
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

1 | P a g e
www.ijacsa.thesai.org

Bond Portfolio Analysis with Parallel Collections in
Scala

Ron Coleman
Computer Science Department

Marist College
Poughkeepsie, NY, United States

Udaya Ghattamanei
Computer Science Department

Marist College
Poughkeepsie, NY, United States

Mark Logan
 Computer Science Department

Marist College acronyms
Poughkeepsie, NY, United St

Abstract— In this paper, we report the results of new experiments
that test the performance of Scala parallel collections to find the
fair value of riskless bond portfolios using commodity multicore
platforms. We developed four algorithms, each of two kinds in
Scala and ran them for one to 1024 portfolios, each with a
variable number of bonds with daily to yearly cash flows and 1
year to 30 year. We ran each algorithm 11 times at each
workload size on three different multicore platforms. We
systematically observed the differences and tested them for
statistical significance. All the parallel algorithms exhibited
super-linear speedup and super-efficiency consistent with
maximum performance expectations for scientific computing
workloads. The first-order effort or “naïve” parallel algorithms
were easiest to write since they followed directly from the serial
algorithms. We found we could improve upon the naïve approach
with second-order efforts, namely, fine-grain parallel algorithms,
which showed the overall best, statistically significant
performance, followed by coarse-grain algorithms. To our
knowledge these results have not been presented elsewhere.

Keywords- parallel functional programming; parallel processing;
multicore processors; Scala; computational finance.

I. INTRODUCTION
A review of the high performance computing literature

suggests opportunities and challenges to exploit parallelism to
solve compute-intensive problems. [1] [2] [3]. Proponents of
functional programming have long maintained that elaboration
of the lambda calculus lends itself to mathematical
expressiveness and avoids concurrency hazards (e.g., side-
effects, managing threads, etc.) that are the bane of shared-state
parallel computing. [4] Yet parallel functional programming
has remained largely outside the mainstream programming
community. [5] One could conceivably argue that parallel
functional programming was ahead of its time and the era of
inexpensive multicore processors in which some investigators
have observed that the “free lunch is over” since clock speeds
have been decreasing or at least not increasing significantly,
necessitating a turn toward parallel programming. [6]

Enter Scala [7], a relatively new, general-purpose language
which runs on the Java Virtual Machine (JVM) and hence,
desktops, browsers, servers, cell phones, tablets, set-tops, and
lately, GPUs [8] [9] [10], a related topic we do not explore here
(see the section, “Conclusions and Future Directions”). Scala
blends object-oriented and functional styles with shared-
nothing, task-level parallelism based on the actor model. [7]
Parallel collections [11] [12] are recent additions that provide

data-level parallelism [3] through a simple, functional
extension of the ordinary, non-parallel collections of Scala.
While the use of parallel collections has potential to improve
programmer productivity and greatly facilitate a transition to
parallel programming, no independent study has investigated
whether parallel collections scale in terms of run-time
performance on commodity hardware, taking into account
furthermore end-to-end processing that involves I/O which is
typically a prerequisite for and often the bottleneck of practical
applications.

Coleman, et al., conducted end-to-end experiments to find
the fair value of riskless bond portfolios using task-level
parallelism via map-reduce. [13] [14] In this paper, we take a
new, different tack on the same problem that applies data-level
parallelism via parallel collections. We were motivated to use
bond portfolio analysis, first, because computational finance
workloads can be very large. [15] Second, bond portfolio
pricing theory is fairly transparent. [16] Finally, bonds inform
or are closely related to other financial instruments, including
annuities, mortgage securities, bond derivatives, and interest
rate swaps, which are among the most heavily traded financial
contracts in the world. [17] Thus, computational methods and
performance results from this class of problem would likely
have implications beyond bonds and finance.

Indeed, the experiments with Scala parallel collections
using eight algorithms on three different hardware platforms
show super-linear speedup and super-efficiency are consistent
with the maximum performance expectations for scientific
computing workloads. While the data suggests that the more
modern processors are also more efficient, overall fine-grain
algorithms significantly outperform others in runtime, which
interests and surprises us considering the presumed overhead of
this approach. The coarse-grain algorithms are next best,
followed by the “naïve” algorithms. The findings we report
here using parallel collections are new and have not been
reported elsewhere or by others. All the source code is
available online for review, download, and testing (see section,
“Appendix – Source Code”).

II. METHODS

A. Parallel collections – a primer
Scala has standard, template data structures called

collections, which include lists, arrays, ranges, and vectors,
among others. Scala collections are different from the ones it
also inherits from the Java standard library in that the Scala

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

2 | P a g e
www.ijacsa.thesai.org

versions are typically immutable with methods to operate on
the data elements using functional objects. For instance, to
multiply every element of a range collection by two using the
map method, we have the snippet below (where “scala>” is the
Scala interactive shell prompt):

scala> (1 to 5).map(x => x * 2)
Vector(2, 4, 6, 8, 10)

Snippet 1. Maps sequential range.

The parameter, x => x * 2, an anonymous function literal
object, receives each element of the range collection as an
immutable value parameter, x, multiplies it by two, and map
copies the result into a new collection, Vector.

The methods of a parallel collection as accessed in the same
way except the method name is preceded by .par as the snippet
below suggests:

scala> (1 to 5).par.map(x => x * 2)
ParVector(10, 6, 2, 8, 4)

Snippet 2. Maps the parallel range.
Here map invokes the function literal object on the range

using the machine’s parallel resources. The parallel collections
map method returns a parallel vector, ParVector, in which the
ordering of the return results is unspecified because of the
asynchronous nature of parallel execution. From a
programmer’s point of view, virtually no effort is involved to
parallelize the code. There are no new programming constructs
to learn and apply and algorithm redesign and code refactoring
are not demanded. There is furthermore no need to write
special test cases to verify the results since in principle the
serial (non-parallel) implementation is the test case. While the
result ordering may need to be addressed, in general, parallel
collections are a potential windfall for programmer
productivity and transitioning to parallel programming.

The research question is whether use of .par scales,
enabling speed-up and efficiency on a non-trivial problem on
commodity hardware. For bond portfolio analysis, the
functional nature of parallel collections makes implementation
of the pricing equations straightforward. In the “naïve” case,
we simply reuse the pricing function object from the serial
algorithm with no other changes to the code other than to apply
.par, just as we did in the above snippet. However, we go
further and explore whether we can obtain further
improvements using fine-grain and course-grain algorithms.

B. Pricing theory
For purposes of this paper, we are considering only simple

bonds [16] bi, defined by the five-tuple:

bi = [i,C,n,T,M] (1)
i is an integer which plays no part in bond pricing except to

uniquely identify the bond in an inventory which we describe
below; C is the coupon amount paid one or more times; n is the
payment frequency of coupons per annum; T is the time to
maturity in years; and M is the face value due at maturity. The
sum of the net present value of these cash flows, C and M, is
the fair value of the bond. Thus, the fair value, P(bi,,r), of a

bond, bi, is the net-present value of its cash flows which
functionally defined as:

P(bi, r) =
C

(1+ rt)
t/n

t=1

n ×T

∑ +
M

(1+ rT)
T

(2)

The parameter, r, is the time-dependent yield curve, the
general discussion of which is beyond the scope of this paper.
Without loss of generality, we use the United States Treasury
on-the-run bond yield curve, which we observe once. We
interpolate between the tenors (i.e., Treasury maturity dates)
using polynomial curve fitting, the coefficients of which we
cache and apply for all bonds in the inventory.

A portfolio is a collection instruments, in our case, bonds.
The fair value, P(φj), of a portfolio, φj, with a basket of Q bonds
is functionally defined as follows:

P(φ j) = P(bφ (j,q), r)
q=1

Q

∑

(3)

C. Bond portfolio generation
We generate simple bonds that model a wide range of

computational scenarios. The goals are to 1) produce a
sufficient number of bonds to mimic realistic fixed-income
portfolios and 2) avoid biases in commercial-grade bonds that
depend on prevailing market conditions. Specifically, we have
the collections, n ={1, 4, 12, 52, 365), T


={1, 2, 3, 4, 5, 7, 10,

30}, and δ


={0.005, 0.01, 0.02, 0.03, 0.04, 0.05}, where the

elements of n are payment frequencies, T


are maturities, and

δ


 are coefficients. We derive the parameters for a bond object
from the bond generator equations below:

M=1000 (4a)
n = n [•] (4b)
T =

T [•] (4c)

C = M / T ×

δ [•] (4d)

where • is an integer uniform random deviate in the range
of [0, s-1]; and s is the size of the respective collection. We
invoke Equations 4a - 4d a total of 5,000 times to produce the
bond inventory, V, which we store in an indexed persistent
database that we describe below.

We generate a portfolio by first selecting its size, that is, the
number of bonds, Q, per the equation below.

Q = v+σ ×η (5)
η is a Gaussian deviate with mean of zero and one standard

deviation. v and σ are configurable parameters set to 60 and 20,
respectively. Finally, we construct a basket of size, Q, bonds
for a portfolio, φj. We use the equation below to specify a bond
id or primary key,

i =• (6)
where • is an integer uniform random deviate in the range

of [1,|V|] and |V|=5,000 is the size of the bond inventory. We
generate a universe, U, of bond portfolios where |U|=100,000.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

3 | P a g e
www.ijacsa.thesai.org

The bond portfolios are also store in a database indexed by j, a
unique portfolio id.

D. Database design
We store the bonds, bi, portfolios, φj (which also contains

the result of Equation 3) in MongoDB, an indexed, document-
oriented, client-server database. [18] As we noted above, φj
does not contain bond objects, bi, but the bond primary key, i.
In MongoDB parlance, the bonds are linked to portfolios rather
than embedded by them. In other words, the database is
organized in third-object normal (3ONF) form. [19] Thus, to
evaluate Equation 3, a total of 2+Q accesses are necessary: one
access to fetch φj; Q fetches to retrieve each bi; and finally, one
store to update the portfolio, φj, with its price. The figure below
gives the class diagram, as it is stored in the document
repository.

Figure 1. Third normal object form (3ONF) of the database

Although this design is consistent with best practices for
data modeling, we could reduce the number of database
accesses at the expense of redundancy through
denormalization. However, we decided to forgo this
optimization in the interests of establishing a baseline of
performance for future reference.

E. Algorithms
We develop two classes of algorithms: serial and parallel.

There are three types of parallel algorithms, “naïve,” fine-grain,
and coarse-grain. Each serial and parallel algorithm comes in
two kinds: composite and memory-bound. The composite kind,
represented by the notation, {io+compute}, overlaps access to
the database while evaluating Equation 2 and Equation 3. The
memory-bound kind, represented by the notation,
{io}+{compute}. In other words, we measure I/O ({io}) and
compute ({compute}) runtimes separately, first caching all the
bonds by portfolio into memory and only then evaluating
Equation 2 and Equation 3. I/O ({io}) and compute
({compute}) runtimes furthermore provide insight into the
maximum compute and IO performance potentials. In each
case, the algorithms evaluate the same collection of portfolios,
U’⊂U, which has been randomly sampled from the database.
We give here only snippets from the source code. See the
appendix to access the complete source.

F. Serial algorithms
We invoke the composite serial algorithm as the snippet

below suggests.
val outputs = inputs.map(price)

Snippet 3. Maps input of randomly sampled portfolio key ids to price results

The object, inputs, is a collection of portfolio ids and
outputs is a collection of portfolio prices. (The “val”

declaration means that outputs is an immutable value object.)
The parameter, price, is a named function object with the
declaration:

def price(input: Data): Data
Snippet 4. Price the collection of randomly sampled portfolio ids serially

This means price receives a Data object as an input
parameter and returns a Data object. We wrote the Data object
for use by all the algorithms of this study. It contains the
portfolio id, a list of bonds, and a result object which itself
contain the portfolio price and diagnostic information about the
run. On input in this case, the Data object has set only the
portfolio id. On output, Data has the portfolio id and the result
object defined.

The function object, price, accesses the 3ONF repository to
retrieve a portfolio by its id and then retrieve the bond objects,
pricing them according to Equation 2, then according to
Equation 3 summing the prices using the foldLeft method. (For
readers who may be unfamiliar with functional programming,
“folding” is a common operation in functional programming
for aggregating elements. The foldLeft method is a serial
aggregator, traversing the collection, left-to-right, that is, from
the element at index zero to the element of the last index. The
analogous foldRight traverses the collection from right-to-left
using tail-recursion. We prefer foldLeft as opposed to
foldRight to avoid the problem of stack overflow.)

The serial memory-bound algorithm is virtually identical to
the composite algorithm as the snippet below suggests.
val inputs = loadPortfsFoldLeft(n)
val outputs = inputs.map(price)

Snippet 5. Serially load the bonds in memory, then price portfolios serially

The method, loadPortfsFoldLeft, loads a random sample of
n portfolios from the database and uses foldLeft to aggregate
the corresponding bonds. Thus, in this case, the inputs value is
a collection of Data objects, each containing a list of bond
objects. The parameter, price, is a function object, the same one
used in the composite serial algorithm.

G. Naïve algorithms
The naïve algorithms are so-called because, as a first-order

effort, they “naively” use .par. They are virtually identical to
the serial algorithms. That is, we have the snippet below for the
composite case.

val outputs = inputs.par.map(price)
Snippet 6. Price the collection of randomly sampled portfolio ids in parallel

We have the snippet below for the memory-bound kind.

val inputs = loadPortfsParFold(n)
val outputs = inputs.par.map(price)

Snippet 7. First, load the bonds into memory in parallel by portfolio id, then
prices the portfolios in parallel

Notice that the memory-bound kind uses loadPortfsParFold
(i.e., rather than loadPortfsFoldLeft), which accesses the
database and loads the portfolios in parallel using a parallel
collection. It uses Scala’s par.fold method. This method
aggregates like its serial version, foldLeft, except par.fold does
so in parallel with non-deterministic ordering.

Portfolio

-id: Int
-bondIds: List[Int]
-price: Double

Bond

-id: Int
-freq : Int
-coupon: Double
-tenor: Double
-maturity: Double

1..n *

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

4 | P a g e
www.ijacsa.thesai.org

…

…

. . .

#999 #5

query query

++ ++

++

List[Data]()

List[Data(17,List(SimpleBond(12,…)),…]

…

Figure 2. Parallel IO query-merge tree using the par.fold method

The figure above shows how loadPortfsParFold works.
Namely, we start with an empty List collection. Here for the
sake of demonstration, portfolios, #999 and #5, are being
loaded into memory from the database by the “query”
operation. The “++” nodes are binary operations that merge
partial lists of bond objects until a complete list is merged at
the root in O(log N) time. At the top of the merge tree we have
the fully merged in-memory List collection of portfolio data
objects. In this depiction, the value, 17, represents a portfolio id
chosen for demonstration purposes. Thus, the outer list contains
portfolio data objects, each of which contains a list of bond
objects. Note that this parallel memory-caching algorithm is
not “embarrassingly parallel” as the data lists must be merged.

H. Fine-grain algorithms
In a second-order effort to improve the naïve application of

.par, we developed fine-grain algorithms, composite and
memory-bound kinds. Unlike the naïve algorithm, the fine-
grain algorithm uses a parallel collection within the pricing
function object. In other words, we have a parallel collection
within a parallel collection.

The inner parallel collection has a bondPrice function
object to price the bonds by their id (i.e., it makes a query to
the database) per Equation 2 using par.map and a sum function
object to reduce (i.e.., accumulate) the bond prices in parallel
using par.reduce. In effect, we have the snippet below of the
price function.
val output = input.bondsIds.par.
 map(bondPrice).par.reduce(sum)

Snippet 8. Price bonds in parallel by their ids then reduce prices in parallel.

Bond prices flow directly to their reduction in an O(log N)
processing tree. Thus, like parallel I/O, the workload is not
“embarrassingly parallel” as the figure below suggests.

The memory-bound algorithm is similar except, it uses the
parallel IO query-tree to access the database and cache the
bonds in memory.

b0

b1

bq-1

. . .

bondPrice

bondPrice

bondPrice

sum

sum

sum

sum

sum

…

portfPrice

Equation 2 Equation 3

Figure 3. Accessing and pricing bonds then reducing prices in parallel.

I. Coarse-grain algorithms
The other algorithms created a parallel collection of input

portfolios whose size was independent of the number of
processor cores. The idea of the parallel coarse-grain algorithm
is to “chunk” the portfolios as a second-order effort to the naïve
application of .par. That is, we create a parallel collection
whose size is proportional to the number of processors.

The design of parallel collections does not provide a direct
way to bind the pricing function to a core. This is part of
parallel collections design philosophy: the programmer focuses
on the functional specification and the parallel collection
distributes it across the cores.

Nevertheless, the programmer can control the chunk size by
making the input collection a List of a List of portfolio ids. For
example, for a four-core platform like the W3540 we study, the
containing List has eight List elements.

Each element has |U’|/c portfolios where c is the number of
cores. For u=1024 portfolios, each element in the containing is
a List of 128 portfolios. The pricing function object is then
passed this list with 128 portfolios, which it processes serially
to evaluate Equation 2 and Equation 3.

To compute the size of the contained List, we use the Java
class, Runtime. It has a method, availableProcessors().
However, this method returns the number of hyperthreads, not
the number of cores. As far as we know there is no way to get
the number of core except manually from the OEM datasheets,
which we rely on for calculating the efficiency (see below).
Otherwise, programmatically we use the Runtime class.

The coarse-grain composite algorithm loads the bond
objects by portfolio just as the naïve algorithm except it does in
“chunks” on-demand. The memory-bound algorithm, like its
naïve and fine-grain counterparts, uses the parallel IO query
tree to cache the bonds in memory.

III. EXPERIMENTAL DESIGN

A. Environment
The test environment consisted of three hardware platforms

of different Intel multicore processors. The table below shows
the system configurations, with the clock speed in GHz and
years of introduction by the Intel Corporation.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

5 | P a g e
www.ijacsa.thesai.org

TABLE I. EXPERIMENTAL ENVIRONMENT

CPU Clock Cores Threads RAM Year
W3540 2.93 4 8 4 GB 2009

i7-2670M 3.20 2 4 4 GB 2011
i3-370M 2.40 2 4 2 GB 2010

All platforms run Microsoft Windows 7. The code was

compiled by Eclipse 3.7.1 using the Scala IDE plugin version
2.0.0. The code was executed with the 64-bit JVM. We used
MongoDB, version 1.8.3. Although MongoDB is accessed
through TCP/IP, the database server runs on the same host as
the Scala code. We indexed the portfolios and bonds
documents on their key ids.

B. Runs and trials
We instrument the code and make the following

measurements.

TABLE II. MEASUREMENTS SOURCES

Algorithm kind Measurement (T)
1 Composite {io + compute}
2 Memory-bound {io}
3 Memory-bound {compute}
4 Memory-bound {io} + {compute}

For each algorithm by its kind in Table 2, we make a total

of 11 trial invocations of the code to obtain stable run-time
statistics following. [20] Each trial starts a new JVM, the code
of which allocates new JVM objects and opens new database
connections. The trial ends when the algorithm ends and the
code exits, terminating the JVM, which closes the database
connections and causes the operating system to recycle the
JVM objects. A given set of trials, taken together, we call a
run. There is a run for u=2x portfolios (i.e., the problem size)
where x∈[0..10]. The run, u=1024, is we call the terminal run.
Note: #4 in Table 2 is not an actual run; it is derived by adding
the measurements for #2 and #3 for the respective runs. For
each run at a given problem size, we analyze the measurements
for statistical significance as we describe below. We also graph
the run-times using the median value of the run.

C. Speed-up and efficiency calculations
T1 is the serial time of a serial algorithm. TN is the time

using parallel collections.

Given T1 and TN where N is the number of cores, we have
the speedup, R:

R = T1 /TN (8)
The efficiency, e, is

e = R / N (9)
In this case, N is the number of cores, which we got from

the OEM datasheets online. [21] [22] [23]

D. Statistical significance calculations
After obtaining the runtimes, we observe the differences

and test them for statistical significance in the indicated
direction. That is, if the median runtime of algorithm, A, is less
than the median runtime of algorithm, B, we have the null
hypothesis H0:

H0 :E(T
A) ≥ E(T B) (10)

where E is expectation. To conservatively estimate the p
value, we used the one-tailed Mann-Whitney test. [24] We
report (see the appendix) the rank sum statistic, S,

S = R(Ti)∑ (11)

where R(Ti) is the rank of runtime, Ti. Since there are 11
observations for each algorithm, the one-tailed threshold for
p=0.05 is the rank sum, S.05=101. This value can be found in
Table A7 in [24]. Thus, for S < S.05, we reject H0.

We compare each of our eight algorithms relative to one
another and test the differences for statistical significance. To
make the report more accessible, we give the frequency count
for the number of times an algorithm is found to be statistically
significantly faster than another algorithm. Again, the rank
sums, S, algorithm by algorithm for each hardware platform,
can be found in the appendix.

We present graphical evidence for performance over the
range of u mentioned above for each algorithm on each
platform. We assess the statistical significance and present
tabular data only for the terminal run, u=1024.

IV. RESULTS
The table below gives the kind of algorithms symbolized in

the graphs and tables that follow.

TABLE III. KIND OF PROCESSING

¿ Composite
� Memory-bound
Ú Compute-only
r IO-only

A. Naïve results
The results for the naïve treatments are summarized in the

next three graphs, one for the W3540, i7, and i3, respectively.

The number of portfolios or problem size, is u=2x.

The speedup, R, is on the left axis, and the efficiency, e, is
on the right axis.

Figure 4. W3540 naïve results

0

2

4

6

8

0 2 4 6 8 10
0%

50%

100%

150%

200%R e

x (Note: u = 2^x)

¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

6 | P a g e
www.ijacsa.thesai.org

Figure 5. i7 naïve results

Figure 6. i3 naïve results

The table below gives the terminal run results. TN is the
median run-time in seconds.

TABLE IV. TERMINAL RUN, U=1,024, BOND PORTFOLIOS

W3540 i7 i3
 TN R TN R TN R

¿ 14.80 4.37 19.36 2.46 23.19 3.00
� 12.39 4.95 16.93 2.63 24.17 2.75
Ú 8.74 5.66 13.90 2.76 18.74 2.95
r 3.52 2.49 3.07 1.89 5.39 2.13

Note: In general, the median operator does not distribute.
Namely, median({io} + {compute}) ≠ median({io}) +
median({compute}). For example, for the W3540, TN({io} +
{compute}) = 12.39 whereas TN({io}) + T({compute}) = 8.74
+ 3.52 = 12.26.

B. Fine-grain results
The results for the fine-grain algorithms are summarized in

the next three graphs, one for the W3540, i7, and i3,
respectively.

Figure 7. W3540 fine-grain results

Figure 8. i7 fine-grain results

Figure 9. i3 fine-grain results

The table below gives the results for the terminal run.

0

1

2

3

4

0 2 4 6 8 10
0%

50%

100%

150%

200%

x (Note: u = 2^x)

R e
¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

0

1

2

3

4

0 2 4 6 8 10
0%

50%

100%

150%

200%

x (Note: u = 2^x)

R e

¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

0

2

4

6

8

0 2 4 6 8 10
0%

50%

100%

150%

200%R e

x (Note: u = 2^x)

¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

0

1

2

3

4

0 2 4 6 8 10
0%

50%

100%

150%

200%

x (Note: u = 2^x)

R e
¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

0

1

2

3

4

0 2 4 6 8 10
0%

50%

100%

150%

200%

x (Note: u = 2^x)

R e
¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

7 | P a g e
www.ijacsa.thesai.org

TABLE V. FINE-GRAIN TERMINAL RUN, U=1,024, BOND PORTFOLIOS

 W3540 i7 i3
 TN R TN R TN R

¿ 10.42 6.21 17.53 2.72 22.24 3.13
� 12.29 4.99 17.00 2.62 23.98 2.78
Ú 9.04 5.79 13.81 2.78 18.58 2.98
r 3.58 2.45 3.06 1.90 5.30 2.17

C. Coarse-grain results
The results for the coarse-grain algorithms are summarized

in the next three graphs, one for the W3540, i7, and i3,
respectively. Note that the algorithms are not defined for
portfolios less than the number of hyper-threads.

Figure 10. W3540 coarse-grain results

Figure 11. i7 coarse-grain results

Figure 12. i3 coarse-grain results

The table below gives results for the terminal run.

TABLE VI. COARSE-GRAIN TERMINAL RUN, U=1,024, BOND PORTFOLIOS

 W3540 i7 i3
 TN R TN R TN R

¿ 14.18 4.56 18.01 2.64 22.73 3.06
� 12.07 5.08 16.84 2.65 23.50 2.83
Ú 8.44 6.20 16.84 2.28 18.28 3.03
r 3.61 2.43 3.03 1.92 5.16 2.23

D. Statistical significance results
The table below gives the counts in which an algorithm is

statistically significantly faster than another algorithm and
kind. The details underlying this table are in the appendix,
“Sorted Rank Sums.”

TABLE VII. STATISTICALLY SIGNIFICANTLY COUNTS MEASURED BY
FASTER RUNTIMES

Kind Algorithm W3540 i7 i3 Totals
¿ Serial 0 0 0 0

Naive 2 2 2 6
Fine 4 3 2 9

Coarse 2 2 2 6
� Serial 1 1 1 3

Naive 3 2 2 7
Fine 2 2 6 10

Coarse 2 2 6 10
 Totals 16 14 21

To read the above table, choose the kind of algorithm

(composite vs. memory-bound) and read across for type of
algorithm. For example, the composite serial algorithm ran
slower than every other algorithm on the W3540, i7, or i3
platforms.

0

2

4

6

8

0 2 4 6 8 10
0%

50%

100%

150%

200%

x (Note: u = 2^x)

R e
¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

0

1

2

3

4

0 2 4 6 8 10
0%

50%

100%

150%

200%

x (Note: u = 2^x)

R e
¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

0

1

2

3

4

0 2 4 6 8 10
0%

50%

100%

150%

200%

x (Note: u = 2^x)

R e
¿ = {io + compute}
� = {io} + {compute}
Ú = {compute}
r = {io}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

8 | P a g e
www.ijacsa.thesai.org

Hence, there are zero (0) values across the composite serial
row. The memory-bound naive algorithm ran faster than three
algorithms on the W3540 and two algorithms the i7 and i3,
respectively. The memory-bound serial algorithm
outperformed one algorithm on each platform: these slower
algorithms were the composite serial algorithms. Evidently
loading on all the portfolios into memory significantly
improves even the serial performance.

See the appendix, “Sorted Rank Sums” for the specific
counts.

V. DISCUSSION
The graphs, Figures 4 – 11, show that for larger problem

sizes, u, the composite and memory-bound algorithms
performed better than I/O processing alone which is the least
efficient but worse than compute by itself which is the most
efficient. The slopes of these graphs generally point toward
increasing speedup and efficiency for larger u.

Tables IV – VI show evidence for high levels of overlap
between compute and I/O. For instance, the ratios of
T{compute} /T {io + compute} and T{compute} /
(T{io}+T{compute}) found in these tables are often around
80% or higher.

Table VII nevertheless indicates that the memory-bound
algorithms tend generally to give statistically significant better
runtimes compared to the composite algorithms. In other
words, caching the portfolios in memory upfront seems to give
better performance than loading them, as they are needed.

Table VII also suggests that the algorithms on a given
platform tend to run with significantly more efficiency on the
i3 across all the algorithms, followed respectively by the
W3540 and the i7.

Finally, the data in Table VI show the fine-grain algorithms
give statistically significantly better runtimes followed
respectively by coarse-grain and the naïve algorithms across
different platforms.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
This study has found that bond portfolio analysis using

parallel collections achieve super-linear speedup and super-
efficiency with as few as u=64 portfolios across different
multicore processors. The data suggests that the “naïve”
application of parallel collections can be improved
significantly, foremost with the fine-grain algorithm, which we
find interesting. That is, portfolio analysis is “embarrassingly
parallel,” but not for the fine-grain or the I/O parallel
algorithms which contain inherent dependencies that
necessitated the use of parallel merge-trees.

The data points toward greater speed up and efficiency for
larger problem sizes, u>1024. The terminal run analyzed only
about 1% of the portfolios. Additional research could consider
how to harness multiple hosts and/or GPUs to price all
portfolios.

Future work might also compare and contrast map-reduce
versus parallel collections as well as possibly consider how to
improve the I/O performance.

ACKNOWLEDGEMENTS
This research has been funded in part by grants from the

National Science Foundation, Academic Research
Infrastructure award number 0963365 and Major Research
Instrumentation award number 1125520.

REFERENCES
[1] Patterson, J., and Hennessy, D., Computer Architecture, Morgan

Kaufman, 2006
[2] Hill, M., Marty, M., Amdahl’s Law in the Multicore Era, IEEE

Computer Society, Vol. 41, Issue 7, 2008
[3] Hager, G., and Wellein, G.,, Introduction to High Performance

Computing for Scientists and Engineers, CRC, 2010
[4] Michaelson, G., Introduction to Functional Programming through Lamda

Calculus, Dover, 2011
[5] McKenney, P. Is Parallel Programming Hard, And, If So, What Can You

Do About It?, 2011,
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.ht
ml, accessed: 8 April, 2012

[6] Sutter, H., The Free Lunch is Over: The Fundamental Turn Toward
Concurrency in Software, Dr. Dobbs Journal, vol. 30, no. 3, 2005

[7] Odersky, M., et al., Programming in Scala, Artima, Mountain View,
2011

[8] Owens, J., et al., GPU Computing, Proceedings of the IEEE, Vol. 96,
No. 5, May 2008

[9] Nystrom, N., et al., Filepile: Run-time Compilation for GPUs in Scala,
GPCE ’11. October 22-23, 2011, Portland, OR., U.S., 2011

[10] Das, K., GPU Parallel Collections for Scala, M.S. Thesis, University of
Texas Arlington, 2011

[11] Prokopec, A., et al., A Generic Parallel Collection Framework, EPFL,
InfoScience 2011, 2010-7-31, 2011

[12] Lester, B., Data parallel programming in Scala. Scala Days 2010, EPFL,
Lausanne, Switzerland, 15 - 16 April 2010.

[13] Coleman, R., et al, Computational Finance with Map-Reduce in Scala,
Conference on Parallel and Distributed Processing (PDPTA ’12),
CSREA, 2012

[14] Dean, J., and Ghemawat, S., Simplified Data Processing on Large
Clusters, OSDI, 2004

[15] Tsang, E. and Martinez-Jaramillio, Computational Finance, IEEE
Computational Intelligence Society Newsletter, August 2004, 3-8, 2004

[16] Fabozzi, F., and Mann, S., Introduction to Fixed Income Analytics, 2nd
ed., Wiley, 2010

[17] Hull, J. Options, Futures, and Other Derivatives and DerivaGem CD
Package, 8th ed. Prentice Hall, 2011

[18] Chodorow, K. and Dirolf, M., MongoDB: The Definitive Guide,
O’Rielly, 2010

[19] Merunka, V., et al., Normalization Rules of the Object-Oriented Data
Model, EOMAS '09 Proceedings of the International Workshop on
Enterprises & Organizational Modeling and Simulation, 2009

[20] Georges, A., et al., Statistically Rigorous Java Performance Evaluation,
OOPSLA ’07, October 21-25, Montreal, Quebec, Canada, 2007

[21] Intel Corp., Intel Xenon Processor W3540, 2009,
http://ark.intel.com/products/39719/Intel-Xeon-Processor-W3540-(8M-
Cache-2_93-GHz-4_80-GTs-Intel-QPI) accessed: 17-April-2012

[22] Intel Corp., Core i3-370M Processor,
http://ark.intel.com/products/49020/Intel-Core-i3-370M-Processor-(3M-
cache-2_40-GHz), 2010, accessed: 17 April 2012

[23] Intel Corp. (2011). Core i7-2670QM Processor, 2011,
http://ark.intel.com/products/53469, accessed: 17-April-2012

[24] Conover, J., Practical Non-Parametric Statistics, Wiley, 1999

APPENDIX -- SORTED RANK SUMS
The three tables below give the sorted rank sums of

runtimes according to Equation 12 for the terminal (u=1,024)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.3, No.7, 2012

9 | P a g e
www.ijacsa.thesai.org

run. Algorithm A which has the smaller median runtime
compared to algorithm B. Smaller rank sums (S) imply greater
statistical significance. Since there are 11 trials for each
algorithm, the minimum rank sum is S=1+2+3…11=66 (i.e., all
runtimes of algorithm A are less than the runtimes of algorithm
B). In this case, p < 0.001. The threshold for statistical
significance is S<101 in which p ≤ 0.05. Comparisons that are
not statistically significant are not included in the tables and by
implication tables with more rows imply cores with greater
performance.

TABLE VIII. W3540 RANK SUMS (S) ALGORITHM A(KIND) Í B(KIND)

S Algo A Kind Algo B Kind
66 Naive composite Serial composite
66 Naive mem-bound Serial composite
66 Naive composite Serial mem-bound
66 Naive mem-bound Serial mem-bound
66 Fine composite Serial composite
66 Fine mem-bound Serial composite
66 Fine composite Serial mem-bound
66 Fine mem-bound Serial mem-bound
66 Coarse composite Serial composite
66 Coarse mem-bound Serial composite
66 Coarse composite Serial mem-bound
66 Coarse mem-bound Serial mem-bound
89 Fine composite Naive composite
96 Serial mem-bound Serial composite
98 Fine composite Coarse composite

100 Naive mem-bound Naive composite

TABLE IX. I7 RANK SUMS (S) ALGORITHM A(KIND) Í B(KIND)

S Algo A Kind Algo B Kind
66 Naive composite Serial composite
66 Coarse composite Serial composite
66 Fine composite Serial composite
66 Naive mem-bound Serial composite
66 Fine mem-bound Serial composite
66 Coarse mem-bound Serial composite
66 Naive composite Serial mem-bound
66 Coarse composite Serial mem-bound
66 Fine composite Serial mem-bound
66 Naive mem-bound Serial mem-bound
66 Fine mem-bound Serial mem-bound
66 Coarse mem-bound Serial mem-bound
86 Serial mem-bound Serial composite

99 Fine composite Naive composite

TABLE X. RANK SUMS (S) ALGORITHM A(KIND) Í B(KIND)

S Algo A Kind Algo B Kind
66 Naive composite Serial composite
66 Coarse composite Serial composite
66 Fine composite Serial composite
66 Naive mem-bound Serial composite
66 Fine mem-bound Serial composite
66 Coarse mem-bound Serial composite
66 Naive composite Serial mem-bound
66 Coarse composite Serial mem-bound
66 Coarse composite Naive mem-bound
66 Fine composite Serial mem-bound
66 Naive mem-bound Serial mem-bound
66 Fine mem-bound Serial mem-bound
66 Coarse mem-bound Serial mem-bound
69 Coarse composite Fine mem-bound
70 Serial mem-bound Serial composite
71 Fine composite Naive mem-bound
75 Fine composite Fine mem-bound
79 Fine composite Coarse mem-bound
85 Fine composite Naive composite
85 Coarse composite Coarse mem-bound

100 Coarse composite Naive composite

APPENDIX -- SOURCE CODE
All the source code used for this project is freely available

via the Scaly project home and downloadable as an Eclipse
project at http://code.google.com/p/scaly/. See the ParaBond
folder and the package, scaly.parabond.test. The table below
gives the algorithm and its source.

TABLE XI. SOURCE FILES

Algorithm Kind Scala source file
Serial Composite NPortfolio02

Memory-bound NPortfolio03
Naive Composite Par00

Memory-bound Par01
Fine Composite Par05

Memory-bound Par06
Coarse Composite Par04

Memory-bound Par07

