategies that address dynamically changing data requirements, 
thereby enhancing the model's adaptability in complex cloud 
computing tasks. Additionally, the study will explore the 
synergies between edge computing and cloud computing, 
investigating more efficient edge-cloud data storage and task 
allocation strategies to achieve superior performance and 
energy efficiency. With these improvements, the optimized 
model will be better suited to large-scale, dynamic cloud 
computing environments, enhancing its efficiency and energy-
saving capacity in multi-task processing. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

626 | P a g e  

www.ijacsa.thesai.org 

REFERENCES 

[1] K. Y. Tai, F. Y. S. Lin, and C. H. Hsiao, “An integrated optimization-
based algorithm for energy efficiency and resource allocation in 
heterogeneous cloud computing centers,” IEEE Access, vol. 56, no. 13, 
pp. 556-557, Mar. 2023. 

[2] Y. Dong, H. Sui, and L. Zhu, “Application of cloud computing combined 
with GIS virtual reality in construction process of building steel 
structure,” Math. Probl. Eng., vol. 2, no. 2, pp. 11-13, Feb. 2022. 

[3] A. Lakhan, M. A. Mohammed, A. N. Rashid, S. Kadry, & K. H. 
Abdulkareem, “Deadline aware and energy-efficient scheduling 
algorithm for fine-grained tasks in mobile edge computing,” Int. J. Web 
Grid Serv., vol. 18, no. 2, pp. 168-193, Feb. 2022. 

[4] F. S. Prity, M. H. Gazi, and K. M. A. Uddin, “A review of task 
scheduling in cloud computing based on nature-inspired optimization 
algorithm,” Cluster Comput., vol. 26, no. 5, pp. 3037-3067, May 2023. 

[5] H. Yang, H. Zhou, Z. Liu, X. Deng, “Energy optimization of wireless 
sensor embedded cloud computing data monitoring system in 6G 
environment,” Sensors, vol. 23, no. 2, pp. 1013, Feb. 2023. 

[6] G. Saravanan, S. Neelakandan, P. Ezhumalai, S. Maurya, “Improved 
wild horse optimization with levy flight algorithm for effective task 
scheduling in cloud computing,” J. Cloud Comput., vol. 12, no. 1, pp. 
24, Jan. 2023. 

[7] S. T. Manukumar and V. Muthuswamy, “A novel data size-aware 
offloading technique for resource provisioning in mobile cloud 
computing,” Int. J. Commun. Syst., vol. 36, no. 2, pp. 5378, Feb. 2023. 

[8] L. Hamid, A. Jadoon, and H. Asghar, “Comparative analysis of task level 
heuristic scheduling algorithms in cloud computing,” J. Supercomput., 
vol. 78, no. 11, pp. 12931-12949, Nov. 2022. 

[9] W. Zhang, R. Yadav, Y. C. Tian, S. K. S. Tyagi, I. A. Elgendy, & S.  
Kaiwartya, “Two-phase industrial manufacturing service management 
for energy efficiency of data centers,” IEEE Trans. Ind. Informat., vol. 
18, no. 11, pp. 7525-7536, Nov. 2022. 

[10] A. Rahimikhanghah, M. Tajkey, B. Rezazadeh, A. M. Rahmani, 
“Resource scheduling methods in cloud and fog computing 
environments: a systematic literature review,” Cluster Comput., vol. 118, 
no. 42, pp. 1-35, Oct. 2022. 

[11] N. El-Menbawy, H. A. Ali, M. S. Saraya, “Energy-efficient computation 
offloading using hybrid GA with PSO in internet of robotic things 
environment,” J. Supercomput., vol. 79, no. 17, pp. 20076-20115, Sept. 
2023. 

[12] Y. Dong, H. Sui, and L. Zhu, “Application of cloud computing combined 
with GIS virtual reality in construction process of building steel 
structure,” Math. Probl. Eng., vol. 5, no. 3, pp. 9812-9814, Mar. 2022. 

[13] E. Al-Masri, A. Souri, H. Mohamed, W. Yang, J. Olmsted, & O. 
Kotevska, “Energy-efficient cooperative resource allocation and task 
scheduling for Internet of Things environments,” Internet Things, vol. 
23, no. 3, pp. 100832, Mar. 2023. 

[14] K. Rajalakshmi, M. Sambath, L. Joseph, K. Ramesh, R. Surendiran, “An 
effective approach for improving data access time using intelligent node 
selection model (INSM) in cloud computing environment,” SSRG Int. J. 
Electr. Electron. Eng., vol. 10, no. 5, pp. 174-184, May 2023. 

[15] K. Li, J. Zhao, J. Hu, Y. Chen, “Dynamic energy efficient task 
offloading and resource allocation for NOMA-enabled IoT in smart 
buildings and environment,” Build. Environ, vol. 22, no. 6, pp. 109513, 
June 2022. 

[16] Y. Wang, W. Shafik, J. T. Seong, M. S. A. Mustafa, M. R. Mouhamed, 
“Service delay and optimization of the energy efficiency of a system in 
fog-enabled smart cities,” Alexandria Eng. J., vol. 8, no. 4, pp. 112-125, 
Apr. 2023. 

[17] S. Alhelaly, A. Muthanna, and I. A. Elgendy, “Optimizing task 
offloading energy in multi-user multi-UAV-enabled mobile edge-cloud 
computing systems,” Appl. Sci., vol. 12, no. 13, pp. 6566, July 2022. 

[18] H. J. Muhasin, M. A. Jabar, S. Abdullah, S. Kasim, “Managing sensitive 
data in cloud computing for effective information system’ decisions,” 
Acta Informatica Malaysia. vol. 1, no. 2, pp. 01-02. February. 2017. 

[19] R. Agrawal, S. Singhal, and A. Sharma, “Blockchain and fog computing 
model for secure data access control mechanisms for distributed data 
storage and authentication using hybrid encryption algorithm,” Cluster 
Comput., vol. 1, no. 1, pp. 1-16, Jan. 2024. 

[20] R. Thatikonda, A. Padthe, S. A. Vaddadi, P. R. R. Arnepal, “Effective 
secure data agreement approach-based cloud storage for a healthcare 
organization,” Int. J. Smart Sens. Adhoc Netw., vol. 3, no. 4, pp. 19-20, 
Apr. 2023. 

[21] S. Zhao, “Energy efficient resource allocation method for 5G access 
network based on reinforcement learning algorithm,” Sustain. Energy 
Technol. Assess., vol. 56, no. 20, pp. 103020, Mar. 2023. 

[22] S. Zhang, Z. Wang, Z. Zhou, “Blockchain and federated deep 
reinforcement learning-based secure cloud-edge-end collaboration in 
power IoT,” IEEE Wireless Commun., vol. 29, no. 2, pp. 84-91, Feb. 
2022. 

[23] W. Shi, H. Li, J. Guan, M. S. A. Mustafa, M. R. Mouhamed, “Energy-
efficient scheduling algorithms based on task clustering in 
heterogeneous Spark clusters,” Parallel Comput., vol. 11, no. 2, pp. 
102947, Feb. 2022. 

[24] P. Zhang, N. Chen, G. Xu, M. Guizani, Y. Duan, K. Yu, “Multi-target-
aware dynamic resource scheduling for cloud-fog-edge multi-tier 
computing network,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 3, pp. 
20, Mar. 2023. 


