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Abstract— This paper concentrates on minimizing the total travel 

time of the Straddle Carrier during the loading operations of 

outbound containers in a seaport container terminal. Genetic 

Algorithm is well-known meta-heuristic approach inspired by the 

natural evolution of the living organisms. Heuristic procedure is 

developed to solve this problem by recourse to some genetic 

operators. A numerical experimentation is carried out in order to 

evaluate the performance and the efficiency of the solution. 
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I.  INTRODUCTION  

The success of a seaport container terminal resides in a fast 
transshipment process with reduced costs and it is measured 
by many performance indicators such as the productivity and 
the customer satisfaction. Because containerships are highly 
capitalized and their operating costs are very high, it is very 
important that their turn-around time in container terminals is 
as short as possible. The turn-around time of a containership 
implies the sum of the queue time and service time which is 
the sum of time for berthing, unloading, loading and departing.  

Since inbound containers are usually unloaded into a 
designated open space, the yard handling equipment (i.e. 
Straddle Carrier) does not have to travel much during the 
unloading operation. However, the time for loading depends 
on the loading sequence of containers as well as the number of 
loaded containers. The Single Straddle Carrier Routing 
Problem (SSCRP) has a great effect on the time service and 
the performance of the container terminal.  In this paper, our 
objective is to minimize the total travel time of the Straddle 
Carrier (SC) for loading outbound containers. 

The remainder of the paper is organized as follows: section 
2 present the related works that solve the SSCRP. Section 3 
will be reserved to detail the problem formulation. The two 
following sections will be reserved to present our Genetic 
Algorithm solution and our paper will be finished by 
numerical examples in order to prove the efficiency of our 
method. Some concluding remarks and perspectives to extend 
this work are finally discussed.  

II. RELATED WORKS 

Operational decision problems on seaport terminals have 
received increasing attention by researchers. Some of them 
evoked the SCRP as Kim and Kim ([1] [2] [3]); they present in 

their papers a mathematical formulation for the SSCRP where 
their objective is to minimize the distance between yard-bays 
in the storage area during the SC tour. They propose a solution 
procedure based on beam search heuristic method that its 
principle is to select the nearest yard-bay to visit by a SC.  

However, they suggest that the times spend by the SC 
inside yard bays are constant. In reality, we note that these 
times vary and significantly affect the SC routing tour. In fact, 
we judge that the reshuffling and the unproductive movements 
inside a yard bay depend on the positions of required 
containers into stacks and levels. Hence, we will evaluate the 
time spent between initial position and all destinations yard 
bays in addition to the time cost inside each one and we select 
the least of them. Therefore, in our paper we solve the SSCRP 
by considering this time (intra-yard bay) as variable.  

Little research has been done on this topic although the 
practical importance of this problem ([4] [5] [6] [7] [8]).   

In 2003, V. Nunes Leal Franqueira [9] proposed Heuristic 
strategies Beam Search and Ant Colony Optimization to solve 
the single vehicle routing problem. These are tested 
comparatively. A new strategy for container collection is 
proposed as a substitute for the traditional greedy strategy of 
container collection. The proposed strategy increased the 
number of alternatives considered within the search space and 
turned out to improve the quality of solutions. It is proved that 
the Ant colony heuristic react well as beam search method in 
this strategy. 

In 2005, E. Nishimura et al. [10] present in their paper a 
Genetic Algorithm heuristic to solve the trailer routing 
problem using a dynamic routing assignment method. They 
focus on the tours related to one cycle operation of the quay 
cranes. Experimental results demonstrate that the dynamic 
assignment is better than static one. The drawback to their 
solution procedure is the complexity of the trailer routing, 
which may increase the possibility of human error. Trailer 
drives may find difficult to follow the complicated itineraries 
assigned to them, resulting in mistakes in driving. 

E. Nishimura et al. in 2001 [11] address in their paper the 
problem of a dynamic assignment ships to berths. They 
develop a heuristic procedure based on genetic algorithm 
where chromosomes are presented as character strings instead 
of bit binary string representation. The chromosome 
representation of the solution defines the set assignments of 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 11, 2012 

 

21 | P a g e  

www.ijacsa.thesai.org 

ships to berths, giving ships the positions of service sequence 
for each berth. 

III. PROBLEM FORMULATION 

A. Straddle Carrier definition 

By a “subtour” of a SC, we mean a visiting sequence of 
yard-bays which a SC visits to pick up all the containers which 
will be loaded onto a cluster of cells in the ship. An overview 
of a container terminal is presented in Figure 1.   

 

Figure 1.  An overview of a container terminal 

B. Optimization model 

An optimization model will be developed to display the 
container arrivals and yard locations and the actual and 
optimized assignment of straddles to containers. 

The main part of this modeling is to develop and evaluate 
the algorithms for assigning straddles to containers. 

The discussion from the previous section illustrates the fact 
that the manner in which the straddles are assigned container 
jobs impacts the cost and service quality of operation. 

In general, the problem of assigning straddles to containers 
can be formulated as the assignment problem, a mathematical 
programming problem presented by L.N. Spasovic et al. in 
1999 [12]. 
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Equation (1) is an objective function that minimizes costs. 
Constraints (2) and (3) are typical assignment problem 

restrictions that ensure that a straddle can be assigned to only 
one container and vice versa. 

IV. GENETIC ALGORITHMS (GA) 

A. Motivation 

Because of existing the several equality constraints in our 
model, the implementation of the GA in order to quick and 
facilitate achieve to the feasible solutions is the objective of 
our work.  

Our reasons for choosing GA as a solution approach are as 
follows:  

We need an approach to search the feasible route. The 
most of the model’s constraints are as equality form and, 
therefore, obtaining of the feasible solutions is a hard task. In 
this case, the probability of reaching infeasible solutions is 
more than feasible solutions and therefore we need a 
population-based approach such as GA to better exploration of 
the solution routing.  

GA is a well-known meta-heuristic that its efficiency is 
verified for many problems in the literature.  

GAs work on a population of the solutions simultaneously. 
They combine the concept of survival of the fittest with 
structured, yet randomized, information exchange to form 
robust exploration and exploitation of the solution routing 
[13].  

B. Probleme outlines 

The problem can be summarized as follow: 

 Each feasible solution of the problem is treated as a 
chromosome in the GA.  

 Every container must be picked up once and exactly once at 
any route. 

 The handling time of each container is dependent on its 
positions in the storage yard. 

The set of chromosomes construct a generation where 
steps of GA are applied: 

Step1:  A fitness function is applied to extract the fittest 
value of the generation 

 The SCRP is a minimization problem; thus the smaller the 
objective function is, the higher the fitness value must be.  

Step2:  The GA selects the fittest chromosomes and 
applied a crossover operator to give rise to better solution.  

The crossover scheme should be capable of creating new 
feasible solution (child) by combining good characteristics of 
both parents.  

Step3: These solutions are treated by a mutation operator 
which introduces random changes to the chromosomes to 
create new generation 

C. Our representation 

In our GA application, a candidate solution to an instance 
of the SCRP specify the number of required containers, the 
possible visited yard bays, the partition of the demands and 
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also the delivery order for each route. Each chromosome 
represents a feasible solution. 

We will apply genetic operators to generate new 
individuals. Each of them defines a possible route of genes 
that represent the required containers. 

For our problem a chromosome is a set of containers that 
can be visited by a SC to perform a quay crane (QC) work 
schedule. For example a QC demands rt containers type A to 
load them into a containership, SC has to move toward the 
yard bays that include this type of containers, and transports 
them to the QC.  Each container has a transportation cost 
depends on its position inside the storage yard and especially 
in its chromosome’s order. The number of genes in a 
chromosome is bounded by rt required containers. And the 
cost of the SC’s tour will be the sum of transportation costs of 
the picked up containers. 

The position is defined by the number of yard bay, stack 
and level. Every type or group is presented by a matrix. Each 
element of the matrix will be equal to 1 if the group of the 
current container is the same as the required type and 0 
otherwise. Therefore we begin our procedure by this set of 
required containers from which we construct the initial 
generation of n chromosomes. The GA will choose randomly a 
set of chromosomes that contains rt genes. The gene represents 
a required container. 

Let           designs the container inside yard bay i in stack s 
in level l; i.e.       represents a container inside the first yard 
bay, in the third level of the 8

th
 stack. 

V. GENETIC OPERATORS 

A. Fitness fuction 

For our solution procedure we will take under 
consideration the sigmoid function as defined in E. Nishimura 
et al. in 2001 [11] ; where z(y) denotes the objective function 
value. 

( ) 1/1 exp( ( ) /10.000)) 0 ( ) 0.5 (4)f y z y f y   

      
For the feasible solutions, our GA calculates the cost of 

each route that satisfies the objective function of the SSCRP. 
Then it compares between these costs and selects the smallest 
amount one. 

B. Reproduction 

It is a process in which chromosomes are copied according 
to their scaled fitness function values, i.e., chromosomes with 
a higher fitness value would have more of their copies at the 
next generation. This can be done by randomly selecting and 
copying chromosomes with probabilities that are proportional 
to the fitness values (costs of routes presented in each 
chromosome).  

1) Initial Situation: We have n genes representing the 

number of the available required containers. 

Example: for n=9 

1 1 1 2 2 4 4 5 5

1,1 6,1 9,1 3,1 4,2 4,3 9,3 4,1 5,2c c c c c c c c c   

Figure 2.  list of required containers   

2) Initial generation:  GA chooses randomly rt genes from 

this table, constructs generations of chromosomes and selects 

the two fittest ones from each generation. 
For our example, let chromosomes A and B be the selected 

parents. 

2 4 4 1 1 5 2

4,2 4,3 9,3 6,1 9,1 4,1 3,1

4 5 1 1 2 2 4

9,6 4,1 6,1 9,1 3,1 4,2 4,3

:

:

A c c c c c c c

B c c c c c c c
 

Figure 3.  Parent’s chromosomes  

C. Crossover  

We use the 2-point crossover to introduce new 
chromosomes (or children) by recombining current genes. In 
this crossover, two cut points are randomly chosen on the 
parent chromosomes. In order to create an offspring, the 
strings between these two cut points in both chromosomes are 
interchanged. 

A crossover may generate infeasible children in terms of 
constraint, i.e., a child chromosome may have container to be 
picked up twice. In order to keep the feasibility, the crossover 
operation is performed in the following manner.   

First, substrings to be interchanged are given by two 
crossover points that are randomly determined. After 
interchanging the substrings between chromosomes A and B, 
we have chromosomes A′ and B′ as temporary children.  

 

Figure 4.  Temporary children 

They are infeasible, because for instance, chromosome A′  
has containers           and               to be picked up twice and 
lose containers          and           .    Next, additional 
interchanges described below are carried out to make them 
feasible. Letting the interchanged string be the substring that 
was interchanged so far in each chromosome, we examine 
genes from left to right in the interchanged string of A′. Note 
that we never interchange any genes in the interchanged string 
again in the following process: 

As the most left gene is container           which is scheduled 
to be picked up twice in A′, obtain the container type (which is                      

    ) in B′ at the corresponding position of the gene 
(hereafter referred to as a cell).  

Therefore the container       placed in the 7th bit in the 
chromosome A′ will be replaced by          .  

,
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ii  

** 

i  

The second double container in chromosome A′ is           .  

 When we look at the corresponding gene in chromosome 
B′ we find the container            which already exists in A′, so 
we follow the interchange arrows until we reach its end. In our 
example we stop in the container            which will replace   

     in chromosome A′. 

We look at chromosome B′ and we follow the same way as 
in A′. 

 

  

4 4

4,3

2

4,2

2

4,2

5 1 1 2

4, 9,31 6,1 9,1 3,1

4 4 1 1

4,3 9,3 6,1 9,1

2 5

3,1 4,1

'' :

'' :

A c

B

c cc c c c

c c c ccc c
 

  

Figure 5.  children after crossover 

D. Mutation 

This genetic operator introduces random changes to the 
chromosomes by altering the value to a gene with a user-
specified probability called mutation rate. As an example we 
choose to apply the swap operator to each gene. This operator 
consists in randomly selecting two genes and exchanging 
them.  

2 5 1 1 2 4 4

4,2 4,1 6,1 9,1 3,1 4,3 9,3

2 5 1 4 2 1 4

4,2 4,1 6,1 4,3 3,1 9,1 9,3

crossover

swap operator

c c c c c c c

c c c c c c c

selected chromosome after

offspring after  

Figure 6.  Swap operator 

VI. SOLUTION HEURISTIC PROCEDURE  

At really quay crane work schedule, many cases can be 
found. In this paper the ‘single tour’ and the ‘subtours’ cases 
are chosen. 

 Case 1: single tour (where containers of the same type are 
required)  

1. We have initial situation with all available required 
containers 

2. Repeat  

 Create a generation in which all chromosomes have r genes 
where r is equal to the number of required containers. 

 Calculate the objective function for each individual  

 Transform it to a fitness value   

 Select best-ranking individuals to reproduce  

 let individuals having better fitness be new parents 

 Create offspring through crossover operator 

 Evaluate the individual fitness of the offspring  

 Select the chromosome having the biggest fitness value. 

 Apply mutation operator on the selected chromosome.  

 Select the chromosome having the best solution 

Until the number of required generations is reached 

3. Select the best solution from all resulting chromosomes 

Case 2: subtours (many subtours to perform) 

 Let t design a number of subtour {t = 1...T } 

Example:  

(t=1) first subtour to transport containers type A  

(t=2) second subtour; transport containers type B. 

 

Figure 7.  chromosome of two subtours 

The genetic procedure for case2 is presented as follow: 

Step1:  For t = 1 (first subtour) 

 let r1 containers (genes) from a type h 

 apply genetic algorithm developed in case 1  

Step2: For subtours t = {2  ...T} 

 start from the last straddle carrier’s position of the resulting 
chromosome in step1 

 Apply genetic algorithm developed in case 1 

VII. NUMERICAL EXAMPLES 

The resulting solutions of two strategies (Greedy collection 
strategy and Random collection strategy) are used as 
references for our experiments. The Greedy strategy is the 
collection of the maximum quantity of containers available at 
a determined location. The Random strategy is the collection 
of a random quantity of containers without leaving behind 
containers needed to complete a work schedule subtour.  A 
MATLAB program was used to solve the above mixed-integer 
programming for an example problem. The MATLAB is a 
programming environment for algorithm development, data 
analysis, visualization, and numerical computation. All 
experiments were performed on a 3GHz Pentium 4 computer. 

In the following tables the presented solutions of the GA 
procedure are the best ones between 12 generations for every 
iteration. 

Case 1: in this case containers of the same group (A) are 
required. Two instances are generated in order to evaluate the 
GA procedure. 

TABLE I.  INSTANCES (CASE1). 

 

 
Instance 1 Instance 2 

Type of required containers A A 

Number of required containers 10 70 

* 

2

3,1C

1

9,1C

4

9,3C
2

3,1C
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Number of available containers 66 215 

Number of yard bays 6 20 

Number of 3 level’s stacks 10 15 

TABLE II.  GENETIC ALGORITHM PROCEDURE (GA) WITH THE GREEDY 

COLLECTION STRATEGY (GCS) AND RANDOM COLLECTION STRATEGY (RCS): 

COSTS AND PROCESSING TIMES (IN CASE1). 

 

 Iterations 1 2 3 4 5 

Instance1 Costs 

(sec) 

GC

S 

1138.7 

RCS 1138.7 1180.0 1179.3 1138.7 1180.0 

GA 694.4 747.6 672.8 667.0 695.1 

Processing 

times (sec) 

0.85 0.94 1.08 0.52 0.78 

 
Instance2 

Costs 

(sec)  

GC

S 

8269.8 

RCS 7860 8503.1 8980.4 8503.8 7649 

GA 7835.8 7937.8 7646.3 8819.1 8891.1 

Processing 

times (sec) 

32.4 31.3 33.67 32.13 34.63 

  Iterations 6 7 8 9 10 

Instance1 Costs 

(sec) 

GC

S 

1138.7 

RCS 967.8 1179.3 1140.9 1179.3 1138.7 

GA 684.4 798.0 680.7 721.8 741.8 

Processing 

times (sec) 

0.85 0.55 0.75 1.33 1.34 

 
Instance2 

Costs 

(sec)  

GC

S 

8269.8 

RCS 8912.6 7845.6 8579.7 8093.1 8473.2 

GA 8265.9 8254.6 8293.1 8959.8 8263.5 

Processing 

times (sec) 

32.4 32.15 33.48 31.54 32.44 

 
Case 2: in this case containers of the different groups are 

required. Two instances are generated in order to evaluate the 
GA procedure. 

TABLE III.  INSTANCES (CASE2). 

 Instance 3 Instance 4 

Type of required containers A B A B 

Number of required containers 10 8 75 60 

Number of available containers 66 68 215 240 

Number of yard bays 6 20 

Number of 3 level’s stacks 10 15 

TABLE IV.  GENETIC ALGORITHM PROCEDURE (GA) WITH THE GREEDY 

COLLECTION STRATEGY (GCS) AND RANDOM COLLECTION STRATEGY (RCS): 

COSTS AND PROCESSING TIMES (IN CASE2). 

  
 Iterations 1 2 3 4 5 

Instance1 Costs 

(sec) 

GCS 1659.9 

RCS 2168.3 1733.3 2202.4 1944.8 1999.3 

GA 1770.1 1398.9 1486.6 1698.1 1633.4 

Processing times 

(sec) 

0.85 2.5 2.42 0.39 0.45 

 

Instance2 

Costs 

(sec)  

GCS 12916 

RCS 14175 14115 13396 15249 14691 

GA 13931 17668 17051 14391 16931 

Processing times 

(sec) 

32.4 75.0 69.5 59.8 72.1 

 Iterations 6 7 8 9 10 

Instance1 Costs 

(sec) 

GCS 1659.9 

RCS 1944.8 1684.8 1946.3 1724.6 1800.6 

GA 1839.9 1786.0 1417.6 1734.9 1703.8 

Processing 

times (sec) 

0.85 0.5 1.51 2.30 1.95 

 

Instance2 

Costs 

(sec)  

GCS 12916 

RCS 15421 13886 15190 15335 14968 

GA 15003 14372 14817 14834 15173 

Processing 

times (sec) 

32.4 62.9 68.7 70.4 75.1 

 

By analyzing the results in table II and table IV the 
following remarks can be made: 

 In instance 1, Genetic algorithm demonstrated to return 
solutions of better quality than the Random collection 
strategy and the Greedy collection approach, within the 
same range of the processing time.  

 Due to the random nature of Genetic algorithm heuristic 
method, increasing the size of the problem in instance 2 to 
look for solutions does not necessarily guarantee that a 
better solution will be reached. As observed in iterations 5 
and 7, Random collection strategy found a better quality 
solution.  

 By looking at iterations 4 and 8 in instance 2, we notice that 
Greedy collection strategy worked better since it found the 
minimum costs. It can be explained by the fact that the 
genetic heuristic selects the next location based on 
container’s positions, i.e. both the yard-bay and the position 
of containers (stacks and levels) are taken into account, 
while the Greedy collection strategy selects the next 
location based on the yard-bays only.  

 It seems that increasing the number of subtours has the 
same effect as increasing the number of the   required 
containers.  

 In big size problem, genetic procedure is less performed, 
this is can be explained by the fact that at each generation 
built by genetic procedure, a number of selected containers 
is fixed and the genetic operators are used only in this set of 
containers in order to choose the best cost solution between 
them.  

 Genetic algorithm demonstrates better solution sin small 
sizes problem. 

 The processing time in all iterations is quite reasonable. 

VIII. CONCLUSION  

In this paper, we have presented the routing problem of the 
SC to load outbound containers. We use Genetic Algorithm as 
an approach to solve the SSCRP, we defined its utility, and we 
developed our Genetic heuristic procedure and its operators 
such as fitness function, reproduction, crossover and mutation 
in order to get best solution to choose a route for the SC which 
has the least cost. Numerical examples are carried out to prove 
the performance and the efficiency of our method comparing 
with greedy and random collection strategies.  

IX. FUITURE WORK 

In a real container terminal there is more than one quay 
crane, with their respective work schedules, and many 
Straddle Carriers (SCs). Several SCs must complete their 
routing, by sharing the same container yard-map. This new 
scenario introduces a few complications to the single SC 
routing problem, increasing significantly the routing problem 
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complexity. Our future work aims to solve the multiple 
straddle carrier routing problem (MSCRP) in a container 
terminal. In Other metaheuristics can be applied in the future, 
such Ant colony and particle swarm optimization, and 
comparative study can be done. 
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