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Abstract—The application of artificial intelligence (AI) to 

electrocardiograms (ECGs) and photoplethysmograph (PPG) for 

diagnosing significant coronary artery disease (CAD) is not well 

established. This study aimed to determine whether the 

combination of ECG and PPG signals could accurately identify the 

location of blocked coronary arteries in CAD patients. 

Simultaneous measurement of ECG and PPG signal data were 

collected from a Malaysian university hospital, including patients 

with confirmed significant CAD based on invasive coronary 

angiography. ECG and PPG datasets were concatenated to form a 

single dataset, thereby enhancing the information available for the 

training process. Experimental results demonstrate that the 

Convolutional Neural Networks (CNN) + Long Short-Term 

Memory (LSTM) + Attention (ATTN) mechanisms model 

significantly outperforms standalone CNN and CNN + LSTM 

models, achieving an accuracy of 98.12% and perfect Area Under 

the Curve (AUC) scores of 1.00 for the detection of blockages in 

the left anterior descending (LAD) artery, left circumflex (LCX) 

artery, and right coronary artery (RCA). The integration of 

LSTM layers captures temporal dependencies in the sequential 

data, while the attention mechanism selectively highlights the most 

relevant signal features. This study demonstrates that AI-

enhanced models can effectively analyze simultaneous 

measurement of standard single-lead ECGs and PPG to predict 

the location of coronary artery blockages and could be a valuable 

screening tool for detecting coronary artery obstructions, 

potentially enabling their use in routine health checks and in 

identifying patients at high risk for future coronary events. 

Keywords—Deep learning; CNN; LSTM; ATTN; simultaneous 

ECG and PPG; coronary artery disease 

I. INTRODUCTION 

CAD represents a substantial global burden on 
cardiovascular health [1]. Its impact extends to long-term 
mortality and morbidity all around the world. Existing studies 
have demonstrated that ischemic heart disease contributes to 
approximately 16% of total mortality [2]. Furthermore, 
epidemiological surveys underscore the escalating prevalence of 
CAD on a global scale. Nevertheless, the evaluation and 

diagnosis of CAD persistently hinge upon conventional clinical 
symptoms, signs, and relevant comorbidities. 

It is crucial to determine the location of myocardial 
infarction and ischemia, as well as identify the specific coronary 
artery that is blocked and where the occlusion occurs. This 
information facilitates the diagnosis of ischemia and infarction 
and guides treatment decisions. For instance, administering 
nitroglycerin to relieve ischemic chest pain can lead to 
hemodynamic collapse in patients with right ventricular 
ischemia/infarction [3]. Therefore, recognizing ECG signs of 
right ventricular issues is essential. Clinicians, especially 
interventional cardiologists, benefit significantly from this 
knowledge, as it directly impacts the selection of coronary 
catheters. 

A variety of non-invasive diagnostic modalities are at the 
disposal for the assessment of potential coronary artery 
obstructions in patients with CAD, encompassing stress ECG, 
and nuclear medicine imaging [4], [5]. Nonetheless, these 
methodologies are encumbered by several limitations: they are 
not readily accessible, necessitate the use of specialized 
apparatus, are laborious, and entail considerable expense. The 
performance of these tests are moderately suboptimal, ranging 
approximately between 75-90%, and the issue of radiation 
exposure cannot be overlooked. Moreover, stress-induced tests 
that require physical exertion from the patient may not be viable 
for those in a debilitated state. Hence, there is an imperative need 
for the development of an easily attainable, economical, and 
highly precise test for the prediction of ischemic localization. 

ECG is recognized as a non-invasive diagnostic instrument 
that boasts several merits: it is straightforward to operate, 
consistent in results, broadly accessible, and cost-efficient 
relative to other diagnostic methods [6]. The ECG is capable of 
discerning significant CAD by manifesting particular alterations 
in the ECG patterns, such as deviations in the ST-segment, 
inversions of the T-wave, and the emergence of Q-waves [7]. 
Nonetheless, the precision in interpreting ECG data may be 
compromised by the presence of other medical conditions, 
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including arrhythmias, cardiomyopathies, and bundle branch 
blocks. 

PPG is a non-invasive method utilized to detect variations in 
blood volume by employing an infrared light sensor positioned 
on the skin's surface. Beyond its conventional use in heart rate 
monitoring and pulse oximetry, PPG has garnered attention for 
its potential in detecting CAD. One of the key methodologies in 
PPG analysis for CAD detection is Pulse Wave Analysis 
(PWA). PWA evaluates the PPG waveform to assess arterial 
stiffness, a hallmark of CAD. The presence of plaque in the 
arteries can alter the waveform's shape, specifically causing a 
delay in the pulse wave transit time [8]. In addition, ECG and 
PPG signals can be combined to enable the assessment of 
cardiac conditions through heart rate variability (HRV) analysis 
[9]. 

Artificial intelligence (AI), particularly through deep 
learning CNN, has been deployed in diverse disease models 
[10], [11], [12]. CNNs excel in learning from voluminous 
datasets, autonomously identifying salient features from data, 
whether one-dimensional (e.g., signals) or two-dimensional 
(e.g., images). Recurrent neural network (RNN) architectures 
such as LSTM is extensively utilized in domains like natural 
language processing, and analysis of sequential data. As adjunct 
classifiers to a CNN framework, they fulfill distinct roles in 
augmenting classification precision. The LSTM architecture, in 
particular, is proficient in detecting temporal correlations within 
sequential data [13]. Within deep learning paradigms, attention 
mechanisms (ATTN) empower models to concentrate on 
pertinent segments of input data, sidelining the less critical parts. 
This technique is invaluable in sequential data tasks, where the 
significance of context and element interrelations fluctuates. 
Utilizing ATTN, the most informative attributes of an ECG 
signal can be unearthed across various network layers [14] 
aiding in functions like classification or regression. In healthcare 
diagnostics, signal and image data are pivotal. The AI-
augmented ECG (AI ECG) algorithm, leveraging deep learning, 
deciphers significant patterns in ECG data [15]. The 
effectiveness of deep learning models, particularly a hybrid 
CNN-LSTM architecture, in enhancing the accuracy of PPG 
signal analysis for detecting and delineating waveforms was 
proven by [16]. A deep neural network (DNN) utilizing a 
multilayer perceptron architecture, enhanced with regularization 
and dropout techniques, has been employed to enhance the 
accuracy and reliability of CAD diagnosis and prognosis using 
clinical data [17]. Prior research has validated its utility in 
diagnosing heart diseases. Yet, its potential in pinpointing 
ischemic localizations is a domain yet to be investigated. 

The motivation for the study is centered on the need for a 
more efficient, accessible, and accurate method for diagnosing 
coronary artery disease (CAD) by identifying the location of 
arterial blockages. Current diagnostic tools like stress ECG and 
nuclear medicine imaging, while useful, have limitations 
including moderate accuracy (75-90%), high costs, and reliance 
on specialized equipment. Moreover, they may not be viable for 
patients with debilitating conditions. 

ECGs) and PPGs are non-invasive and cost-effective 
methods, but their full potential in diagnosing CAD is 
underexplored. By combining ECG and PPG signals and 

utilizing advanced AI models (CNN + LSTM + Attention 
mechanisms), this study aims to improve the accuracy of CAD 
diagnosis, particularly in predicting the location of coronary 
artery blockages. This approach could lead to a more accessible 
and precise screening tool for CAD, reducing the need for 
invasive methods like coronary angiography. 

II. RELATED WORK 

In a study by Tao et al. [18], an automatic system was 
developed to detect and localize ischemic heart disease (IHD) 
using magnetocardiography (MCG) data and machine learning 
techniques. The authors employed MCG recordings from 227 
patients with diagnosed coronary stenosis and 347 healthy 
controls, using coronary angiography (CAG) as the gold 
standard for diagnosis. They extracted 164 features from the 
MCG signals, divided them into time-domain, frequency-
domain, and information theory categories, and tested several 
machine learning classifiers, including k-nearest neighbors 
(KNN), decision tree (DT), support vector machine (SVM), and 
XGBoost. The XGBoost classifier was used to localize ischemic 
regions, achieving an accuracy of 0.74 for LAD, 0.68 for LCX, 
and 0.65 for RCA. 

Huang et al. [19] developed and evaluated a deep learning 
model using CNN to identify significant CAD from standard 12-
lead ECG. The study utilized six pre-trained CNN models 
(VGG16, ResNet50V2, InceptionV3, InceptionResNetV2, 
Xception, and DenseNet) for feature extraction, ultimately 
finding that the InceptionV3 model without a dense layer 
provided the best performance. The model classified patients 
into four groups: normal (no CAD), and those with obstructions 
in the LAD, LCX, and RCA. The dataset included ECGs from 
2,303 patients with angiography-proven significant CAD and 
1,053 control patients without CAD. The AI model 
demonstrated a macro-average area under the ROC curve 
(AUC) of 0.869 for CAD detection, with individual AUCs of 
0.885 for LAD, 0.776 for RCA, 0.816 for LCX, and 1.0 for non-
CAD (normal) cases. 

The paper by Roopa and Harish [20] proposes a novel 
approach using the Information Fuzzy Network (IFN) to analyze 
ECG signals for identifying and localizing thrombus in culprit 
arteries. The method involves preprocessing ECG signals using 
a Savitzky-Golay filter, followed by feature extraction through 
the Stockwell Transform for point detection, Nearest-Neighbor 
Interpolation for time interval measurement, and peak amplitude 
assessment. The classification process differentiates between 
ischemic and non-ischemic signals, identifies the culprit artery, 
and pinpoints the thrombus location. The study used ECG 
datasets from the MIT Physionet databank, including Long-
Term ST, Spontaneous Ventricular Tachyarrhythmia, and T-
Wave Alternans Challenge databases, providing a 
comprehensive range of cases. For the LAD artery, ST elevation 
in lead V3 greater than in V1 suggests an LAD blockage, with 
further localization determined by elevations in other leads, such 
as aVF, L2, and L3 indicating a proximal block to the major 
septal artery. The LCX is identified by ST elevation in L2, L3, 
and aVF with L2 greater than L3, while the RCA is identified by 
ST elevation in L2, L3, and aVF with L3 greater than L2 and a 
higher V1 elevation than V3. The proposed method achieved a 
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classification accuracy of 92.3%, with 87.5% sensitivity and 
100% specificity. 

The previous studies on CAD detection and localization, 
such as those by Tao et al., Huang et al., and Roopa and Harish, 
primarily focused on single modalities (MCG or ECG) and did 
not explore the combined potential of ECG and PPG signals. 
Moreover, while machine learning techniques and conventional 
CNNs were employed, more advanced AI models like LSTM 
and attention mechanisms have not been fully investigated, 
limiting the ability to capture complex temporal and spatial 
features. Additionally, the precision in localizing specific 
coronary arteries remains moderate, and none of these studies 
explored the diagnostic potential of PPG signals, leaving a gap 
in fully leveraging its capabilities for CAD detection. Lastly, the 
existing research lacks generalizability across diverse and 
multimodal datasets, potentially limiting the robustness and 
accuracy of CAD diagnosis. This study aims to address these 
gaps by integrating ECG and PPG signals, enhanced by 
advanced AI models (CNN, LSTM, and attention mechanisms), 
to achieve more accurate and comprehensive CAD detection and 
localization. 

III. MATERIALS AND METHODS 

A. Study Population 

This paper analyzes the dataset of a study conducted on 
patients with angiography-proven significant CAD. All study 
participants have given their written consent and the study is 
approved by the Research Ethics Committee of Universiti 
Kebangsaan Malaysia (UKMPPI/111/8/JEP-2020-806). These 
patients underwent elective invasive coronary angiography at 
the Hospital Chanselor Tuanku Mukhriz (HCTM) Malaysia. 
The criteria for inclusion were severe stenosis (>70%) based on 
quantitative coronary angiography assessment. All participants 
enrolled in the study fell within the age range of 20 to 65 years, 
as the aim was to specifically target individuals without any 
prior history of CAD. All patients were monitored by their 
cardiology physicians in outpatient clinics. 

B. Data Collection 

The algorithm for patients’ simultaneous ECG and PPG data 
recording is shown in Fig. 1. A cohort comprising 60 patients 
diagnosed with significant CAD via angiography was 
assembled, and a comprehensive dataset of 7156 simultaneous 
single-lead ECGs and PPG was amassed for analysis. 
Subsequently, based on the findings from the patients' 
angiography reports, they were categorized into three distinct 
groups: those exhibiting stenosis in the left anterior descending 
artery (LAD), left circumflex artery (LCX), and right coronary 
artery (RCA). 

Within this cohort, the LAD group consisted of 27 patients, 
yielding 3884 simultaneous single beat ECG and PPG records, 
the LCX group comprised 16 patients, corresponding to 1565 
simultaneous single beat ECG and PPG records, and the RCA 
groups encompassed 17 patients, accounting for 1707 
simultaneous single beat ECG and PPG records. Fig. 2 shows 
samples of simultaneous single beat ECG and PPG signals for 
each class LAD, LCX, and RCA from the dataset. 

The data utilized in this study, obtained from the hospital, 
consisted of simultaneous ECG and PPG time series data 
collected from patients diagnosed with CAD. This dataset 
comprised standard single-lead ECG (lead II) signals generated 
by the MAX86150EVS ECG/PPG module, characterized by a 
measurement frequency of 400 Hz and a measurement duration 
of 10 minutes. Prior to commencing the training process, the 
dataset underwent filtering and segmentation procedures to get 
the best quality of single beat signals and to augment the number 
of samples, thereby introducing subsamples for each original 
sample. As a result, a total of 7165 samples were obtained, each 
representing a complete cycle of the simultaneous ECG and PPG 
signal and comprised of 187 data points. These time series data 
in terms of their shape and size will be utilized for subsequent 
training of our deep learning models. 

C. Dataset Preparation and Preprocessing 

Prior to inputting the data into the deep learning model, the 
ECG and PPG datasets were concatenated to form a single 
dataset. This integration aims to provide a more comprehensive 
set of information during the training process, which is 
hypothesized to enhance the model's performance. Fig. 3 
presents examples of concatenated ECG and PPG signals 
corresponding to each class, specifically LAD, LCX, and RCA. 
In our experimental setup, the dataset underwent division into 
two distinct subsets: a training set and a test set. Specifically, 
80% of the dataset was allocated to the training and validation 
process. Validation is done during training utilizing 20% of the 
training data. The remaining 20% of the original dataset 
constituted the test set. It is noteworthy to mention that an 
imbalance in data distribution among the groups was observed. 

Previous research has indicated that such imbalances can 
introduce biases during model training [19]. Consequently, to 
mitigate this issue, we adopted a down-sampling approach, and 
randomly removed data so that all the classes have the same 
number of samples. Fig. 4 shows a bar chart for class distribution 
before and after the data balancing process. 

 
Fig. 1. Data collection protocol. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

732 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 2. Normalized simultaneous ECG and PPG measurement samples for 

patient having blockage at LAD, LCX, RCA. 

 
Fig. 3. Concatenated ECG and PPG samples for patient having blockage at 

(a) LAD, (b) LCX, (c) RCA. 

 
Fig. 4. (a) Imbalanced dataset before data balancing process, (b) Balanced 

dataset after data balancing process. 

D. Model Build-up 

In the construction of our deep learning models, we 
incorporated CNN, LSTM networks, and ATTN along with their 
respective parameters, resulting in promising outcomes from the 
integration of all three models. The process of identifying the 
optimal model involved three key phases. 

Initially, we developed a model solely employing 1D CNN. 
Following the extraction of features by the CNN from the single-
lead ECG signals, these features under-went flattening through 
Max Pooling. Max pooling, a pooling operation technique, 
extracts the maximum value within each region of the feature 
map covered by the filter. As a result, the output of the max-

pooling layer is a feature map that retains the most prominent 
features from the preceding feature map. Subsequently, an 
intermediate dense layer with Rectified Linear Unit (ReLU) 
activation function was introduced, followed by an additional 
dense layer with a size of three, representing the three categories 
of LAD, LCX, and RCA as the output layer. This dense layer 
employed the Softmax activation function. The performance of 
this model was then evaluated. 

In the second phase, we incorporated an LSTM layer into the 
existing model and assessed its performance. Finally, in the last 
phase, we augmented the previous CNN + LSTM model with an 
ATTN layer and evaluated its performance. The architectural 
representation of the model is depicted in Fig. 5 after data 
balancing process. 

 
Fig. 5. Architecture for coronary artery blockage localization prediction 

model. 

E. Training Process 

The training platform utilized in this study is Google 
Colaboratory (Colab), which operates within a high-RAM GPU 
environment. Colab serves as a cloud computing platform 
supporting Python 3.8 and the TensorFlow package, widely 
employed for constructing and training deep learning models. 
As a Google resource, Colab seamlessly integrates with Google 
Drive, allowing users to access files within Colab by uploading 
datasets to their personal Google Drives. For model 
development, we leveraged the Keras application programming 
interface (API) to construct CNN, LSTM, and ATTN models. 
Keras not only simplifies the construction of deep learning 
models but also provides a rich set of APIs and functions, 
including callbacks, optimizers, metrics, losses, and more, 
enhancing the versatility and efficiency of model development. 

F. Evaluation Metrics 

The principal objective of this investigation centered on 
evaluating the capacity of AI-enhanced ECGs to localize 
coronary artery blockages utilizing standard single-lead ECG 
recordings obtained at baseline. The performance of this 
methodology was evaluated through various assessment 
metrics, including the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve, and accuracy. 
These metrics were computed by averaging the results of five 
repetitions of training and are reported along with the mean, 
standard deviation, and 95% confidence interval. The evaluation 
process also involved the utilization of a confusion matrix, 
which defined four crucial terms: True Positive (TP), False 
Positive (FP), True Negative (TN), and False Negative (FN). 
These terms were instrumental in computing the aforementioned 
metrics. Accuracy, represented by Eq. (1), assesses the models' 
classification proficiency by quantifying the proportion of 
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accurately classified samples out of the total samples. Precision, 
expressed in Eq. (2), indicates the percentage of correctly 
predicted positive results among all predicted positive samples. 
Recall, detailed in Eq. (3), represents the proportion of correctly 
classified positive samples out of all actual positive samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 

ROC curve elucidates the fluctuation between the true 
positive rate (TPR), often termed sensitivity, and the false 
positive rate (FPR), also known as 1-specificity, over a spectrum 
of decision thresholds. By modulating the threshold from 0 to 1, 
a sequence of TPR and FPR coordinates is generated. The ROC 
curve, plotted with FPR on the X-axis and TPR on the Y-axis, 
graphically represents the dynamic between specificity and 
sensitivity in test results. The area under the curve (AUC) 
signifies the proportion of the area beneath the ROC curve 
relative to the total possible area. The computation of AUC 
allows for the ROC curve’s quantification, thus enabling the 
comparative evaluation of model efficacy. The AUC demarcates 
the model’s discriminative capacity into four tiers: (1) AUC < 

0.5 (no discrimination), (2) 0.7 ≤  AUC < 0.8 (acceptable 

discrimination), (3) 0.8 ≤  AUC < 0.9 (excellent 

discrimination), and (4) 0.9 ≤  AUC ≤  1.0 (exceptional 

discrimination). 

ROC-AUC analysis is leveraged in a multitude of fields, 
including radiology, biology, and, more recently, machine 
learning and data mining. Within the medical sector, it is 
prevalently utilized for disease diagnostics, epidemiology, 
empirical medical research, and radiological methods. The ROC 
curve’s primary advantage is its ability to provide a lucid and 
direct visual representation of a diagnostic method’s clinical 
precision. 

IV. RESULTS AND DISCUSSION 

To optimize the model architecture, the simultaneous ECG 
and PPG dataset was utilized to evaluate three distinct model 
layers. The model demonstrating the highest accuracy was 
selected as the optimal architecture. The experimental results are 
presented in Table I. Table I presents the evaluation metrics of 
three different models utilized in the study: CNN, CNN + 
LSTM, and CNN + LSTM + ATTN. The performance of these 
models was assessed based on their accuracy and area under the 
curve (AUC) values for predicting blockages in three coronary 
arteries: the left anterior descending (LAD) artery, left 
circumflex (LCX) artery, and right coronary artery (RCA). Use 
letters for table footnotes. The corresponding ROC curve and 
confusion matrix are shown in Fig. 6. 

As shown in Table I, The CNN model achieved an accuracy 
of 94.69%. When the LSTM layer was integrated with the CNN 
model, the accuracy slightly decreased to 92.47%. However, the 

introduction of the attention mechanism alongside the CNN and 
LSTM layers led to a significant improvement, with the CNN + 
LSTM + ATTN model achieving an accuracy of 98.12%. 

TABLE I.  EVALUATION METRICS OF THREE DIFFERENT MODELS USED 

IN THIS STUDY 

Model Accuracy 
AUC 

LAD LCX RCA 

CNN 94.69% 0.96 0.97 0.97 

CNN + LSTM 92.47% 0.98 0.99 0.98 

CNN + LSTM + 

ATTN 
98.12% 1.00 1.00 1.00 

For the detection of LAD blockages, the CNN model 
obtained an AUC of 0.96. The addition of the LSTM layer 
increased the AUC to 0.98, demonstrating the model's enhanced 
ability to capture temporal dependencies in the data. The 
incorporation of the attention mechanism further elevated the 
performance, with the CNN + LSTM + ATTN model reaching 
the maximum AUC of 1.00, indicating perfect classification. 

In the case of LCX blockages, the CNN model achieved an 
AUC of 0.97. The CNN + LSTM model improved this metric to 
0.99, showing a robust enhancement due to the LSTM layer. The 
CNN + LSTM + ATTN model again achieved the highest AUC 
of 1.00, reflecting its superior ability to focus on the most 
relevant features of the ECG and PPG signals for accurate 
detection. 

For RCA blockages, the CNN model also achieved an AUC 
of 0.97. The CNN + LSTM model maintained a high AUC of 
0.98, confirming the beneficial impact of temporal feature 
extraction. The CNN + LSTM + ATTN model reached a perfect 
AUC of 1.00, further validating the effectiveness of the attention 
mechanism in improving the model's discriminative power. 

The comparative analysis reveals that the integration of 
LSTM and attention mechanisms into the CNN model 
substantially enhances its performance. The CNN + LSTM + 
ATTN model consistently outperforms both the standalone 
CNN and the CNN + LSTM models across all metrics. The 
inclusion of the LSTM layer helps capture temporal 
dependencies inherent in the sequential ECG and PPG data, 
thereby improving the model's ability to differentiate between 
classes. Furthermore, the attention mechanism selectively 
emphasizes the most relevant parts of the signals, thereby 
enhancing the model's focus and leading to more accurate 
classification. 

The significant improvements in both accuracy and AUC, 
particularly the perfect AUC scores achieved by the CNN + 
LSTM + ATTN model, underscore its exceptional potential for 
precise detection of coronary artery blockages. This suggests 
that the combined approach not only leverages the strengths of 
each component but also synergistically enhances the overall 
model performance, making it a promising tool for the diagnosis 
of coronary artery disease using ECG and PPG signals.
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Fig. 6. Confusion matrix and ROC curve of (a) CNN model, (b) CNN + LSTM model, (c) CNN + LSTM + ATTN model.

Table II shows the model performance comparison of the 
best model obtained in this study with previous works by Tao et 
al., 2018 [18], Huang et al., 2022 [19], and Roopa and Harish, 
2019 [20] in terms of their accuracy and AUC since these studies 
are closely related to the proposed work. 

The results in Table II highlight the superiority of the 
proposed model, which utilizes combined simultaneous single-
lead ECG and PPG signals with a CNN + LSTM + ATTN 
architecture, in predicting and localizing coronary artery 
blockages compared to previous studies.
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TABLE II.  PERFORMANCE COMPARISON WITH PREVIOUS WORKS 

Author, Year Data AI Model Acc.(%) 
AUC 

LAD LCX RCA 

Tao et al., 2018 [18] MCG XGBoost 
NA 

0.74 0.68 0.65 

Huang et al., 2022 [19] 12 lead ECG InceptionV3 0.89 0.82 0.78 

Roopa and Harish, 2019 [20] 12 lead ECG IFN 92.3 NA 

Proposed work 
Combined simultaneous 

single lead ECG and PPG 
CNN + LSTM + ATTN 98.12  1.00 1.00 1.00 

The proposed model achieved an overall accuracy of 
98.12%, surpassing the performance of prior studies. In terms of 
Area Under the Curve (AUC) metrics for different coronary 
arteries, the model reached perfect scores (AUC = 1.00) for the 
left anterior descending (LAD), left circumflex (LCX), and right 
coronary artery (RCA). These results significantly outperform 
other models, as shown in the comparison. 

Tao et al. [18] use magnetocardiography (MCG) data and an 
XGBoost model, this study reported lower AUC values of 0.74 
(LAD), 0.68 (LCX), and 0.65 (RCA). Huang et al. [19] applied 
a deep learning model (InceptionV3) on 12-lead ECG data, 
achieving AUCs of 0.89 (LAD), 0.82 (LCX), and 0.78 (RCA). 
Roopa and Harish [20] employed an Information Fuzzy 
Network (IFN) model using 12-lead ECG data with a reported 
accuracy of 92.3%. 

The significant improvement in both accuracy and AUC 
values of the proposed model can be attributed to the integration 
of ECG and PPG signals, coupled with the advanced AI 
architecture combining CNN, LSTM, and attention 
mechanisms. The LSTM layers effectively capture temporal 
dependencies in sequential data, while the attention mechanism 
enhances feature extraction, leading to more precise localization 
of coronary artery blockages. 

These results indicate that the proposed model represents a 
substantial advancement in the non-invasive diagnosis and 
localization of coronary artery disease, providing a more 
accurate and reliable approach compared to existing methods. 
This makes it a promising tool for future clinical applications in 
CAD detection. 

V. CONCLUSION 

In this study, a novel approach for diagnosing the location of 
coronary artery blockages in CAD patients by utilizing a 
combination of ECG and PPG signals was presented. The 
proposed model integrated Convolutional Neural Network 
(CNN), Long Short-Term Memory (LSTM), and Attention 
(ATTN) mechanisms to enhance the accuracy and robustness of 
CAD detection. 

The experimental results demonstrated that the CNN + 
LSTM + ATTN model significantly outperformed the 
standalone CNN and CNN + LSTM models. Specifically, an 
accuracy of 98.12% and perfect Area Under the Curve (AUC) 
scores of 1.00 for detecting blockages in the left anterior 
descending (LAD) artery, left circumflex (LCX) artery, and 
right coronary artery (RCA) were achieved by the CNN + LSTM 
+ ATTN model. The superior performance of the attention 
mechanism in selectively emphasizing the most relevant parts of 

the ECG and PPG signals, thereby improving the model's 
discriminative power, was underscored by these results. 

The integration of the LSTM layer was found to further 
contribute to the model's ability to capture temporal 
dependencies inherent in the sequential ECG and PPG data, 
enhancing its capacity to differentiate between different classes 
of coronary artery blockages. The significant improvements in 
both accuracy and AUC scores highlighted the exceptional 
potential of the CNN + LSTM + ATTN model for precise 
detection of CAD. 

In conclusion, the combined approach not only leveraged the 
strengths of each component but also synergistically enhanced 
the overall model performance, making it a promising tool for 
the diagnosis of coronary artery disease using ECG and PPG 
signals. Future work will focus on further validating the model 
with larger and more diverse datasets, as well as exploring its 
applicability in real-world clinical settings. 
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