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Abstract— In this research an innovative fully automated 3D face 

compression and recognition system is presented. Several 

novelties are introduced to make the system performance robust 

and efficient. These novelties include: First, an automatic pose 

correction and normalization process by using curvature analysis 

for nose tip detection and iterative closest point (ICP) image 

registration. Second, the use of spherical based wavelet 

coefficients for efficient representation of the 3D face. The 

spherical wavelet transformation is used to decompose the face 

image into multi-resolution sub images characterizing the 

underlying functions in a local fashion in both spacial and 

frequency domains. Two representation features based on 

spherical wavelet parameterization of the face image were 

proposed for the 3D face compression and recognition. Principle 

component analysis (PCA) is used to project to a low resolution 

sub-band. To evaluate the performance of the proposed 

approach, experiments were performed on the GAVAB face 

database. Experimental results show that the spherical wavelet 

coefficients yield excellent compression capabilities with minimal 

set of features. Haar wavelet coefficients extracted from the face 

geometry image was found to generate good recognition results 

that outperform other methods working on the GAVAB 

database. 

Keywords-3D Face Recognition; Face Compression; Geometry 

coding; Nose tip detection; Spherical Wavelets. 

I. INTRODUCTION  

Representing and recognizing objects are two of the key 
goals of computer vision systems [1-5]. Computing a compact 
representation of an item is usually an intermediate stage of 
the vision system, yielding results used by other processes that 
perform more abstract operations on the data acquired from 
the objects.  Today, the recent development of 3D sensors and 
sensing techniques stimulated the demand for visualizing and 
simulating 3D data. The large amount of information involved 
and the complexity and speed requirements of the processing 
techniques demand the development of powerful yet efficient 
data compression techniques to facilitate the storage and 
transmission of data. The main objective of compression 
algorithms is to eliminate the redundancy present in the 
original data and to obtain progressive representations 
targeting the best trade-off between data size and 
approximation accuracy [1]. Recently, the interest in 3D face 

compression techniques has risen as a foundation stage in 
many areas with a wide range of   potential applications such 
as identification systems in the army, hospitals, universities, 
and banks to medical image compression and videophones, 
…etc.  

Among numerous biometric modalities, face recognition is 
one of the most natural and widely accepted authentication and 
identification methods mainly because of its nonintrusive 
nature [6-11]. This trend has caught the attention of many 
academic and research groups and face recognition has 
become one of the most intriguing and active research areas in 
pattern recognition and computer vision. In traditional 2D face 
recognition systems pose and illumination variations always 
have been challenging problems that severely influence the 
accuracy of system. In the last decade 3D face recognition is 
attracting more attention as the increased computing power 
and 3D scanning technology has enabled the capturing and 
recognition of faces in 3D [7-8]. The additional knowledge 
about 3D facial shape has proven to be very useful in 
eliminating many of the drawbacks of 2D face recognition. 
This is due to the fact that the acquisition of faces is (to some 
extent) invariant to changes in illumination during recording 
and comparison as most equipment based on active stereo 
vision is robust to illumination variations. In addition, 3D 
measurements fully preserve the 3D nature of faces and the 
depth information can easily be used to separate fore- and 
background. Finally, pose variations can be accounted for by 
complete transformations (rotation and translations) between 
different 3D images computed in the 3D space. This 
efficiently removes the transformation out of the image plane, 
which is very difficult in 2D face recognition. Therefore, 3D 
face recognition algorithms are less prone to changes in 
viewpoint, pose, lighting conditions and subject expressions. 
The decreasing cost of three-dimensional (3D) acquisition 
systems and their increasing quality, together with the greater 
computational power available nowadays, will make real-time 
3D systems for face recognition a commonplace in the near 
future. However, there exist some difficulties in 3D face 
recognition, such as coping with expression variations, the 
inconvenience of information capture and large computational 
costs, these problems have been the focus of recent research 
[8]. 
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Figure 1: Block diagram of the proposed 3D face compression and recognition system. 

 

In this paper, a robust and accurate 3D face compression 
and recognition system is proposed. Gaussian curvature 
analysis is used for nose tip detection and face region 
extraction. The Iterative closest point (ICP) is employed to 
automatically align the face image and to perform the required 
fine pose correction.  The system utilizes discriminative 
spherical wavelet coefficients which are robust to expression 
and pose variations to efficiently represent the face image with 
a small set of features. All processes included in the proposed 
system are fully automated and can be partitioned into two 
main stages: 3D preprocessing and registration, and spherical 
wavelet parameterization. The block diagram of the proposed 
system is presented in Figure 1. Descriptions of each stage are 
given as follows: 

(1) Preprocessing and registration: First we perform image 
smoothing using heat diffusion to filter out undesirable 
distortions and noise while preserving important facial 
features. Second, the nose tip is detected and used to remove 
irrelevant information such as data corresponding to the 
shoulder, neck, or hair areas. Third Delaunay Triangulation is 
applied to fill holes in the mesh of the extracted face region. 
Finally, the ICP algorithm is used to align the face image and 
to normalize the effect of face poses and position variations. 
This registration process typically applies rigid 
transformations such as translation and rotation on the 3D 
faces in order to align them.  

 (2) Spherical wavelet parameterization: Robust feature 
representation is very important to the whole system. It is 
expected that these features are invariant to rotation, scale, and 
illumination. In our systems, we extract compact 
discriminative features to describe the 3D Faces based on 
spherical Wavelet coefficients. First, the 3D face is mapped to 
the spherical parameterization domain. Second, the geometry 
image is obtained as a color image and a surface image. Third, 
the spherical based wavelet coefficients are computed for 
efficient representation of the 3D face. Two different 
approaches are utilized for obtaining the wavelet coefficients. 
In the initial approach, the geometry image is transformed to a 
semi-regular mesh where the spherical wavelet transform is 

applied. Alternatively, the Haar wavelet transform can be 
applied directly to the geometry image.  

The rest of this paper is organized as follows: An overview 
of related work in 3D face compression and recognition is 
presented in Section II. The preprocessing and normalization 
tools used in the system are described in Section III. The 
process of extracting the spherical wavelet coefficients from 
the 3D face images is explained in Section IV. Section V 
reports the experimental results and gives some comparisons 
with existing methods in the literature. Finally, we summarize 
the paper with some concluding remarks in Section VI. 

II. RELATEDWORK 

3D meshes are generally used in graphic and simulation 
applications for approximating 3D Faces. However, Mesh-
based surface representations of a face image require large 
amounts of storage space [1-5]. The emerging demand of 
applications calling for compact storage, efficient bandwidth 
utilization, and fast transmission of 3D meshes have inspired 
the multitude of algorithms developed to efficiently compress 
these datasets. Image compression has recently been a very 
active research area but the central concept is straightforward: 
we transform the image into an appropriate basis and then 
code only the important expansion coefficients. The problem 
of finding a good transform has been studied comprehensively 
from both theoretical and practical standpoints. Excellent 
survey of the various 3D mesh compression algorithms has 
been given by Alliez and C. Gotsman in [1, 2]. The recent 
development in the wavelet transforms theory has spurred new 
interest in multi-resolution methods, and has provided a more 
rigorous mathematical framework. Wavelets give the 
possibility of computing compact representations of functions 
or data. Additionally, wavelets are computationally attractive 
and allow variable degrees of resolution to be achieved. All 
these features make them appear as an interesting tool to be 
used for efficient representation of 3D objects.  

In a typical computer vision system, the compact 
representation generated from any compression system is used 
by other processes that perform further operations on the data 
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in the reduced dimension space. Compression algorithms 
propose a versatile and efficient tool for digital image 
processing serving numerous applications. 3D Face 
recognition is one of the imperative applications calling for 
compact storage and rapid processing of 3D meshes.  

Face recognition based on 3D information is not a new 
topic. It has been extensively addressed in the related literature 
since the end of the last century [6-11]. Further surveys of the 
state-of-the-art in 3D face recognition can be found in [7, 8].  
Various approaches are reported for extracting and comparing 
data from facial shapes, each with their own strengths and 
weaknesses. However, whatever approach is used, three issues 
always exist that have to be taken into account. (1) The type of 
facial representation used from which the data is extracted. (2) 
The way pose or facial orientation differences between 
different faces are handled which is usually easier in 3D than 
in 2D but still impose an important challenge. (3) Feature 
extraction and dimensionality reduction techniques embedded 
in the system. Several criteria can be adopted to compare 
existing 3D face algorithms by taking into account the type of 
problems they address or their intrinsic properties. For 
example, some approaches perform very well only on faces 
with neutral expression, whereas other approaches try to 
address the problem of expression variations. An additional 
measure of the robustness of the 3D model is its sensitivity to 
size and pose disparities. This is due to the fact that the 
distance between the target and the camera can affect the size 
of the facial surface, as well as its height and depth. 

3D Mesh-based surface representation is a popular facial 
representation strategy used in existing 3D face recognition 
techniques. In contrast to image-based representations, mesh-
based surface representations use a spatially dense discrete 
sampling across the whole surface, resulting in a 3D point 
cloud representation of the face. These 3D points can be 
connected into small polygons resulting in a mesh or 
wireframe representation of the face. For facial comparison 
purposes, automated resampling of the facial surface is 
required to generate consistent and corresponding points. This 
would be an impossible task manually due to the 1000s of 
points describing every face. The recognition methods that 
work directly on 3D point clouds consider the data in their 
original representation based on spatial and depth information. 
Point clouds are not properly located on a regular grid 
therefore a prior registration of the point clouds is usually 
required.  For this purpose, the ICP is the most widely used 
approach [6]. The classification is generally based on the 
Hausdorff distance that permits to measure the similarity 
between different point clouds. Chang et al. [7, 9] register 
overlapping face regions independently by using an ICP-based 
multi-region approach.  Alternatively, recognition could be 
performed with “3D Eigen faces” that are constructed directly 
from the 3D point clouds. Another option is to extract 
geometrical cues based on Eigen values and singular values of 
local covariance matrices defined on the neighborhood of each 
3D point [7]. The main drawback of the recognition methods 
based on 3D point clouds however resides in their high 
computational complexity that is driven by the large size of 
the data. Spherical representations have been used recently for 
modeling illumination variations [2, 12-13] or both 

illumination and pose variations in face images. Spherical 
representations permit to efficiently represent facial surfaces 
and overcome the limitations of other methods towards 
occlusions and partial views. To the best of our knowledge, 
the representation of 3D face point clouds as spherical signals 
for face recognition has however not been investigated yet. 
We therefore propose to take benefit of the spherical 
representations in order to build an effective and automatic 3D 
face recognition system. 

III. 3D PREPROCESSING AND REGISTARTION 

In this paper, each 3D face is described by a three-
dimensional surface mesh representing the visible face surface 
from the scanner viewpoint.  In this section, we describe how 
the original 3D data are preprocessed. The preprocessing of 
the 3D face images includes image smoothing and noise 
removal, nose tip detection, hole filling and the registration of 
the face surface.   

A. Image smoothing 

Image smoothing is an essential preprocessing stage that 
significantly affects the success of any image processing 
application. The main purpose of image smoothing is to 
reduce undesirable distortions and noise while preserving 
important features such as discontinuities, edges, corners and 
texture. Over the last two decades diffusion-based filters have 
become a powerful and well-developed tool extensively used 
for image smoothing and multi-scale image analysis. The 
formulation of the multi-scale description of images and 
signals in terms of scale-space filtering was first proposed by 
Witkin [14] and Koenderink [15].Their basic idea was to use 
convolutions with the Gaussian filter to removes small-scale 
features, while retaining the more significant ones and to 
generate fine to coarse resolution image descriptions. The 
diffusion process (also called heat equation or anisotropic 
diffusion), is equivalent to evolving the input image under a 
smoothing partial differential equation using the classical heat 
equation. Since the diffusion coefficient in the partial 
differential equation (PDE) smoothing techniques is designed 
to detect edges [16-17], the noise can be removed without 
blurring the edges of the image.  

In this paper we use the graph spectral image smoothing 
using the heat kernel proposed by Zhang and Hancock in [18] 
for smoothing the input image. The approach presents a 
discrete framework for anisotropic diffusion which is based on 
the heat equation on a graph instead of using diffusion-based 
PDEs in a continuous domain. The advantage of formulating 
the problem on a graph is that it requires purely combinatorial 
operators and as a result no discretization is required therefore 
the discretization error is eliminated.  Graphs are used to 
represent the arrangement of image pixels where the vertices 
in the graph correspond to image pixels. Each edge is assigned 
a real-valued weight, computed using Gaussian weighted 
distances between local neighboring windows. This weight 
corresponds to the diffusivity of the edge. To encode the 
image structure by a graph without losing information, a 
function is defined to map changes in the image data to edge 
weights. The Gaussian weighting function is widely used to 
characterize the relationship between different pixels. If we 
encode the intensities of the image as a column vector  ⃗ via 

http://en.wikipedia.org/wiki/Anisotropic_diffusion
http://en.wikipedia.org/wiki/Anisotropic_diffusion
http://en.wikipedia.org/wiki/Partial_differential_equation
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sequential row or column raster ordering of the image pixels 
then the weight can be calculated as follows: 

 (   )      
   (   )

  
 
       ‖ ( )   ( )‖    

                                 0                  otherwise                           (1) 

                                                              
Where X(i) and X(j) are the locations of pixels  i and j 

respectively, r is the distance threshold between two 
neighboring pixels which controls the local connectivity of the 
graph, and d(i, j) = | ⃗(i) −  ⃗⃗⃗(j)| is the difference between the 
intensities  ⃗(i) and  ⃗(j) of the two adjacent pixels indexed i 
and j. The adjacency weight matrix W is then used to compute 
the Laplacian matrix L as follows: 

L(i, j)=  T(i,j)-w(i,j)            if i=j 

               -w(i,j)                    if eijE 

                                       0                        otherwise               (2)  

 
Where T(i ,j) is a diagonal matrix computed as follow:  

 (   )     ( )  ∑  (   )   . The spectral decomposition 

of L=ɅT
, where Ʌ=diag(1,2,…..,  | |) Is the diagonal 

matrix with the eigenvalues ascending order.   
(          | |) is the matrix with the corresponding 

ordered eigenvectors as columns. 

In order to use the diffusion process to smooth a gray-scale 
image, we inject at each node an amount of heat energy equal 
to the intensity of the associated pixel. The heat initially 
injected at each node diffuses through the graph edges as time 
progresses. The edge weight plays the role of thermal 
conductivity. According to the edge weights determined from 
(1), if two pixels belong to the same region, then the 
associated edge weight is large. As a result heat can flow 
easily between them. The heat kernel Ht is a | | x | | 
symmetric matrix for nodes i, j in the graph the resulting heat 
element is calculated as follows: 

                   (   )   ∑      
| |
     ( )  ( )                         (3) 

And the heat equation on the graph can be characterized by 
the following differential equation: 

                                    
    

  
                                                   (4)                      

The algorithm can also be understood in terms of Fourier 
analysis, which is a natural tool for image smoothing. An 

image R
2
 normally contains a mixture of different frequency 

components. The low frequency components are regarded as 
the actual image content and the high frequency components 
as the noise. From the signal processing viewpoint, the 
approach is an extension of the Fourier analysis to images 
defined in graphs. This is based on the fact that the classical 
Fourier analysis of continuous signals is equivalent to the 
decomposition of the signal into a linear combination of the 
eigenvectors of the graph Laplacian. The eigenvalues of the 
Laplacian represent the frequencies of the eigenfunctions. As 
the frequency component (eigenvalue) increases, then the 
corresponding eigenvector changes more rapidly from vertex 
to vertex. This idea has been used for surface mesh smoothing 
in [19]. The image  ⃗  defined on the graph G can be 
decomposed into a linear combination of the eigenvectors of 
the graph Laplacian L, i.e. 

                          ∑     
| |
                                                     (5) 

 
To smooth the image using Fourier analysis, the terms 

associated with the high frequency eigenvectors should be 
discarded. However, because the Laplacian L is very large 
even for a small image, it is too computationally expensive to 
calculate all the terms and the associated eigenvectors in (5).  
An efficient alternative is to estimate the projection of the 
image onto the subspace spanned by the low frequency 
eigenvectors, as is the case with most of the low-pass filters. 
We wish to pass low frequencies, but attenuate the high 
frequencies. According to the heat kernel, the function 
    acts as a transfer function of the filter such that     ≈ 1 
for low frequencies, and     ≈ 0 for high frequencies.  
Therefore, the graph heat kernel can be regarded as a low-pass 
filter kernel. Figure 2 shows the face image before and after 
image smoothing. 

B. Nose tip detection 

Our 3D face compression and recognition system permits 
the faces to be freely oriented with respect to the camera plane 
with the only limitation being that no occlusions to hide the 
major face features such as the eyes, the nose, etc. Having this 
imperative advantage of being viewpoint invariant requires the 
detection of some facial features for proper face alignment. In 
this research alignment was performed automatically in two 
levels: coarse and fine. The coarse alignment is based on nose 
tip detection whereas the fine alignment is attained using the 
ICP registration algorithm. Nose tip is an important face 
feature point widely used for alignment due to its distinctive 
features.  

 
                                        (a)                                       (b) 

Figure 2. Heat diffusion image smoothing. (a) Input image (b) Image 

after smoothing using weights from Eq. (1). 

The nose is the highest protruding point from the face that 
is not prone to facial expression. Knowledge of the nose 
location will enable us to align an unknown 3D face with those 
in a face database. Besides that, the head pose can be deduced 
from information obtained from the nose. Therefore nose tip 
detection is an important part of a 3D face preprocessing [20-
25]. 

Using 2D images, past works have included using 
luminance values to locate the nose tip [20-25]. This was 
achieved because the nose tip has a lower luminance value 
compared to other parts of the face. Besides that, the nostrils 
are considered as valley regions in a curvature map. However, 
this method would only work if the face was at a frontal 
position and looking straight into the camera. Tilted heads and 
non-frontal faces may cause error in nose detection since the 
nose tip luminance value might change or the nostrils cannot 
be detected. Other 2D works include training the computer to 
detect the nose using Support Vector Machine (SVM) or by 
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using contrast values and edge detection to locate the nose. 
The drawbacks are SVM has high computational complexity, 
thus a slow training time while the contrast and edge detection 
method is affected by expression changes. Using 3D images, 
one of the methods used was to take horizontal slices of the 
face and then draw triangles on the slices. The point with the 
maximum altitude triangle will be considered the nose tip. 
This method will work for frontal and non-frontal faces. 
However, for faces tilted to the top, bottom, left or right, errors 
can occur. This is because in these conditions, the nose tip on 
the horizontal slices will not be the maximum protruding 
point. Another method to locate the nose tip from 3D images 
was proposed by Xu et al. [22]. To locate the nose tip, this 
method calculates the neighboring effective energy of each 
pixel to locate suitable nose candidates. It then calculates the 
neighboring mean and variance of each pixel and then uses 
SVM to further narrow down the nose tip candidates. Finally, 
the nose tip is found by choosing the area which has the top 
three densest nose candidate regions. This method is able to 
locate nose tip from both frontal and non-frontal faces as well 
as tilted faces. However, it requires SVM which has high 
computational complexity. 

In this paper the HK curvature analysis is utilized for 
efficient nose tip detection. To analyze the curvature of 3D 
faces we let S be the surface defined by a twice differentiable 
real valued function 

f: U   R defined on an open set U  R
2
 

                  S= {(x, y, z)  (x,y) U, z R; f(x,y) =z}               (6)                                                                                            

For every point (x, y, z)  S we consider two curvature 
measures, the mean curvature (H) and the Gaussian curvature 
(K) defined as follows: 

                    (   )   
(    

 )             (    
 )   

 (    
    

 )
                      (7)                                                                                      

                              (   )   
          

 

(    
    

 )
                                      (8)  

Where fx, fy, fxx, fyy, fxy are the first and second derivatives 
of f(x, y). 

In our system the face image is represented using an NxM 
range image. Since we have only a discrete representation of 
S, we must estimate the partial derivatives. For each point (xi, 
yj ) on the grid we considered a biquadratic polynomial 
approximation of the surface: 

gij (x, y) = aij + bij (x − xi ) + cij (y − yj ) + dij (x − xi)(y − yj ) + 

eij (x − xi )
2
 + fij (y − yj )

2
, i= 1 . . . N, j = 1 . . . M                   (9) 

The coefficients aij, bij, cij, dij, eij, fij are calculated by least 
squares fitting of the points in a neighborhood of (xi, yj ) . The 
derivatives of f in (xi, yj) are then estimated by the derivatives 
of gij : 

fx(xi, yj ) = bij,  fy(xi, yj ) = cij,  fxy(xi, yj ) = dij ,  fxx(xi, yj ) = 2eij, 

fyy(xi, yj ) = 2fij .                                                                     (10) 

HK classification of the points of the surface is performed 
to obtain a description of the local behavior of the surface. HK 
classification was introduced by Besl in 1986 [25]. Image 

points can be labeled as belonging to a viewpoint-independent 
surface shape class type based on the signs of the Gaussian 
and mean curvatures as shown in Table I.  

As proposed by Gordon [26] we use the thresholding 
process to isolate regions of high curvature and to extract the 
possible feature points that can be utilized in face alignment 
during the recognition process. The possible extracted feature 
points are the two inner corners of the eyes and the tip of the 
nose. Since the calculation of Gaussian curvature involves the 
second derivative of the surface function, the noise and the 
artifacts severely affect the final result and applying a 
prepressing low-pass filter to smooth the data is required. The 
surface that either has a peak or a pit shape has a positive 
Gaussian curvature value (K > 0).  Points with low curvature 

values are discarded: |H(u, v)| Th, |K(u, v)| Tk, where Th and 
Tk are predefined thresholds. A nose tip is expected to be a 
peak (K > TK and H > TH), a pair of eye cavities to be a pair of 
pit regions (K > TK and H < TH) and the nose bridge to be a 
saddle region (K < TK and H > TH). These thresholds were 
experimentally tested to consider a smaller number of cases 
and reduce the system pipeline overhead, before choosing 
values similar to those used by Moreno et al. [27]  where 
(Th=0.04; Tk=0.0005). 

TABLE I. SURFACE CLASSIFICATION AND THE CORRESPONDING MEAN (H) AND 

GAUSSIAN (K) CURVATURES. 

 K<0 K=0 k>0 

H<0 
Hyperbolic 

Concave( saddle ridge) 

Cylindrical 

Concave(ridge) 

Elliptical 

Concave(peak) 

H=0 
Hyperbolic 

symmetric (minimal) 
Planar(flat) Impossible 

H>0 
Hyperbolic 

Convex (saddle valley) 

Cylindrical 

Convex (valley) 

Elliptical 

Convex (pit) 

 

Once the nose tip is successfully determined as the point 
with maximum z value, we translate it to the origin and align 
all the face to it.   All the points of the face region are located 
under the nose tip with negative z values. By choosing a 
proper z- threshold value the face region can be extracted and 
irrelevant data can be removed such as points corresponding to 
the hair, neck and shoulders. Figure 3 shows the result of 
calculating the Gaussian curvature for one of the sample 
images in the gallery. After localizing the facial area, the 
portion of the surface below the detected nose tip is projected 
to a new image to have the face turned upright and where the 
nose is taken as the origin of the reference system. As can be 
seen in Figure 3(d) the detected face region contains holes that 
need to be filled. The Delaunay triangulations algorithm [28] 
was utilized in this research to fill missing areas in the 
detected face region and to place them on a regular grid. 

C. Face Registration 

The nose tip detection phase described above yields an 
initial raw position and orientation of the face which is very 
useful for the registration process. Although nose tip detection 
is sufficient for coarse face alignment, face registration is 
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essential to ensure that all 3D face images have the same pose 
before the spherical parameterization stage. The registration 
process typically applies rigid transformations on the 3D faces 
in order to align them. The ICP algorithm (originally Iterative 
Closest Point, and sometimes known as Iterative 
Corresponding Point) proposed by Besl and McKay [29] is a 
well-known standard algorithm for model registration due to 
its generic nature and its ease of application. ICP has become 
the dominant technique for geometric alignment of three-
dimensional models when an initial estimate of the relative 
pose is known. Many variants of ICP have been proposed, 
optimizing the performance of the different stages of the 
algorithm such as the selection and matching of points, the 
weighting of the corresponding point pairs, and the error 
metric and minimization strategies [30-31]. An excellent 
survey of the recent variants of the ICP algorithm has been 
given by Rusinkiewicz and Levoy [30]. 

ICP starts with two point clouds of data X and Y, 
containing, N points in R

3
 and an initial guess for their relative 

rigid-body transform. ICP attempts to iteratively refine the 
transformation M consisting of a rotation R, and translation T, 
which minimizes the average distance between corresponding 
closest pairs of corresponding points on the two meshes. At 

each ICP iteration, for each point    X  for i= {1...N}, the 

closest point,    Y is found along with the distance, dN, 
between the two points. 

  

    (a)                            (b)                       (c)                            (d) 

Figure 3. HK classification of face image. (a) Mean curvature (b) 
Gaussian curvature (c) Nose-tip detection (d) Detected face region. 

This is the most time consuming part of the algorithm and 
has to be implemented efficiently. Robustness is increased by 
only using pairs of points whose distance are below a 
predefined threshold. As a result of this first step one obtains a 
point sequence Y = (y1, y2,... ) of closest model face points to 
the data point sequence X = (x1, x2, …)where each point xi 
corresponds to the point yi with the same index. In the second 
step, the rigid transformation M is computed such that the 
moved points M(xi)  are moved in a least squares sense as 
close as possible to their closest points on the model shape yi, 
where the objective function to be minimized is: 

                               ∑ ‖ (  )    ‖
  

                               (11)                                                                                                                                               

The singular value decomposition of these points is then 
calculated and rotation/ translation parameters are calculated.  
After this second step the positions of the data points are 
updated via Xnew = M(Xold). Since the value of the objective 
function decreases in steps 1 and 2, the ICP algorithm always 
converges monotonically to a local minimum. This process is 
repeated either until either the mean square error falls below a 
predefined threshold or the maximum number of iterations is 
reached. The generic nature of ICP leads to convergence 
problems when the initial misalignment of the data sets is 
large. The impact of this limitation in the ICP process upon 

facial registration can be counteracted through the use of 
preprocessing stage that can be used to give a rough estimate 
of alignment from which we can be confident of convergence. 
Generating the initial alignment may be done by a variety of 
methods, such as tracking scanner position, identification and 
indexing of surface features, “spin-image” surface signatures, 
computing principal axes of scans, exhaustive search for 
corresponding points, or user input. In this paper, we assume 
that a rough initial alignment is always available through the 
HK curvature analysis performed in the preceding step. Figure 
4 presents the face image before and after the ICP registration 
process.   

IV. SPHERICAL WAVELET PARAMETRIZATION  

Wavelets have been a powerful tool in planner image 
processing since 1985 [1-5, 12, 13, 32-36].  They have been 
used for various applications such as image compression [1, 2, 
5], image enhancement, feature detection [8, 33], and noise 
removal [32]. Wavelets posse many advantages over other 
mathematical transforms such as the DFT or DCT as they 
provide more rigorous mathematical frame work that have the 
ability of computing accurate and compact representations of 
functions or data with only a small set of coefficients. 
Furthermore, wavelets are computationally attractive and they 
allow variable degrees of detail or resolution to be achieved. 

 

 
                                     (a)                                 (b) 

Figure 4. (a) Face image before registration and fill holes (b) Face image 

after registration and fill holes. 

 
In the signal processing context the wavelet transform is 

often referred to as sub-band filtering and the resulting 
coefficients describe the features of the underlying image in a 
local fashion in both frequency and space making it an ideal 
choice for sparse approximations of functions. Locality in 
space follows from their compact support, while locality in 
frequency follows from their smoothness (decay towards high 
frequencies) and vanishing moments (decay towards low 
frequencies).  Therefore, 3D wavelet-based object modeling 
techniques have appeared recently as an attractive tool in the 
computer However, traditional 2D wavelet methods cannot be 
directly extended to 3D computer vision environments, 
possibly for two main reasons: Wavelet representations are not 
translation invariant [5, 32]. The sensors used in 3D vision 
provide data in a way which is difficult to analyze with 
standard wavelet decompositions. Most 3D sensing techniques 
provide sparse measurements which are irregularly spread 
over the object’s external surface. This is also important, 
because sampling irregularity prevents the straightforward 
extension of 1D or 2D wavelet techniques. 

Despite the drawbacks of multi-resolution object 
representations we believe it have a bright future in 3D 
computer vision for several reasons [5]. First, the bottom-up 
scene analysis methods essentially attempt to create 
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hierarchical symbolic representations. Wavelets are excellent 
for creating hierarchical geometric representations, which can 
be useful in the image data analysis process. Second, going to 
3D implies an important increase in complexity. Wavelet 
decompositions can provide alternative domains in which 
many operations can be performed effectively. In this paper 
we utilize a wavelet transform constructed with the lifting 
scheme for scalar functions defined on the sphere. Aside from 
being of theoretical interest, a wavelet construction for the 
sphere has numerous practical applications since many 
computational problems are naturally stated on the sphere. 
Examples from computer graphics include: topography and 
remote sensing imagery, simulation and modeling of 
bidirectional reflection distribution functions, illumination 
algorithms, and the modeling and processing of directional 
information such as environment maps and view spheres. 

A. Spherical Parameterization  

Geometric models are often described by closed, genus-
zero surfaces, i.e. deformed spheres. For such models, the 
sphere is the most natural parameterization domain, since it 
does not require cutting the surface into disk(s). Hence the 
parameterization process becomes unconstrained [35]. Even 
though we may subsequently resample the surface signal onto 
a piecewise continuous domain, these domain boundaries can 
be determined more conveniently and a posteriori on the 
sphere. Spherical parameterization proves to be challenging in 
practice, for two reasons. First, for the algorithm to be robust it 
must prevent parametric “foldovers” and thus guarantee a 1-
to-1 spherical map. Second, while all genus-zero surfaces are 
in essence sphere-shaped, some can be highly deformed, and 
creating a parameterization that adequately samples all surface 
regions is difficult. Once a spherical parameterization is 
obtained, a number of applications can operate directly on the 
sphere domain, including shape analysis using spherical 
harmonics, compression using spherical wavelets [2, 5 ], and 
mesh morphing [36]. 

Given a triangle mesh M, the problem of spherical 
parameterization is to form a continuous invertible map φ: 
S→M from the unit sphere to the mesh. The map is specified 
by assigning each mesh vertex v a parameterization φ

-1
(v)   S. 

Each mesh edge is mapped to a great circle arc, and each mesh 
triangle is mapped to a spherical triangle bounded by these 
arcs. To form a continuous parameterization φ, we must define 
the map within each triangle interior. Let the points {A, B, C} 
on the sphere be the parameterization of the vertices of a mesh 
triangle {A'= φ (A), B'= φ (B), C'= φ (C)}. Given a point P'= 
αA'+βB'+γC' with barycentric coordinates α+β+γ=1 within 
the mesh triangle, we must define its parameterization P =φ

-

1
(P'). Any such mapping must have distortion since the 

spherical triangle is not developable.  

B. Geometry Image 

A simple way to store a mesh is using a compact 2D 
geometry images. Geometry images was first introduced by 
Gu et al. [2, 37] where the geometry of a shape is resampled 
onto a completely regular structure that captures the geometry 
as a 2D grid of [x, y, z] values. The process involves 
heuristically cutting open the mesh along an appropriate set of 
cut paths. The vertices and edges along the cut paths are 

represented redundantly along the boundary of this disk. This 
allows the unfolding of the mesh onto a disk-like surface and 
then the cut surface is parameterized onto the square. Other 
surface attributes, such as normals and colors, are stored as 
additional 2D grids, sharing the same domain as the geometry, 
with grid samples in implicit correspondence, eliminating the 
need to store a parameterization. Also, the boundary 
parameterization makes both geometry and textures seamless. 
The simple 2D grid structure of geometry images is ideally 
suited for many processing operations. For instance, they can 
be rendered by traversing the grids sequentially, without 
expensive memory-gather operations (such as vertex index 
dereferencing or random-access texture filtering). Geometry 
images also facilitate compression and level-of-detail control. 
Figure 5(a)-(d) presents the spherical and geometric 
representations of the face image. 

 

 
                (a)                              (b)                           (c)                       (d)  

Figure 5. (a) Initial mapping of face mesh on a sphere (b) Final spherical 
configuration (c) Geometry image as a color image   (d) geometry image as a 

surface image where the red curves represent the seams in the surface to map 

it onto a sphere. 

C. Wavelet Transform 

Haar Transform 

Geometry images are regularly sampled 2D images that 
have three channels, encoding geometric information (x, y and 
z) components of a vertex in R

3
 [37]. Each channel of the 

geometry image is treated as a separate image for the wavelet 
analysis. The Haar wavelet transform has been proven 
effective for image analysis and feature extraction. It 
represents a signal by localizing it in both time and frequency 
domains.  The Haar wavelet transform is applied separately on 
each channel creating four sub bands LL, LH, HL, and HH 
where each sub band has a size equal to 1/4 of the original 
image.  The LL sub band captures the low frequency 
components in both vertical and horizontal directions of the 
original image and represents the local averages of the image. 
Whereas the LH, HL and HH sub bands capture horizontal, 
vertical and diagonal edges, respectively. In wavelet 
decomposition, only the LL sub band is used to recursively 
produce the next level of decomposition. The biometric 
signature is computed as the concatenation of the Haar wavelet 
coefficients that were extracted from the three channels of the 
geometry image. 

Spherical Wavelets 
To be able to construct spherical wavelets on an arbitrary 

mesh, this surface mesh should be represented as a multi-
resolution mesh, which is obtained by regular 1:4 subdivision 
of a base mesh [12, 13, 38].  A multi-resolution mesh is 
created by recursive subdivision of an initial polyhedral mesh 
so that each triangle is split into four “child” triangles at each 
new subdivision level. Denoting the set of all vertices on the 
mesh before the j

th
 subdivision as K(j) a set of new vertices 
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M(j) can be obtained by adding vertices at the midpoint of 
edges and connecting them with geodesics. Therefore, the 
complete set of vertices at the j+1

th
 level is given by K(j+1) 

=K(j) M (j). Consequently, the number of vertices at level j 
is given by: 10*4

j
+2. This process is presented in Figure 6 (a)-

(f) where the face image is shown at 5 different subdivision 
levels. 

 
                         (a)                                (b)                                (c) 

 
                     (d)                                     (e)                                (f) 

Figure 6. Visualization of recursive partitioning of the face mesh at different 
subdivision levels. (a) Initial icosahedron (scale 0). (b) Single partitioning of 

icosahedron (scale 1). (c) Two recursive partitioning of icosahedron (scale 2). 
(d) Three recursive partitioning of icosahedron (scale 3). (e) Four recursive 

partitioning of icosahedron (scale 4). (f) five recursive partitioning of 

icosahedron (scale 5). 

In this research, we use the discrete bi-orthogonal spherical 
wavelets functions defined on a 3-D mesh constructed with the 
lifting scheme proposed by Schröder and Sweldens [12, 13, 
38, 39]. Spherical wavelets belong to second generation 
wavelets adapted to manifolds with non-regular grids. The 
main difference with the classical wavelet is that the filter 
coefficients of second generation wavelets are not the same 
throughout, but can change locally to reflect the changing   
nature of the surface and its measure.  They maintain the 
notion that a basis function can be written as a linear 
combination of basis functions at a finer, more subdivided 
level. Spherical wavelet basis is composed of functions 
defined on the sphere that are localized in space and 
characteristic scales and therefore match a wide range of 
signal characteristics, from high frequency edges to slowly 
varying harmonics [38, 40].   The basis is constructed of 
scaling functions defined at the coarsest scale and wavelet 
functions defined at subsequent finer scales. If there exist N 
vertices on the mesh, a total of N basis functions are created, 
composed of scaling functions and where N0 is the initial 
number of vertices before the base mesh is subdivided. An 
interpolating subdivision scheme is used to construct the 

scaling functions on the standard unit sphere S denoted by  j,k. 

The function is defined at level j and node k  k(j) such that 
the scaling function at level j is a linear combination of the 
scaling function at level j and j+1.  Index j specifies the scale 
of the function and k is a spatial index that specifies where on 
the surface the function is centered. Using these scaling 

functions, the wavelet      at level j and node m  M(j)   can 

be constructed by the lifting scheme. A usual shape for the 
scaling function is a hat function defined to be one at its center 
and to decay linearly to zero. As the j scale increases, the 
support of the scaling function decreases. A wavelet function 

is denoted by j,k:S R. The support of the functions becomes 
smaller as the scale increases. Together, the coarsest level 

scaling function and all wavelet scaling functions construct a 
basis for the function space L

2
: 

                    {    |    }  {     |         }        (12)                                                                                                             

A given function f: S R can be expressed in the basis as a 
linear combination of the basis functions and coefficients 

              ( )  ∑         ( )  ∑ ∑  
   
     ( )       (13)                                                                                                       

Scaling coefficients 0, k represent the low pass content of 
the signal f, localized where the associated scaling function 

has support; whereas, wavelet coefficients  j,m represent 
localized band pass content of the signal, where the band pass 
frequency depends on the scale of the associated wavelet 
function and the localization depends on the support of the 
function. Figure 7 (a)-(e) presents the spherical wavelets of the 
face image. 

 

   
                      (a)                            (b)                               (c)                               

                                     
                                      (d)                             (e) 

 

Figure 7. Spherical wavelet transform of face image. (a) using 2% of wavelet 

coefficients (b) using 5% of wavelet coefficients (c) using 10% of wavelet 
coefficients (d) using 20% of wavelet coefficients (e) Using all coefficients.  

D. Dimensionality Reduction 

Principal Component Analysis (PCA) [23] is a well-known 
technique extensively used for dimensionality reduction in 
computer vision and image recognition. The basic idea of PCA 
is to find an alternate set of orthonormal basis vectors which 
best represent the data set.  This is to maintain the information 
content of the original feature space while projecting into a 
lower dimensionality space more appropriate for modeling and 
processing. It is possible to use a subset of the new basis 
vectors to represent the same data with a minimal 
reconstruction error.  

V. EXPERIMENTAL RESULTS 

The GAVAB 3D face database [41] was used for the 
evaluation of the proposed system. GAVAB database contains 
549 3D facial surface images corresponding to 61 individuals 
(45 males and 15 females). Facial surfaces are represented by 
a mesh of connected 3D points without texture provided by the 
3D digitizer VI 700 of Konica-Minolta. Cells of each mesh 
have four non-coplanar nodes, and sometimes three (in the 
contour). All subjects in the database are Caucasian with ages 
between 18 and 40 years. For each individual, there are nine 
different images containing systematic variations over the pose 
and facial expression. In particular, for teach subject there are:  
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two frontal views with neutral expression, two x-rotated views 
(±30º, looking up and looking down respectively) with neutral 
expression, two y-rotated views (±90º, left and right profiles 
respectively) with neutral expression and 3 frontal gesture 
images (laugh, smile and a random gesture chosen by the user, 
respectively).  

A. 3D Face Compression 

The spherical wavelet transform can be used to compress 
the semi-regular mesh by keeping only the biggest 
coefficients.  Different percentages of the biggest wavelet 
coefficient were examined and each time the inverse wavelet 
transform was utilized to reconstruct the approximation face. 
Figure 8 (a)-(e) shows the reconstructed versions of the 
original face image using different percentages of wavelet 
coefficients. As can be seen from Figure 8 there is no visually 
distinguishable difference between the original image and the 
corresponding reconstructed images using the various subsets 
of the wavelet coefficients. The face image can be 
approximated with a reasonable quality using only 2% of the 
wavelet coefficients. Figure 9 (a)-(d) presents the original 
mesh, wavelet transform and the reconstructed images for face 
images with various pose and facial expressions.  

 
                    (a)                                (b)                                  (c)  

 
                                      (d)                                     (e) 

Figure 8. Wavelet approximation of face image. (a) using 2% of wavelet 

coefficients (b) using 5% of wavelet coefficients(c) using 10% of 
wavelet coefficients (d) using 20% of wavelet coefficients (e) Using all 

coefficients. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.  Wavelet approximation of face image for various facial 

expressions and orientations. (a) Angry expression (b) Laugh expression 
(c) Looking up (d) Looking left. 

The Normalized Error (NE) and Normalized Correlation 
(NC) were used to evaluate the quality of the reconstructed 
face image.  NE is given as follows: 

                                        NE= 
‖   ‖

‖ ‖
                                    (14) 

Where X is the original image and Y is the reconstructed 
image. i.e. NE is the norm of the difference between the 
original and reconstructed signals, divided by the norm of the 
original signal. The NC is given: 

                                  
∑ ∑  (   ) (   ) 

   
 
   

∑ ∑  (   ) (   ) 
   

 
   

                        (15) 

Where MxN is the size of the image. The NE and the NC 
values of the reconstructed images are presented in Table II 
for the different wavelet subsets. 

 
TABLE II.  NE AND NC FOR VARIOUS WAVELET SUBSETS. 

 2% 5% 10% 20% 100% 

NE 0.67 0.3 0.14 0.06 0 

NC 0.9982 0.9997 0.9998 1.0 1.0 

 
The NE and NC values indicate that the reconstructed 

images are the very similar to the original image. In the case of 
using only 2% of the wavelets coefficients, the relative error of 
reconstruction is 0. 67%. The reconstructed signal retains 
approximately 99.33% of the energy of the original signal. 
  

B. 3D Face Recognition 

Two approaches for feature extraction were employed to 
compare the abilities of the different wavelet transforms 
applied to the spherical parameterization of the 3D face image. 
First the spherical wavelet transform is applied to the semi-
regular mesh of the face image. For further dimensionality 
reduction PCA is utilized to reduce the size of the feature 
vector. Second, the 2-dimentional Haar wavelet transform is 
applied to each of the three channels of the geometric image. 
The geometry image regularly samples the face surface and 
encodes this information on a 2D grid. Each of the X, Y, and Z 
channels of geometry image are treated as separate images. 
The concatenation of the Haar wavelet coefficients extracted 
from the three channels is used as the feature vector 
(metadata). Each application of the Haar wavelet 
decomposition reduces the size of the image to 1/4 of its 
original size.  For further data reduction 4-level wavelet 
decomposition is performed. For example, for the 4-level 
wavelet decomposition the generated feature vector of 3(8x8) 
=192 features is the input to the K-fold cross validation 
method.  
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K-fold cross-validation is a well-known statistical method 
used to evaluate the performance of a learning algorithm [42].  
It outperforms the traditional holdout method that divides the 
dataset into two fixed non-overlapped subsets: one for training 
and the other for testing. The major drawback of holdout 
method is that the results are highly dependent on the choice 
for the training/test split. Alternatively, in k-fold cross 
validation the data set is partitioned into k equally or nearly 
equal subsets. Subsequently,   k iterations of the holdout 
method are performed. In each iteration, one of the k subsets is 
used as the test set and the other k-1 subsets are put together to 
form a training set.  The average error across all k trials is 
computed. The main advantage of this method is that it is 
insensitive to how the data gets divided. Every data point gets 
to be in a test set exactly once, and gets to be in a training set 
k-1 times. The variance of the resulting estimate is reduced as 
k is increased. The main disadvantage of this method is that 
the k iterations of training are required, which means it takes k 
times as much computation to make an evaluation.  

Table III shows the number of the extracted features and 
the recognition rates for the different feature extraction 
methods.  

TABLE III.  RECOGNITION PERFORMANCE FOR VARIOUS FEATURE EXTRACTION 

METHODS. 

Feature Extraction Method Recognition Rate Number of Features 

Spherical Wavelet +PCA 21% 2000/300 

Haar (2-level decomposition)+ PCA 28% 3072/50 

Haar (3-level decomposition)+ PCA 31% 768/50 

Haar (4-level decomposition ) 86% 192 

 

The best average recognition rate of 86% is achieved using 
the 4-level Haar wavelet decomposition with only 192 
features. This is a clear indication that the wavelet features 
extracted from spherical parameterization are a promising 
alternative for face recognition. However further research is to 
be performed to improve the recognition rate. 

The performance of the proposed face recognition system 
based upon the 3D face images of the GAVAB dataset was 
compared to three different approaches presented by Moreno 
et al. in [43-45].  In the first approach [43], the range images 
were segmented into isolated sub-regions using the mean and 
the Gaussian curvatures. Various facial descriptors such as the 
areas, the distances, the angles, and the average curvature were 
extracted from each sub-region. A feature set consisting of 35 
best features was selected and utilized for face recognition 
based on the minimum Euclidean distance classifier. An 
average recognition rate of 70% was achieved for images with 
neutral expression and for the images with pose and facial 
expressions. In the second approach [44], a set of 30 features 
out of the 86 features was selected and an average recognition 
rates of 79.1% and 84.03%when the images were classified 
using PCA and support vector machines (SVM) matching 
schemas respectively. In the third approach [45], the face 
images were represented using 3D voxels. An average 
recognition rate of 84.03% was achieved. Table IV 

summarizes the results as well as the results obtained from the 
proposed system.  

TABLE IV.  COMPARISON OF RECOGNITION RATES FOR VARIOUS 3D FACE 

RECOGNITION ALGORITHMS BASED ON THE GAVAB DATASET  

Technique Avg. Recognition Rate Number of Features/ Classifier 

Moreno et al. [34] 70% 35/Euclidean Distance 

Moreno et al. [15] 
79.1% 

84.03% 

30 features / PCA 

30 features / SVM 

Moreno et al. [16] 84.03% 3D voxel/ PCA and SVM 

Proposed system 86% 192/ K-fold cross-validation 

As shown in Table IV, the proposed method based on 4-
level Haar wavelet decomposition yields the best recognition 
rate of 86%. This is a clear indication that the wavelet feature 
set extracted from spherical parameterization is a promising 
alternative for 3D face recognition. However further 
investigation is to be performed to improve the recognition 
rate. 

VI. CONCLUSION 

In this paper an innovative approach for 3D face 
compression and recognition based on spherical wavelet 
parameterization was proposed. First, we have introduced a 
fully automatic process for the preprocessing and the 
registration of facial information in the 3D space. Next, the 
spherical wavelet features were extracted which provide a 
compact descriptive biometric signature. Spherical 
representation of faces permits effective dimensionality 
reduction through simultaneous approximations. The 
dimensionality reduction step preserves the geometry 
information, which leads to high performance matching in the 
reduced space. Multiple representation features based on 
spherical wavelet parameterization of the face image were 
proposed for the 3D face compression and recognition. The 
GAVAB database was utilized to test the proposed system. 
Experimental results show that the spherical wavelet 
coefficients yield excellent compression capabilities with 
minimal set of features. Furthermore, it was found that Haar 
wavelet coefficients extracted from the geometry image of the 
3D face yield good recognition results that outperform other 
methods working on the GAVAB database.  
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