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Abstract—This review examines recent advancements and 

ongoing challenges in applying Support Vector Machines within 

Geospatial Artificial Intelligence, specifically for dengue fever 

prediction. Recent developments in Support Vector Machines 

include the introduction of advanced kernel methods, such as 

Radial Basis Function and polynomial kernels, which enhance the 

model’s ability to handle complex spatial data and interactions. 

Integration with high-resolution geospatial data and real-time 

analytics has significantly improved predictive accuracy, 

particularly in mapping environmental factors influencing disease 

spread. However, challenges persist, including issues with data 

quality, computational demands, and model interpretability. Data 

scarcity and the high computational cost of Support Vector 

Machines, especially with non-linear kernels, necessitate 

optimization techniques and advanced computing resources. 

Parameter tuning and enhancing model interpretability are 

critical for effective implementation. Future research should focus 

on developing new kernels and hybrid models that combine 

Support Vector Machines with other machine learning 

approaches to address these challenges. Practical applications in 

public health can benefit from improved real-time data processing 

and high-resolution analytics, while ensuring adherence to ethical 

and regulatory standards. This review underscores the potential 

of Support Vector Machines in Geospatial Artificial Intelligence 

for disease prediction and highlights areas where further 

innovation and research are needed to enhance its practical utility 

in public health. 
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I. INTRODUCTION 

Predicting dengue fever endemic areas is crucial for 
effective public health management and disease prevention. 
Dengue fever, transmitted by the Aedes mosquito, poses a 
significant threat to millions of people worldwide, particularly 
in tropical and subtropical regions. Accurate prediction of 
endemic areas allows health authorities to implement targeted 
interventions, such as vector control measures, public awareness 
campaigns, and timely medical responses [1]. By focusing 
resources on high-risk areas, these measures can significantly 

reduce the incidence of dengue outbreaks, ultimately saving 
lives and reducing the burden on healthcare systems. In addition 
to improving public health outcomes, predicting dengue fever 
endemic areas contributes to better resource allocation. Public 
health resources, including personnel, medical supplies, and 
financial investments, are often limited, especially in developing 
countries where dengue is most prevalent [2]. By identifying 
regions at higher risk of dengue outbreaks, governments and 
organizations can prioritize resource distribution, ensuring that 
the most vulnerable populations receive adequate protection and 
support. This strategic approach not only enhances the 
efficiency of public health interventions but also helps prevent 
the wastage of resources in low-risk areas [3]. 

Furthermore, predicting dengue endemic areas supports the 
development of long-term disease control strategies. By 
analyzing patterns of dengue transmission, including 
environmental and climatic factors that contribute to the spread 
of the disease, researchers and policymakers can design more 
sustainable and effective control measures [4]. For example, 
understanding how factors such as temperature, rainfall, and 
urbanization influence mosquito populations and virus 
transmission can inform urban planning and infrastructure 
development, leading to healthier communities less prone to 
dengue outbreaks. Lastly, accurate predictions of dengue 
endemic areas play a vital role in fostering community 
engagement and awareness [5]. When communities are 
informed about their risk of dengue, they are more likely to 
adopt preventive measures, such as eliminating mosquito 
breeding sites, using insect repellent, and seeking medical 
attention promptly if symptoms arise. Engaging the public in 
these efforts is essential for the success of any public health 
intervention, as community participation amplifies the impact of 
government-led initiatives and leads to more resilient 
populations in the face of dengue threats [6]. 

Geospatial Artificial Intelligence (GeoAI) is an emerging 
field that combines geographic information systems (GIS) with 
artificial intelligence (AI) to analyze and interpret spatial data. 
By leveraging AI techniques like machine learning, GeoAI can 
process large and complex geospatial datasets to uncover 
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patterns, make predictions, and provide actionable insights in 
various domains such as urban planning, environmental 
monitoring, and public health [7]. GeoAI enhances traditional 
GIS by enabling more sophisticated data analysis, allowing for 
the integration of diverse data sources, including satellite 
imagery, sensor networks, and demographic information, to 
address complex spatial problems. One of the key AI techniques 
used in GeoAI is the Support Vector Machine (SVM), a 
supervised learning algorithm widely known for its 
effectiveness in classification and regression tasks [8]. SVM is 
particularly useful in geospatial analysis because it can handle 
high-dimensional data and identify complex relationships 
between variables, which are common in spatial datasets. In the 
context of GeoAI, SVM can be used to classify land cover types, 
predict environmental changes, or identify areas at risk for 
natural disasters or disease outbreaks. Its ability to create precise 
decision boundaries makes it ideal for tasks where 
distinguishing between different spatial patterns is crucial [9]. 

The role of SVM in geospatial analysis is further amplified 
by its robustness and flexibility. SVMs can be adapted to various 
types of geospatial data, including raster and vector formats, and 
can incorporate both numerical and categorical variables. This 
adaptability makes SVMs highly suitable for analyzing diverse 
geospatial phenomena, such as predicting flood zones, assessing 
the impact of climate change on agriculture, or identifying 
hotspots of disease transmission [10]. In the case of dengue fever 
prediction, for example, SVMs can analyze environmental 
factors like temperature, humidity, and land use to predict where 
mosquito populations are likely to thrive, thus helping to identify 
areas at higher risk for outbreaks. Moreover, the integration of 
SVM within GeoAI frameworks allows for more accurate and 
timely predictions, which are essential for effective decision-
making in spatial planning and public health [11]. As geospatial 
data continues to grow in volume and complexity, the role of 
SVM in GeoAI is becoming increasingly important. Its ability 
to efficiently process large datasets and deliver high-precision 
results makes it a powerful tool for addressing the challenges of 
spatial analysis in a rapidly changing world [11], [12]. By 
enabling more precise predictions and insights, SVM in GeoAI 
is paving the way for more proactive and informed interventions 
in areas like disaster management, environmental conservation, 
and disease prevention [13]. 

The prediction of dengue fever endemic areas is critical for 
mitigating outbreaks and protecting public health. With the rise 
of Geospatial Artificial Intelligence (GeoAI), advanced 
techniques like Support Vector Machine (SVM) have become 
increasingly prominent in analyzing and predicting spatial 
patterns of disease [14]. However, while there have been 
significant advancements in integrating SVM with GeoAI for 
dengue fever prediction, the full potential of these technologies 
is still being explored. Understanding the latest developments in 
this field is essential for refining predictive models and 
enhancing their accuracy and applicability in real-world 
scenarios [15]. Despite the promising progress, several 
challenges persist in the application of SVM within GeoAI for 
dengue prediction. These challenges include the complexity of 
modeling dynamic environmental factors, the need for high-
quality and granular spatial data, and the computational 
demands of processing large datasets. Moreover, there are issues 

related to the generalization of models across different 
geographic regions and the interpretation of results by public 
health officials. Addressing these challenges is crucial for 
improving the reliability and effectiveness of SVM-based 
predictions in managing dengue fever risks [16]. 

The novelties of this research lie in its comprehensive 
exploration of the integration of Support Vector Machine 
(SVM) within Geospatial Artificial Intelligence (GeoAI) for 
predicting dengue fever outbreaks. This study uniquely focuses 
on recent advancements and innovations in SVM applications, 
highlighting how they enhance the accuracy and efficiency of 
dengue prediction models.  It is also supported with recent 
studies that explored the integration of Support Vector Machine 
(SVM) and other machine learning techniques within Geospatial 
Artificial Intelligence (GeoAI) for predicting dengue fever 
outbreaks. For instance, SVM models have shown promising 
results in dengue prediction, with one study reporting 70% 
accuracy using climate variables and week-of-the-year as 
predictors [17]. Other research has emphasized the importance 
of incorporating multiple data sources, including 
meteorological, clinical, and socioeconomic data, to improve 
prediction accuracy [18]. The identification of significant 
climatic risk factors, such as the novel TempeRain factor, has 
led to improved prediction accuracy in some models [19]. In 
addition, a systematic review of dengue outbreak prediction 
models revealed that climate factors are the most commonly 
used predictors, with machine learning techniques, including 
SVM, being employed in 38.5% of the reviewed models [20]. 

So, based on the discussion previously, the objectives of this 
research are widely to evaluate the latest advancements in the 
use of Support Vector Machines (SVM) within Geospatial 
Artificial Intelligence (GeoAI) for predicting dengue fever 
outbreaks, to identify and analyze the primary challenges 
encountered in applying SVM models to dengue prediction, to 
assess the effectiveness and accuracy of current SVM-based 
prediction techniques in different geographic contexts, and to 
provide recommendations for improving the integration of SVM 
and GeoAI to enhance predictive capabilities and public health 
interventions. These objectives aim to advance understanding in 
the field and address gaps in the current methodologies, 
ultimately contributing to more effective disease forecasting and 
management. 

II. METHODOLOGY 

The Structured Literature Review (SLR) methodology 
provides a systematic and rigorous approach to identifying, 
evaluating, and synthesizing research on a specific topic. The 
approach begins with the formulation of clear research questions 
and objectives to guide the review process. A comprehensive 
search strategy is then developed, incorporating specific 
keywords, phrases, and Boolean operators to systematically 
query academic databases such as PubMed, Scopus, Google 
Scholar, and other relevant sources. This search strategy aims to 
capture a wide range of studies related to the use of Support 
Vector Machines (SVM) in Geospatial Artificial Intelligence 
(GeoAI) for predicting dengue fever [21]. Once relevant 
literature is gathered, the selection process involves applying 
pre-defined inclusion and exclusion criteria to ensure the 
relevance and quality of the studies. Inclusion criteria might 
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include factors such as publication date, methodological rigor, 
and direct relevance to the research topic, while exclusion 
criteria filter out irrelevant or low-quality sources. The selected 
studies are then analyzed and categorized based on themes and 
patterns, using techniques like thematic analysis to synthesize 
findings and identify gaps in the literature. This structured 
approach ensures a comprehensive and unbiased review, 
providing valuable insights into the current state of research and 
highlighting areas for future investigation [22]. 

Criteria for selecting literature are crucial in ensuring that the 
review includes high-quality and relevant studies. Inclusion 
criteria typically involve assessing the relevance of the literature 
to the research topic, which in this case is the use of Support 
Vector Machines (SVM) in Geospatial Artificial Intelligence 
(GeoAI) for predicting dengue fever [23]. Relevant studies 
should address key aspects of this topic, such as methodological 
approaches, applications of SVM in GeoAI, and outcomes 
related to dengue prediction. Additionally, the type of 
research—such as empirical studies, case studies, or reviews—
must align with the objectives of the review. Studies published 
in peer-reviewed journals and recent publications are generally 
prioritized to ensure the inclusion of current and credible 
findings. 

Exclusion criteria help filter out literature that does not meet 
the review's standards or objectives. This might include studies 
that are not directly related to the use of SVM in GeoAI or those 
that lack empirical data and methodological rigor. Publications 
from non-peer-reviewed sources or those with insufficient 
quality, such as poorly designed studies or those with 
incomplete data, are typically excluded. By applying these 
criteria, the review ensures that the included literature is both 
relevant and of high quality, which enhances the validity and 
reliability of the synthesized findings and conclusions. 
Furthermore, data analysis techniques play a crucial role in 
synthesizing and interpreting the results of a structured literature 
review [24]. Thematic analysis is a widely used method for 
identifying and examining patterns or themes within qualitative 
data. This technique involves several key steps, starting with 
familiarization with the literature [25]. Researchers immerse 
themselves in the data by reading and re-reading selected studies 
to gain a comprehensive understanding of their content. Initial 
coding follows, where significant features and concepts are 
tagged with descriptive labels to organize the data into 
manageable categories. 

III. THEORETICAL FRAMEWORK 

A. Geospatial Artificial Intelligence (GeoAI) 

Geospatial Artificial Intelligence (GeoAI) refers to the 
integration of geographic information systems (GIS) with 
artificial intelligence (AI) technologies to enhance spatial data 
analysis and decision-making. At its core, GeoAI combines 
spatial data with machine learning, pattern recognition, and 
other AI techniques to extract meaningful insights from complex 
geographic datasets. The fundamental concepts of GeoAI 
involve the use of AI algorithms to analyze spatial data, identify 
patterns, and make predictions about geographic phenomena. 
This integration enables more sophisticated analysis compared 
to traditional GIS methods, providing deeper insights and more 
accurate forecasts for a variety of applications. 

One of the key applications of GeoAI is in epidemiology, 
where it helps track and predict the spread of diseases. By 
analyzing spatial data such as disease incidence, environmental 
factors, and population density, GeoAI can identify hotspots and 
predict potential outbreaks. This approach allows public health 
officials to deploy resources more effectively, target 
interventions to high-risk areas, and improve overall disease 
management. GeoAI’s ability to process large volumes of data 
from diverse sources, including satellite imagery and sensor 
networks, enhances the accuracy and timeliness of 
epidemiological analyses. Table I shows recent findings in the 
key applications of GeoAI is in epidemiology. 

TABLE I. KEY APPLICATIONS OF GEOAI IN EPIDEMIOLOGY 

Research Title and Author-Year Main Findings 

A Scoping Literature Review of 
Artificial Intelligence in 

Epidemiology: Uses, Applications, 

Challenges and Future Trends [26] 

GeoAI integrates geographic data 

with AI to enable more accurate 

disease spread monitoring, outbreak 

prediction, and health resource 

management. 

Geospatial Artificial Intelligence 
(GeoAI): Applications in Health 

Care [9] 

GeoAI has the potential to transform 

healthcare, public health, infectious 
disease control, disaster aid, and the 

achievement of Sustainable 

Development Goals. 

Emerging trends in geospatial 

artificial intelligence (geoAI): 
potential applications for 

environmental epidemiology [27] 

GeoAI provides advantages for 

exposure modeling in environmental 

epidemiology, including 
incorporating big spatial data, 

computational efficiency, and 

scalability. 

GeoAI-based Epidemic Control 
with Geo-Social Data Sharing on 

Blockchain [28] 

GeoAI and blockchain-based geo-

social data sharing can enable 

effective identification of infections 
for epidemic control. 

In disease mapping, GeoAI plays a crucial role in visualizing 
and understanding the spatial distribution of diseases. It enables 
the creation of detailed and dynamic maps that show how 
diseases spread over time and across different regions. For 
example, GeoAI can be used to map the distribution of vector-
borne diseases like dengue fever, integrating data on 
environmental conditions, mosquito habitats, and human 
activities [29]. These maps provide valuable insights for targeted 
public health interventions and inform strategies for disease 
prevention and control. 

B. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised machine 
learning algorithm used for classification and regression tasks. 
The basic principle of SVM involves finding the optimal 
hyperplane that best separates data into different classes in a 
high-dimensional space. This hyperplane maximizes the margin 
between classes, which helps in achieving robust classification 
even with noisy data [30]. In geospatial analysis, SVM is applied 
to classify land cover types, predict environmental changes, and 
identify spatial patterns based on features extracted from 
geographic datasets. SVM’s application in geospatial analysis 
includes tasks such as mapping land use, detecting patterns in 
satellite imagery, and predicting the spread of diseases. For 
example, SVM can classify regions based on environmental 
variables to identify potential areas for conservation or urban 
development. In disease prediction, SVM can analyze spatial 
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data to forecast disease hotspots by distinguishing between areas 
with high and low risk based on various environmental and 
demographic factors [31]. 

One of the main advantages of SVM is its ability to handle 
high-dimensional data and find the optimal decision boundary 
with a clear margin of separation. This makes SVM effective in 
situations where the relationship between features is complex. 
Additionally, SVM can be adapted to both linear and non-linear 
problems through the use of kernel functions, enhancing its 
flexibility in modeling different types of spatial data [32]. 
Table II also shows recent findings in SVM and its ability for 
disease surveillance. 

TABLE II. RECENT FINDINGS IN THE APPLICATION OF SVM IN DISEASE 

SURVEILLANCE 

Research Title and Author-Year Main Findings 

Review of Geospatial 

Technology for Infectious 

Disease Surveillance: Use Case 
on COVID-19 [33] 

Geospatial technologies like GIS are 

increasingly relevant for infectious 

disease surveillance and modeling, 
including for COVID-19. 

Using fine-scale satellite 
imagery and GIS data to help 

predict disease spread [34] 

The paper demonstrates how fine-scale 

satellite imagery and GIS data can be 

used to model and predict the spread of 
infectious diseases. 

Diseases Spread Prediction In 

Tropical Areas By Machine 
Learning Methods Ensembling 

And Spatial Analysis 

Techniques [35] 

The paper demonstrates the use of 

machine learning methods, including 
SVMs, for predicting the spread of 

tropical diseases based on 

environmental and spatial factors. 

Application of spatial 

multicriteria decision analysis in 

healthcare: Identifying drivers 
and triggers of infectious disease 

outbreaks using ensemble 

learning [36] 

The paper demonstrates the application 
of spatial multicriteria decision analysis 

and machine learning to identify risk 

factors and predict the spread of vector-
borne infectious diseases. 

However, SVM also has limitations. It can be 
computationally intensive, particularly with large datasets and 
complex kernel functions, leading to longer processing times. 
Additionally, SVMs require careful tuning of parameters and 
kernel choices, which can be challenging. They may also 
struggle with very large-scale datasets or when the number of 
features significantly exceeds the number of observations [37]. 
Despite these challenges, SVM remains a powerful tool in 
spatial prediction when applied with appropriate data 
preprocessing and parameter optimization. 

C. Integration of SVM with GeoAI 

Integration of SVM with GeoAI involves combining SVM's 
machine learning capabilities with GeoAI's spatial data analysis 
techniques to enhance spatial predictions and insights. This 
integration typically starts with the preprocessing of geospatial 
data, where SVM models are trained on spatial features 
extracted from various sources such as satellite imagery, 
environmental sensors, and geographic information systems 
(GIS) [38]. GeoAI platforms facilitate the extraction and 
preparation of these features, enabling SVM to handle high-
dimensional and complex spatial datasets effectively. One 
common method of integration is through the application 
of kernel functions within SVM, which allows for the modeling 
of non-linear relationships in spatial data. In GeoAI, spatial 
features such as elevation, land use, and vegetation indices can 
be transformed using different kernels to capture intricate 

patterns and improve classification accuracy [39]. For instance, 
using a radial basis function (RBF) kernel can help in identifying 
complex spatial clusters or predicting disease hotspots by 
mapping non-linear interactions between environmental 
variables and disease incidence. 

Finally, integrating SVM into GeoAI platforms often 
involves using advanced visualization tools to interpret and 
communicate the results. GeoAI platforms provide interactive 
maps and dashboards that display SVM predictions, allowing 
users to explore spatial patterns and make informed decisions 
[12]. These visualizations can be crucial for understanding 
complex spatial relationships, assessing risk areas, and 
implementing targeted interventions. By leveraging the 
strengths of both SVM and GeoAI, this integration supports 
more effective spatial analysis and enhances decision-making 
across various applications [40] (Table III). 

TABLE III. RECENT FINDINGS IN INTEGRATION OF SVM WITH GEO AI 

Research Title and Author-Year Main Findings 

Internet of Things Enabled Disease 

Outbreak Detection: A Predictive 

Modeling System [41] 

The paper presents a framework that 
integrates IoT-driven predictive data 

analytics using SVM for disease 

outbreak detection and early 
warning. 

Artificial Intelligence for infectious 

disease Big Data Analytics [42] 

GeoAI has the potential to transform 

healthcare, public health, infectious 
disease control, and disaster aid 

through applications like disease 

surveillance. 

The integration of geostatistical 

analysis with social network 

improve active disease surveillance 
[43] 

The integration of geostatistical 
analysis with social network can 

improve active disease surveillance. 

IV. LITERATURE REVIEW 

Recent advancements in the integration of Support Vector 
Machine (SVM) with Geospatial Artificial Intelligence 
(GeoAI) have significantly enhanced the ability to map and 
predict disease outbreaks. Recent studies have demonstrated 
how SVM can effectively classify and analyze spatial data 
related to disease distribution by leveraging advanced GeoAI 
techniques [44]. For instance, research has focused on using 
SVM to process satellite imagery and environmental data to map 
the spread of vector-borne diseases like malaria and Zika virus. 
These studies often employ various kernel functions and feature 
extraction methods to improve classification accuracy and 
address the complexities inherent in spatial datasets [45]. 
Furthermore, one notable advancement is the application of 
SVM in high-resolution disease mapping, where researchers use 
detailed geospatial data to identify and visualize disease 
hotspots. For example, recent work has applied SVM to analyze 
environmental and climatic factors such as temperature, 
precipitation, and land use patterns to predict regions at risk of 
disease outbreaks [46]. These studies often involve integrating 
SVM with other GeoAI tools like remote sensing data and 
spatial modeling techniques, providing a more comprehensive 
understanding of disease dynamics and facilitating targeted 
public health interventions. 

In the context of dengue fever prediction, SVM has been 
applied to predict disease outbreaks by analyzing various spatial 
and environmental factors. For example, recent studies have 
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used SVM to analyze patterns in mosquito breeding sites, 
rainfall data, and temperature variations to forecast areas at high 
risk of dengue transmission. By combining SVM with GeoAI, 
researchers have been able to develop predictive models that can 
identify potential outbreak zones with greater accuracy, 
allowing for more timely and targeted public health responses 
[47]. Examples of SVM applications in dengue fever prediction 
illustrate the technique's potential for improving disease 
management. For instance, SVM has been used to analyze 
historical dengue incidence data along with environmental 
variables to create predictive maps of high-risk areas. 
Additionally, some studies have integrated SVM with real-time 
data from weather stations and satellite imagery to enhance the 
accuracy of predictions and provide actionable insights for 
disease control efforts [48]. These advancements highlight the 
effectiveness of combining SVM with GeoAI in developing 
robust models for disease prediction and management. 

A. Challenge in Implementing SVM in GeoAI 

Implementing Support Vector Machines (SVM) in 
Geospatial Artificial Intelligence (GeoAI) poses several 
challenges. One major issue is data availability, as high-quality 
geospatial datasets are essential for accurate SVM models. In 
low-resource areas, data may be sparse, outdated, or low-
resolution. Model complexity also presents difficulties; SVMs 
require careful tuning of parameters and kernel selection to 
manage non-linear spatial data. This process is time-consuming 
and technically demanding [49]. Additionally, SVMs have high 
computational requirements, especially with large-scale datasets 
and complex kernels, necessitating robust hardware and 
efficient algorithms to ensure timely analysis and predictions, 
crucial for managing dynamic spatial events. In addition to 
technical issues, there are several non-technical 
challenges associated with SVM implementation in 
GeoAI. Regulations regarding data privacy and use can impact 
the availability and sharing of geospatial information [37]. 
Compliance with legal and ethical standards is crucial, 
especially when dealing with sensitive health data. Ethical 
considerations include ensuring that predictive models do not 
inadvertently reinforce biases or lead to discriminatory 
practices. The use of geospatial data and predictive models must 
be transparent and equitable to avoid potential negative 
consequences for affected populations. 

Lastly, technology adoption poses a significant challenge. 
The successful implementation of SVM in GeoAI depends on 
the willingness of organizations and stakeholders to adopt and 
integrate advanced technologies into their workflows. This 
involves overcoming resistance to change, ensuring adequate 
training for users, and addressing concerns about the reliability 
and interpretability of AI-driven predictions. Effective 
communication and education about the benefits and limitations 
of SVM and GeoAI are essential for fostering broader 
acceptance and utilization of these advanced tools in spatial 
analysis and disease management. Recent challenge in 
implementing SVM in GeoAI is presented in Table IV. 

B. Comparative Studies  

Comparative studies in disease prediction often evaluate 
machine learning techniques like Support Vector Machines 
(SVM), Random Forest, and Neural Networks for forecasting 

dengue fever outbreaks. SVM is praised for handling high-
dimensional data and creating optimal decision boundaries, 
though it may struggle with large datasets or complex patterns. 
Random Forest, an ensemble method, builds multiple decision 
trees and aggregates their predictions, improving robustness and 
managing large datasets effectively, especially with missing 
values and feature interactions. Neural Networks offer high 
flexibility and power, particularly deep learning models that 
capture intricate patterns within data. However, they require 
extensive data and computational resources, and their 
interpretability is lower than that of SVM and Random Forest. 

TABLE IV. RECENT FINDINGS IN CHALLENGES OF IMPLEMENTING SVM IN 

GEOAI 

Research Title and Author-Year Main Findings 

Performance Analysis of Support 

Vector Machine (SVM) on 
Challenging Datasets for Forest Fire 

Detection  [50] 

The paper analyzes the performance 

of SVMs for forest fire detection, 

including the challenges of high-
dimensional datasets and the 

relationship between accuracy and 

image resolution. 

GeoZ: a Region-Based 

Visualization of Clustering 
Algorithms [51] 

GeoZ is a Python library that uses 

SVM to generate geographic 

clustering regions, addressing 
challenges with data availability 

and model complexity in GeoAI. 

The challenges of integrating 

explainable artificial intelligence 

into GeoAI [52] 

The paper discusses challenges in 

integrating explainable AI into 
geospatial AI, including data 

handling, geographic scale, and 

geosocial issues, rather than the 
specific challenges of 

implementing SVMs in GeoAI. 

When predicting dengue fever, SVM offers precise 
predictions, particularly with smaller datasets and 
straightforward feature relationships. Random Forest is 
advantageous for its robustness against overfitting and its ability 
to handle both categorical and numerical data, making it suitable 
for diverse epidemiological datasets. Neural Networks can 
provide the highest accuracy by modeling complex non-linear 
relationships but come with increased computational demands 
and longer training times. Evaluating these techniques involves 
considering metrics such as accuracy, precision, recall, and 
computational efficiency, tailored to the specific requirements 
of dengue fever prediction. In the GeoAI context, SVM is strong 
in scenarios with clear data margins and where interpretability 
is key, but it faces challenges with parameter sensitivity and 
computational demands. Random Forests and Neural Networks 
also have distinct advantages, making them valuable 
complements to SVM for enhancing spatial prediction 
outcomes. 

V. ANALYSIS AND DISCUSSION 

A. Evaluation of Technological Advancements 

Recent advancements in the use of Support Vector Machines 
(SVM) for spatial prediction within Geospatial Artificial 
Intelligence (GeoAI) have led to significant innovations. One 
major area of progress is the development of advanced kernel 
methods, such as the Radial Basis Function (RBF) and 
polynomial kernels, which allow SVM to handle non-linear 
relationships in geographic data more effectively. These kernels 
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have greatly enhanced SVM's ability to model complex spatial 
patterns and interactions. Additionally, the integration of SVM 
with high-resolution geospatial data and real-time analytics has 
improved the precision of spatial predictions. With the 
increasing availability of detailed satellite imagery and sensor 
data, SVM models can now better capture spatial features, 
leading to more accurate predictions, such as in the mapping of 
land use changes and environmental conditions that influence 
disease spread. 

Another key advancement is the development of hybrid 
models that combine SVM with other machine learning 
techniques, like ensemble methods or deep learning. These 
hybrid approaches leverage the strengths of multiple algorithms 
to improve predictive performance and address SVM's 
limitations, such as sensitivity to parameter settings and data 
dimensionality. For instance, combining SVM with Random 
Forest or Neural Networks enhances model robustness and 
allows for the handling of larger, more complex datasets. 
Additionally, advancements in computational technologies and 
software tools have facilitated the application of SVM in GeoAI, 
reducing training times and enabling its use with large-scale 
geospatial datasets. Improved software platforms have also 
made it easier to implement and optimize SVM models, 
expanding their use in spatial analysis and prediction. 

B. Challenges and Potential Solutions 

Implementing Support Vector Machines (SVM) in 
Geospatial Artificial Intelligence (GeoAI) presents several 
challenges, particularly regarding data quality and availability. 
Accurate SVM modeling depends on high-resolution, 
comprehensive geospatial data, which is often sparse or 
incomplete. To overcome this, enhanced data collection 
methods such as improved satellite imaging, sensor networks, 
and multi-source data integration can be utilized. Additionally, 
data augmentation techniques and synthetic data can help fill 
gaps, improving model performance and ensuring that SVMs 
have the necessary input for accurate predictions in spatial 
analysis. 

Another significant challenge is the model's complexity and 
computational demands, especially with non-linear kernels. 
SVMs can be computationally intensive, requiring substantial 
processing power and memory. To address this, optimization 
techniques like dimensionality reduction, efficient kernel 
selection, and parallel computing are essential. For instance, 
Principal Component Analysis (PCA) can reduce feature 
numbers, making computations more manageable. Cloud-based 
computing resources and specialized hardware can also better 
handle large-scale computations. Furthermore, challenges 
related to parameter tuning and model interpretability can be 
addressed with automated hyperparameter optimization tools 
and advanced machine learning libraries, which help identify 
optimal settings. Enhancing interpretability through feature 
importance analysis and visualization tools is crucial for 
building trust in SVM predictions. Additionally, addressing 
regulatory and ethical concerns about data privacy and AI use is 
vital, requiring strict data privacy regulations, transparency, and 
ethical guidelines to ensure responsible AI applications in 
GeoAI. These solutions collectively enhance SVM's 
effectiveness in geospatial analysis. 

C. Implications for Future Research 

Future research in Support Vector Machines (SVM) and 
Geospatial Artificial Intelligence (GeoAI) holds substantial 
potential for innovation and technological advancement. One 
critical area for exploration is the development of advanced 
kernel functions. Research can focus on creating new kernels or 
refining existing ones to better capture the complexities of 
geospatial data, particularly spatial dependencies and 
relationships. This could significantly enhance the accuracy and 
interpretability of SVM models in GeoAI applications, making 
them more effective for tasks like disease prediction and 
environmental monitoring. Another promising direction is the 
integration of SVM with emerging machine learning techniques. 
Combining SVM with deep learning methods or ensemble 
approaches could improve predictive performance and address 
the limitations of each technique. For instance, hybrid models 
that leverage the strengths of both SVM and neural networks 
could offer breakthroughs in managing large-scale, high-
dimensional spatial data. 

Additionally, advancements in computational technology 
present opportunities to explore more complex SVM models, 
including real-time data processing and high-performance 
computing to handle large datasets more efficiently. Future 
research could also extend SVM applications to new domains 
like real-time environmental monitoring or dynamic urban 
planning. Addressing ethical and regulatory considerations is 
equally important, ensuring responsible use of these 
technologies in compliance with data protection regulations. 
Research into ethical AI practices, data privacy solutions, and 
transparent methodologies will be crucial for mitigating risks 
and building trust in SVM and GeoAI technologies, guiding the 
sustainable and responsible advancement of the field. 

VI. CONCLUSION 

A. Main Findings 

The literature review highlights significant advancements 
and ongoing challenges in using Support Vector Machines 
(SVM) for Geospatial Artificial Intelligence (GeoAI) in dengue 
fever prediction. Key findings reveal that the development of 
advanced kernel methods, such as Radial Basis Function (RBF) 
and polynomial kernels, has significantly enhanced SVM's 
ability to model complex spatial patterns and interactions in 
geospatial data. Integration with high-resolution geospatial data 
and real-time analytics has improved the precision of 
predictions, making SVM a valuable tool for mapping land use 
changes and environmental conditions that influence disease 
spread. 

However, the use of SVM in GeoAI faces notable 
challenges. Data quality and availability remain critical issues, 
as high-resolution and comprehensive geospatial data are often 
sparse or incomplete. The computational demands of SVM, 
especially with non-linear kernels, require substantial 
processing power and memory, necessitating optimization 
techniques and advanced computational resources. 
Additionally, parameter tuning, and model interpretability are 
complex and require advanced tools for effective 
implementation. In conclusion, while SVM holds substantial 
potential for improving dengue fever prediction through 
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advanced kernel methods and integration with high-resolution 
data, addressing challenges related to data quality, 
computational demands, and model interpretability is essential 
for enhancing its effectiveness and efficiency in GeoAI 
applications. 

B. Recommendations 

For further research, it is crucial to explore advanced kernel 
methods and hybrid models that integrate SVM with emerging 
machine learning techniques to enhance predictive performance 
in GeoAI applications. Researchers should focus on improving 
data quality and availability through better data collection and 
augmentation techniques. For practical application development 
in public health, leveraging SVM in real-time data processing 
and high-resolution geospatial analytics can provide more 
accurate predictions for disease outbreaks. Additionally, 
addressing computational demands and improving model 
interpretability will be essential for effective implementation. 
Ensuring ethical and regulatory compliance is also vital for 
responsible AI use in public health. 
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