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Abstract—One of the key challenging problems in data mining 

is data retrieval from large data repositories, as the sizes of data 

are growing very fast, to deal with this situation, there is a need 

for efficient data mining techniques. For efficient mining tasks 

number of queries have been emerged. Iceberg query is one of 

them, in which the output is much smaller like the tip of the iceberg 

as compared to the large input dataset, these queries take very 

long processing time and require a huge amount of main memory. 

However the processing devices have limited memories, so the 

efficient processing of iceberg queries is a challenging problem for 

most of the researchers. In this paper we present a novel 

technique, namely a summary table, to address this problem. 

Specifically, we adopt the summary table technique to acquire the 

required results at summary levels. The experimental results 

demonstrate that the summary table technique is highly effective 

for large datasets. Compared to bitmap indexing and cubed 

techniques, the summary table offers faster retrieval capabilities. 

Furthermore, the proposed technique achieved state-of-the-art 

performance. 

Keywords—Threshold (TH); bitmap index; aggregate function; 

Iceberg Query (IB); anti-monotone; non-anti-monotone 
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I. INTRODUCTION 

Data retrieval and storage play a very important role in 
databases. The effectiveness of data retrieving techniques 
depends on specific. Since few years many queries have 
emerged, one of them is the iceberg query (IBQ) in which the 
output is significantly small as compared to the input, such query 
is called IBQ, where the number of above-threshold outcome is 
usually very small like the tip of an iceberg as compared to large 
amount of input data [1]. This is a unique class of aggregation 
queries connecting HAVING () and GROUP BY () clauses, 
which computes aggregated values below or above a given 
threshold (TH). This query is first introduced in data mining 
(DM) [2]. Most of the data DM queries are IB queries. Several 
applications use aggregate functions such as, Min (), Avg (), 
Max (), Sum (), and Count () over an attribute or set of attributes 
to find aggregate values greater than a particular threshold, these 
aggregate values above the threshold values give more 
importance. The RDBMS, e.g., MySQL, Postgre SQL, SQL 
Server, Oracle, DB6, Sybase, and column-oriented databases 
e.g., Lucid DB, Vertica, and Monet DB all use common 
aggregation algorithms that first aggregate all rows and then 
calculate the Having () clause to select the iceberg result [3]. 

An iceberg query has the following characteristics: (a) 
Computing aggregate functions on one or more attributes (b) 
Dealing with large data sets, containing large unique attributes 
combination (domain size), and (c) Returning results below or 
above a given TH. These queries face some problems during 
executions, like 1) It needs to execute within a limited memory, 
which means memory size is lesser than domain size 2) 
Computation of aggregation values takes a large amount of time. 

The global objective of this work is to reduce the execution 
time of the iceberg queries within a limited memory. Today’s 
world is rich in data; every organization and social media 
generates and stores huge amounts of data which need an 
efficient way to deal with. For this purpose, IB query is an ideal 
choice. These queries are used in many applications. Including 
market basket analysis [4] means finding item pairs (or triplets 
etc.) that are bought together by many customers in large data 
warehouses. In other words, market basket analysis means a 
collection of items purchased by a customer in a single 
transaction. It is based on two key attributes considered for the 
threshold value used for finding item pairs; these attributes 
comprise support and confidence. If support and confidence 
values are above or below some specified threshold then it 
identifies products and their content that go well together. 
Similarly, clustering [5] is a process of partitioning a set of 
records into groups (clusters), such that all records in a group are 
related to each other and records that belong to two different 
groups are different [6]. This helps users to recognize the natural 
grouping or structure in a data set and this natural grouping is 
done in clustering based on some specific threshold values in 
each IB query [7]. 

A. Properties of Aggregation Function 

Aggregation function is one the key part of iceberg queries, 
such as Sum (), Count (), Min (), Max (), and Avg ().  Aggregate 
function is divided into two types (1) Anti-Monotone, and (2) 
Non-Anti-Monotone aggregation function [8]. An anti-
monotone uses apriori [4] property, but non-anti-monotone are 
not able to use apriori property, examples of anti-monotone are 
Count (), Sum (), Max (), and Min (), whereas non-anti-
monotone are Avg () and Div (). The main benefit of using IB 
with anti-monotone function is the pruning of computing 
aggregation functions reduces the time to produce the required 
query result [9]. On the other hand, non-anti-monotone 
aggregation IB queries don't take advantage of threshold on Avg 
() values as anti-monotone aggregation takes on Min (), Sum (), 
Max (), and Count (). Average IB queries compute average for 
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all unique grouped attributes, and then apply threshold 
constraint on those average values [10]. To deal with 
aggregation functions there is a high gape between the 
researcher’s contribution toward these two types with a ratio of 
22 to 78 percent [11] as shown in Fig 1. 

  
Fig. 1. Aggregation functions. 

The rest of the paper is structured as follows, section II 
presents a review of related research. Section III describes the 
proposed technique, proposed architecture, and implementation. 
Section IV describes the results and analysis, and in Section V 
conclusion and future direction are presented. 

II. REVIEW OF RELATED RESEARCH 

Since a few decades iceberg query has always been an active 
area of research. Researchers have provided different guidelines 
and suggestions to improve its performance. We are going to 
discuss some works in literature based on different specific 
categories. 

A. Bitmap Index Techniques 

To accelerate the IB queries, bitmap indices are one of the 
well-organized and well-known choices in column stores and 
data warehousing applications. Spiegler et al. [12] first 
introduced the concept of bitmap index (BI). Basically, a matrix 
of 0 and 1 bit’s makes a bitmap. Its size depends on the number 
of matchless attributes that exist in vector upon which bitmap is 
created. Basically, a bitmap index is used to index values of a 
single column in a table. For illustration Table I indicates a 
bitmap index with nine rows, and column Y, where column Y is 
indexed with integer values from 0 to 3 and its cardinality 
becomes four because it has four different values. Columns X0, 
X1, X2 and X3 with subscripts signify bitmap index for Y 
contains four bitmaps. The second bit X1 in Table I is 1 because 
the second row of Y contains value 1, while corresponding bits 
of X0, X2 and X3 are all 0 Vuppuand Rao [13] has presented a 
new evaluation scheme for processing IB queries using bitmap 
index position. They developed an algorithm based on retrieving 
index positions of all 1's from each bitmap. Further, these 
indices positions are processed by using commonality condition 

which selects whether the pair of directions is iceberg result or 
not. To retain for future reference, an XOR operation is 
conducted for bitmaps, which is the iceberg query result. Their 
experiments show that algorithms which is based on index 
positions takes less processing time to answer IBQ. 

TABLE I. BITMAPS INDEX FOR COLUMN NAMED Y 

RID Y X0 X1 X2 X3 

0 2 0 0 1 0 

1 1 0 1 0 0 

2 3 0 0 0 1 

3 0 1 0 0 0 

4 3 0 0 0 1 

5 1 0 1 0 0 

6 0 1 0 0 0 

7 0 1 0 0 0 

8 2 0 0 1 0 

Padmapriya and Shanmugapriya [1] introduced an index 
based IBQ assessment method. The key aim of using the index 
is to convert the bit value into an integer value which speeds up 
the query evaluation process and takes less memory. This 
technique performed well on the state-of-the-techniques. O'Neil 
[14] Model 204 was the first model used bitmap index for wide-
spread commercial product making. This was a combination of 
row identifiers (RID list) and basic bitmap index without 
compression. In general B+ tree index technique is like the 
performance of Model 204. Prakash et al. [15] presented a 
bitmap index as a better choice for querying huge and 
multidimensional scientific datasets. They have developed a 
well-organized algorithm based on retrieving index positions of 
all 1’s from each bitmap. These index positions are further 
processed on common features which decide whether the pair of 
vectors is IB result or not. Generation of the decision algorithm 
which involves pre-processing of data sets through bitmap 
indexing approach is the global objective of [16]. The key 
benefits of this index strategy are load balancing, identifying 
frequent patterns of the data sets, kind of data types available in 
the databases, slowly changing dimension scenarios handling 
and usage of aggregation in the form of IB querying. 

Shankar et al. [17] introduced a cache-based evaluation 
technique for IBQ by taking threshold value equal to 1 using a 
compressed bitmap index, and for future situation the required 
results are saved in cache memory. In future it just picks up the 
required results from the cache memory as a substitute of 
executing once again on the database table. Therefore, this 
approach clearly states that, an execution time of IB query is 
improved by avoiding duplication of evaluation process several 
times. In this work testing was conducted by applying an IB 
query stated on the database table which consists of one million 
rows with two attributes X and Y, by using COUNT () 
aggregation function. IB query evaluation method was the first 
function applied to accept all those tuples as an input and 
produces the iceberg results with its count value fulfilled by 
threshold greater than or equal to 1. Then these results are given 
as an input to the second unit catching IB results in an ascending 
order. For future position this unit saves the iceberg results in 
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cache memory. The last unit which takes results from cache unit 
is responsible to answer an IB query for thresholds greater than 
1, is just selected from the cache memory and send to output.  
This cache-based technique enhanced the overall processing 
time of IBQ for an efficient data retrieval task. 

Laxmaiah, Govardhan and Kumar [18] have presented an 
efficient Database Priority Queue (DPQ) algorithm for 
processing IBQ using compressed bitmap Index; the impact of 
this method was to speed up the query evolution method by 
emptying the compression queue. In this technique, first the 
iceberg query is responsible to select the similar words with 
aggregate attributes Y and X from the relation R in which the 
TH value is taking between 1000 and 9000. By taking a database 
table which has two attributes Y and X which contain millions 
of rows and using count () aggregate function. Then the 
experiment is conducted by applying an IBQ on the first 
function that generates bitmaps accepts all those rows as an 
input. The key achievement of this technique is keeping the 
comparable number of rows in a relational database table and at 
the same time keeps the results with density queues; 
consequently, further this experiment is repetitive for different 
iceberg threshold as well. 

Zianget al. [19] suggested a well-organized algorithm for 
IBQ processing by using compact bitmap indices. The given 
algorithm does not depend on any testing compression process 
and demonstrates better performance over presented schemes. 
Bitmap index has three attractive benefits based on observation 
such as: first, conducting bitwise operations that reduce 
computation time. Second, saving disk space by avoiding rows 
scan on a relation by using attributes group. Third, by leveraging 
the anti-monotone property of IB therefore this algorithm is not 
affected by the number of diverse values, and length of attributes 
in the relation.  Rao et al. [20] presented a well-organized 
technique, known as dynamic pruning technique or vector 
alignment algorithm to answer IBQ by using compressed bitmap 
indices, this algorithm guarantees that no empty result is 
generate by using any bitwise-AND operation. Bitmap indices 
are presented to get more improved results as compared to tree 
based index method such as alternatives of R-tree or B-tree [21], 
explicitly, this work is motivated to compute IBQ using bitmap 
indices as an index pruning based approach. 

Otoo and Shoshani [22] introduced bitmap indexing pattern 
algorithms for little cardinality attributes to analyze the time and 
space complexities of Byte Aligned Code (BBC) and Word 
Aligned Hybrid (WAH) compressed bitmap indices. To 
demonstrate their success for using high cardinality attributes, 
for high cardinality attributes, c << N, here c represent 
compressed bitmap index and N represent the number of words, 
the WAH algorithm compressed indices uses define 2N words, 
this 2N words is about half the size of a representative B-tree 
index. On the other side BBC compressed indices are even 
smaller but it also represents an in-place algorithm that is linear 
to the total size of the bitmaps involved to OR many bitmaps in 
time complexity. The whole size of the bitmaps used is 
proportional to the number of hits in the worst-case situation.  
By using compressed bitmap, it shows to search one attribute is 
optimal and this optimality is established with timing results 
from a set of real application and random data. In these sets of 
examinations, WAH compressed bitmap indices were nearly 

twice as fast as BBC code compressed indices. Both indices 
could achieve search operations faster than the projection index 
by using worst cases, on average. By using the WAH 
compressed indices, time is not more than the projection index. 
Bitmap indices in study [14] using bitmap vectors for vertical 
organization of a columns. Every vector characterized the 
presence of a distinctive value in the column across all rows in 
the table. 

In study [23] an effective bitmap pruning strategy was 
introduced, which is grounded in order of high cardinality in 
Priority Queue (PQ) by using compressed bitmap indices for 
processing an IBQ. By using this method, it allowed the 
movement of vectors to enter PQs on the high count 1’ to get 
additional benefit for large pruning of bitmaps.  The pruned 
vector essentially improved the response time. Processing huge 
quantities of data in predetermined time factor is a key challenge 
faced by data warehousing. By using [24] bitmap indexing 
which is extra meaningful in quicker data processing generated 
a strategic decision technique for data warehousing 
environment. For managing ‘Boolean’ kind of data, like gender, 
the bitmap indexing is best suited, such as false and true group 
of values. Bitmap indexing mainly depends on 1’s and 0’s kind 
of data. The data is openly processed by using CPU, which does 
not support any alteration of the data items into a new format, 
and greatly decreases the processing time of the records. This 
work shows the integration of IB querying; within the identified 
amount of time factors while processing huge amounts of data 
in data warehousing environments and achieved efficient 
results. Most of the previous research work mainly centered 
about identifying “well behaved “constraints with respect to 
constraint pushing [25, 26], this work proposed a novel pushing 
technique known Divid-and-Approximate (DnA), which 
combine two ideas, “Approximate Push” and “Divide-and-
Conquer” to generate a strongest constraint for pruning with 
non-anti-monotone aggregation constraints in IB cubing. The 
key idea of DnA was to divide a partition of tuples into two 
subspaces of positive and negative degree values, so that a given 
constraint could be rewritten using monotone or ant monotone 
constraints in subspaces. These works mainly focused on (a) 
SQL like tuple-based aggregates, rather than item-based 
aggregates (b) General aggregate constraints, rather than only 
“well behaved”, and (c) Constraint independent methods, rather 
than constraint specific methods. The idea of DnA contributed a 
new share to constrain data mining techniques. 

Laxmaiah et al. [27] presented an efficient Density Priority 
Queue (DPQ) procedure for an IBQ by using compacted bitmap 
index based on two stages (1) Using an algorithm for pruning 
the vectors dynamically by computing newest counts for 
reinsertion and certifies the proposal using a sample database. 
By dropping the bitmap vectors dynamically using a high-count 
attribute to calculate an IB query, and (2) Using a validation of 
DPQ approach on RDBMS section to show the validity of the 
proposed DPQ and evaluates an IB query having COUNT () 
aggregate function.  As compared to previous strategies PQ is a 
more sophisticated technique. Based on large data sets the 
experimental results indicate significant progress which proves 
the effect of IBQ computation. 

In study [28], the distributed Iceberg Semi-Join operator is 
proposed, which is used in most of the real-life applications. 
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This technique is used to get information from two different 
independent data marts or from a remote digital library and use 
an efficient technique, which insert the execution of the IBQ and 
join in the two servers by using Mul-FIS; to prune the non-
qualifying groups it uses. This work provides important 
advantages over its competitors. By using multidimensional 
databases each dimension is nothing, but one subject oriented 
table with attributes of related metrics [29], writing queries on 
multidimensional databases are difficult and include join 
operations due to which the reply time of query is increased on 
a massive database. By using queries with aggregation function, 
and summarization is followed by using ‘having’ clause. This 
type of query is very complex and requires extra time. This work 
focused on two different bitmap indexes search implementations 
techniques, such as RIDB and Fast Bit. The key improvements 
in Fast Bit are the Word-Aligned Hybrid (WAH) compression 
for bitmaps and multilevel bitmap encoding approaches. Fast Bit 
index is typically greater than RID Bit index, in fewer intervals 
of time it can answer several queries, as it accesses the required 
bitmaps in fewer I/O operations [30]. RID Bit normally costs 
less CPU time in answering queries than that of Fast Bit, though, 
the CPU time differences are minor matched with I/O time.  A 
brief comparison between “Fast Bit” and “RID Bit” is discussed 
in [31]. At the end this section Table II categorizes some basic 
characteristics of bitmap Indexing. 

B. Based on Compound or Hybrid Algorithms 

In study [31], four algorithms namely Partitioned Tree (PT), 
Breadth-first writing Partitioned Parallel BUC (BPP), 
Replicated Parallel BUC (RP), and Affinity Skip List (ASL) are 
introduced, these algorithms are calculated experimentally over 
a range of parameters to get the necessary condition in which the 
algorithms could outperform. The Key features of the proposed 
algorithms are mentioned in Table 2, which described all four 
algorithms with respect to their writing strategy, Data 
decomposition, Load Balance, and Relationship of cuboids. 

Matias and Segaly [32] presented two effective algorithms 
based on hash partitioning technique to compute estimated IB 
queries. Using a hash function to divide a data set into specific 
values that was independent from a subset resulting with 
properly smaller independent sub problems that can be handled 
efficiently with certain performance. In [33] two algorithms 
which use a concise sample and basic component have been 
presented. The first algorithm is used to sort the sequence into 
the necessary number of partitions and the second algorithm is 
used for computation. Though acting only one pass over the 
sequence these algorithms are used to compute the 
approximation query, without accessing a database and without 
materializing data sets which are stated implicitly, therefore it 
can be applied online for streaming data. In [34] the author has 
emphasized two problems; (1) Efficiently classify passing 
stories from rapid streaming social content and (2) To execute 
IB queries to form the structural background between stories. To 
give attention to the solution of the first problem, the social 
stream is converted into a time gap of tube network, and model 
passing stories as (k, d) cores in the tube network. 

Two polynomial time algorithms were proposed to extract 
maximal (k, d) cores. The second problem, deterministic context 
searches and randomized context search is applied to maintain 

the IBQ efficiently and carefully, which permits performing 
context search without pair wise relationship. 

TABLE II. KEY FEATURES OF FOUR ALGORITHMS 

Algorithms 
Writing 

Strategy 

Data 

Decomposition 

Load 

Balance 

Relationship 

of cuboids 

RP 
Depth-

First 
Replicated Weak Bottom-up 

BPP 
Breadth-

First 
Partitioned Weak Bottom-up 

ASL 
Breadth-

First 
Replicated Strong Top-down 

PT 
Breadth-

First 
Replicated Strong Hybrid 

By spreading the probabilistic techniques and suggested 
hybrid and multi buckets algorithms for processing of IB queries 
was first considered by study [35]. The sample and multiple hash 
function are used as an important building chunk of probabilistic 
events such as scaled-sampling course and count algorithms. It 
projected the sizes of a query results in order to expect the valid 
IB results, which decreases memory requirements and raises 
aggregate query performance.  Though, these techniques 
incorrectly resulted in false negatives and positives. To 
overcome these bugs, an efficient approach is planned by 
hybridizing the sampling and coarse count techniques, such as 
hashing technique that allocated a bitmap of size ‘M’ in the 
memory is constructed on linear counting algorithm (LCA). In 
this method, all entries are initialized with ‘0’s. The linear 
counting algorithm applies a column interest and then scans the 
relation. On the other hand, the hash function produces a bitmap 
address, and the algorithm sets this addressed bit to ‘1’. This 
algorithm first counts the number of empty bitmap entries. Then 
it guesses the column cardinality by distributing the count by the 
bitmap size ‘m’ and plugging the given result which increases 
the overall performance of hybrid technique. 

III. PROPOSED TECHNIQUE  

In the previous section we discussed in detail IB query 
processing techniques and algorithms. Researchers have 
introduced different algorithms and techniques for increasing 
the performance of iceberg query. Some of the existing 
techniques focus on the SUM (), MIN (), MAX (), AVERAGE 
(), and COUNT () aggregate functions, such as, bitmap indexing 
techniques, cubed techniques, AND operation techniques, POP 
operation techniques, attribute-based techniques, and hybrid 
algorithm techniques. All these techniques have some 
limitations, such as, some techniques have the deficiency to 
occupy more space in memory, some techniques slow down the 
system performance, some require complex algorithms which 
are difficult to maintain, and some take more time to produce the 
required result in a required time. To overcome the limitations 
of existing techniques to improve the performance of IBQ, an 
enhanced technique based on, summary table is proposed to 
improve the IB query performance. This technique improves the 
running time of the query for searching a specific record and 
reduces the elapse time. This section aims to discuss the details 
of the proposed work using summary table’s technique for IB 
query processing to finds out the required result greater than the 
given TH. 
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The proposed technique is applied on sample customer 
tables of different sizes with the same attributes, such as 
customer identity (Cus_Id), Expense per day (Cus_Exp-per-
day), and job (Job). The values of Cus_Id, Cus_Exp-per-day, 
and Job attributes classify each group, while Cus_Exp-per-day 
refers to the field on which the aggregate operator Count () is 
being computed based on a specific TH value. The focus of this 
work is Count () aggregate function which is applied on 
(Cus_Exp-per-day) field, the scope of the proposed work is to 
find expenses of all those customers whose expense is greater 
than some specified threshold values. The proposed work is 
better than the existing work in different perspectives. Different 
summary tables are created in the proposed work and IBQs are 
used to extract the required results from these summary tables 
by ignoring scanning whole data sets one by one. As compared 
to the proposed technique, the state-of-the-art technique was 
used to scan all the tables for the required data results which 
slowed down the query processing time. The advantage of our 
proposed technique is to improve the running time of the query 
for searching a specific record and reduces the elapse time. 

A. Proposed Architecure 

The proposed architecture is a robust and efficient summary 
table creation system based on different threshold values for 
identifying how summary tables are created from the original 
tables. Fig. 2 draws our novel architecture, which consists of 
three phases: an Execute1 phase for processing simple IB 
queries, that is directly applied on original source table for 
extracting the required dataset, it scan the whole table for the 
required data set based on a specific threshold value, the 
drawback of this technique was the requirement of huge amount 

of processing time which effect the performance efficiency of 
this technique, in contrast the Execute phase in the mentioned 
architecture was used to automatically creating summary tables 
from original table, and then on those summary tables the 
required query are executed based on a specific threshold value 
for the required result instead of scanning the whole table. In the 
proposed architecture only eight summary tables are mentioned 
for the sake of simplicity these summary tables are used as a 
source of IB queries, instead of scanning the whole original data 
set, and the third phase displays the required output of the 
processed IB query. 

B. Implemetation 

This section describes different techniques that were planned 
in the preceding section. The first step toward implementation 
was by taking different target customers tables ranging from 
50K to 500k data set, which store customers’ related records. In 
the second step the existing technique is applied to fetch 
customer’s records by using twenty different threshold values 
ranging from 1k to 20k on each customer’s table. Based on the 
mentioned threshold values, the times taken by the existing 
technique are recorded and then the average time is calculated 
for ten run cycle on a given table. The same experiment is 
repeated ten times for each data set in total. Similarly, the 
proposed technique is represented in the same way on the same 
data accordingly and twenty summary tables are created for each 
target table, that store pre-calculated aggregate results of the 
COUNT () aggregate function. The proposed technique then 
considers the threshold values given in the HAVING clause of 
the IB query and fetches results from the respective summary 
tables as per the given threshold values.

 
Fig. 2. Proposed architecture.
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IV. RESULT AND ANALYSIS  

In this section, results obtained during experiments are 
analyzed. Table III and Fig. 4 represent comparison among 
existing and proposed techniques based on query performance 
for different dataset ranging from 50k to 500k. The first column 
in Table III indicates different data sets, the second and third 
column correspond to average processing time of both 
techniques by using ten cycle of run count testing condition on 
each specific data set accordingly. The “Existing technique 
time” and “Proposed technique time” represent the average 
processing time of the existing and proposed IB query by 
retrieving the required result. The recorded values show high 
differences in execution times. e.g. when the dataset was 50k, 
then the corresponding average values of ten count cycle of 
existing and proposed techniques was about 6.2ms and 1.02ms, 
similarly for 100k the corresponding values is 6.8ms and 1.1ms, 
and the same is recorded for the other data sets till to 500k 
respectively. The above tabulated values are shown in the 
following Fig. 3 to understand well to the reader, the x-axis 
represents different datasets and y-axis represents execution 
time. Then how the execution times of existing and proposed 
techniques are gradually varying with different datasets. 

A. Comparison between Simple and Proposed Techniques 

In Table IV, we drawn the comparison between simple and 
proposed techniques only for one dataset of size 50k, there are 
nine others different tables is used to store the same comparison 
used in Table III with different data set (100k, 150k, 200k, 250k, 
300k, 350k, 400k, 450k, and 500k) during the whole experiment 
to record the processing time of both techniques, which is not 
mentioned in this section due to a large number of comparison. 
Table IV represents the comparison of “Average of ten run 
cycle” among simple and proposed query processing. In the 
Table IV “RECORDS” field represent the number of records in 
given table, “Cycle of Run Count” represents ten counts of query 
processing of each proposed and simple technique, “Simple 
Query Technique” field represent the state-of-the-art technique, 
“Proposed Query Technique” field represents the proposed 
technique and “AVERAGE OF ALL” field represent the 
average time of ten cycle processing of each proposed and 
simple query technique. To comprehend well to readers, we 
draw the above tabulated data in graph form which are shown in 
the following Fig. 4. The x-axis represents the number of 
processing run count ranging from 1 to 10 cycles, and as well as 
average of all run count cycles for both simple and proposed 
techniques, and y-axis represents the execution time in 
microsecond.

TABLE III. EXISTING AND PROPOSED TECHNIQUE TIME INTERVAL 

Dataset Existing technique time Proposed technique time 

50K  6.2ms  (average time of ten run cycle) 1.02 ms (average time of ten run cycle) 

100K  6.8ms 1.1 ms 

150K  8.7ms 1.3ms 

200K  10.5 ms 1.6 ms 

250K  12.5 ms 1.9 ms 

300k  14.7 ms 2.1 ms 

350K  16.5 ms 2.3 ms 

400k  18.3 ms 2.7 ms 

450k  20.1 ms 2.9 ms 

500k  22.4 ms 3.1 ms 

 

Fig. 3. Performance comparison of existing and proposed techniques. 
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TABLE IV. COMPARISON OF CYCLE OF RUN COUNT BETWEEN PROPOSED AND EXISTING TECHNIQUE 

Table 4 50k Records 

Cycle of Run Count 1 2 3 4 5 6 7 8 9 10 
AVERAGE OF 

ALL 

Simple query processing time 6 6.01 6.05 6.07 6.08 6.1 6.3 6.6 6.7 6.9 6.28 

Proposed query processing 

time 
1 1.02 1.03 1.05 1.05 1.06 1.08 1.09 1.1 1.4 1.08 

 
Fig. 4. Comparison of cycle of run Count between existing and proposed technique.

V. CONCLUSION 

In this paper, we proposed a summary table technique for 
processing iceberg queries efficiently. According to IBM 2.5 
quintillion bytes of data are generated by different electronic 
devices on a daily basis.  Extraction of useful information from 
those huge data sets is a well-known challenging problem. From 
the last few decades most of works have focused to increase the 
performance of IB queries with respect to time constraint, 
computing memory, data repositories, computing memories, 
and data scanning. In this paper our technique is highly simple 
and different as compared to the previous works based on 
bitmap indexing and cubed technique. The summary table 
technique leverages the IB queries at the summary tables; these 
summary tables are created dynamically from the base table 
based on different threshold values ranging from 1k to 20k 
before the execution of queries. At the time of issuing the query, 
the proposed technique considers the threshold given in the 
query and fetches the calculated COUNT () aggregation from 
that specified summary tables as opposed to recalculating the 
aggregate function from the base table to produce the required 
results. Our method has improved the main metrics 
significantly. However, to increase the performance of IB 
queries in a large dataset is still a big challenge, in the future, 
this research work focused on the COUNT () aggregate function. 
In future we would like to extend our work to other aggregate 
functions such as MAX (), MIN (), SUM (), and AVG (). In this 
work we only considered the high-level IB queries. Similarly, 
we would like to continue working on low-level queries as well. 
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