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Abstract—A process for replacing a voluminous image 

dictionary, which characterizes a certain target of interest in a 

constrained zone of effectiveness representing controlled states 

including scale and view angle, with a synthetic template has been 

developed. Synthetic template (ST) is a spatial map (grayscale 

image) obtained by combining the set of zone-specific training 

images that are ascribed to the target of interest. It has been 

shown that the solo-template ST correlation filter outperforms 

filter banks comprised of multiple target-class training images. A 

geometric interpretation of the basic ST concept is employed in 
order to further explain and substantiate its properties.  

Keywords—machine vision; image procession; target 

classification; correlation filter 

I. INTRODUCTION 

Machine vision involves the process of autonomous 
assessment of imagery data in a wide array of applications 
ranging from robotic navigation to biometrics and automatic 
detection and tracking of targets [1-5]. Computers are utilized 
to detect, identify and track objects of interest based on their 
electromagnetic or acoustic signatures, which may be 
expressed as two-dimensional data arrays obtained through an 
assortment of modalities including visible, infrared and 
synthetic aperture radar (SAR) imagery [6]. In the context of 
this paper a digital image is the result of spatial sampling and 
quantization of the filtered light energy emanating from the 
object and impinging on the focal plane of the optical sensor. 
Low level machine vision involves processing at the pixel 
level including image operations such as smoothing, 
enhancement and edge detection. Midlevel machine vision 
moves beyond pixels and involves larger abstractions such as 
shape, geometry and texture based classification, and high 
level vision involves context cognition including image 
understanding and interpretation [7-13]. This paper addresses 
a midlevel machine vision problem involving the development 
of a supervised learning algorithm for imagery based 
classification of objects. The goal is to develop a classifier that 
can determine the presence and location of the object of 
interest in arbitrary two-dimensional images. The classifier is 
constructed using a set of training images that represent the 
object of interest under assorted object states and viewing 
conditions that characterize the classifier's intended zone of 
effectiveness. The resultant classifier must be robust, in the 
sense of its ability to detect and locate with high reliability the 
object of interest under arbitrary view conditions within the 

intended zone of effectiveness. It must also be 
computationally efficient in terms of its ability to operate on 
large image files with low latency, using readily available 
hardware platforms. The two requirements of locating ability 
and computational efficiency of the desired classifier point in 
the direction of Fourier filtering [14].  

The optimal procedure for determination of the presence of 
a known signal in the input waveform generated by the sensor, 
whose output is potentially corrupted by an additive stationary 
noise process, is matched filtering [15-17]. The matched filter 
is the optimal linear signal processor in the sense of 
maximizing signal-to-noise ratio (SNR) at the detector output. 
Under special circumstances, where the power spectral density 
of the noise process is uniform (white noise), the impulse 
response of the matched filter is equivalent to the time/space-
reversed version of the sought after signal. The optimal 
method for detecting the presence of a known signal in the 
input waveform which is corrupted by an additive white 
Gaussian noise (AWGN) process is therefore cross-correlating 
the waveform with a replica of the signal of interest. 

Pattern matching, where a window containing an image of 
the sought after object (target) is slid over the image under 
test, is a conventional approach to locating targets of interest 
in the input image [18-20]. Generally, a typical target of 
interest is characterized by many windows comprising the 
target-class training set of images. Each window pertains to 
the target image under a specific view condition such as scale, 
pose, lighting, possible partial obscuration, view and 
illumination directions, etc. An actual target in real images can 
render countless patterns due to variations in range (scale), 
both in-plane and out-of-plane rotation (pose), environmental 
conditions including lighting, shadow and partial obscuration 
effects [21-27]. Any given object can cast infinitely may 
different projections upon the sensor's focal plane array and 
therefore can produce countless images. Object image 
variability may arise from intrinsic and extrinsic 
inconsistencies. Intrinsic effects include object deformation, 
articulation and pose, and extrinsic effects include range, view 
angle, lighting and obscuration. 

One of the elements of any machine vision system is a 
target dictionary of images associated with each object of 
interest. In a robust system, a typical target dictionary consists 
of numerous windows (target images), and the sensor image 
must be tested against all the windows in order to establish the 
target's presence and potential locations or lack thereof in the 
input image. The sensor images must be tested against 
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numerous dictionaries, each containing huge numbers of 
images, where each dictionary represents a distinct target of 
interest. The size of the database constituting the image 
dictionaries for potential objects of interest in practical 
scenarios can be enormous and may involve tens of thousands 
of images [28]. Clearly, the memory and processing 
requirements placed on the system makes this approach 
impractical, especially for real-time applications. Processing 
sensor images in real-time with several target dictionaries each 
containing numerous images places an insurmountable barrier 
to practical autonomous vision systems. 

In order to reduce the arduous computational burden of 
storing and processing vast image dictionaries, arising from 
the object image variability effects caused by intrinsic and 
extrinsic inconsistencies, synthetic discriminant functions 
(SDF) and distortion tolerant filters have been developed [29-
46]. In the vein of SDF, this paper presents a novel and 
straightforward technique for substantially reducing the 
number of images in the target dictionary without adversely 
affecting robustness of the system. Reducing the number of 
images contained within the target dictionary results in 
proportionately smaller memory space dedicated to its storage 
and the abbreviated computational complexity. 
Implementation of the proposed algorithm can potentially lead 
to more economical machine vision systems with higher 
accuracy, lower storage and processing overhead and the 
concomitant reduced latency, smaller footprint, and lower 
power consumption. 

As stated above, characterizing a certain target of interest 
under wide ranging target states and viewing conditions 
requires an inordinate number of training images (templates), 
and the associated immense storage and processing hardware. 
In practice, the viewing condition range of concern for a 
particular target of interest is partitioned into several tightly 
bound domains in the scale-rotation space. The universal 
target dictionary is comprised of a set of domain-specific 
dictionaries, each containing several target images. Henceforth 
in this paper, target dictionary refers to the domain-specific 
dictionary described above, whose elements are target 
renditions under constrained variations in scale and rotation 
(both in-plane and out of plane). It is noted that the target 
dictionary images, although very similar to each other due to  
their tightly bound domain origins, are nevertheless different 
from each other. In practical systems each domain-specific 
dictionary may indeed contain a single image due to the small 
number of available training images. In this paper, however, 
we assume that each domain-specific dictionary contains 
multiple images. We propose a method to distill all the 
training set images into a new virtual image and replace the 
multi-image target dictionary with the generated synthetic 
template (ST). In the operation phase, in order to establish the 
presence and location of the target of interest in the sensor 
image, rather than computing the cross correlations of the 
input image with respect to all the target dictionary images, it 
is correlated with the single-template ST. This results in 
storage and processing savings proportionate to the number of 
images in the original target dictionary. 

The excellent performance of the basic synthetic template 
filter, in comparison to the bank of templates, suggests that 

formulating 3D models of the targets of interest and producing 
many computer generated images of each target spanning the 
respective scale and rotation ranges may be advisable in some 
applications. For example, in order to capture the full extent of 
image variability due to the relative positions and orientations 
of  the target and senor as well as lighting conditions in a 
certain scenario, the 3D space of  range, depression angle, and 
aspect angle is partitioned into the desired number of bins 
(zones of effectiveness). A large set of target images 
pertaining to each bin are generated using various scale-pose-
view-lighting permutations, which are subsequently combined 
to construct the corresponding ST. The experimental results 
suggest that raising the number of model based images leads 
to performance enhancement without increasing the 
computational load of the classifier in the operation phase. 

The remaining pats of this paper are organized as follows. 
The problem formulation is described in Section II. Test 
results pertaining to the performance of the basic ST classifier 
and comparisons to the full and partial banks of matched 
filters are presented in Section III. Section IV puts forward a 
geometric interpretation of the ST theory and presents 
illustrative simulation results. Concluding remarks and 
suggested future work are provided in Section V. 

II. PROBLEM FORMULATION 

Let us assume the target dictionary contains several 
grayscale training images constituting the bank of templates 
(BT). The largest spatial dimensions of the training images 

along orthogonal directions are denoted as x, y. All the 
training images are zero padded in order to make their 

dimensions along the x-y axes equal to x and y, respectively. 
The training images are initially normalized with respect to 
their mean values, and each of the mean-compensated images 
are subsequently normalized with respect to the square root of 
integral of the square of the respective image intensity as 
shown in Eqs. 1-3.  

                                        (1) 

                                          (2) 

         
        

     
          

                      (3) 

                                    (4) 

Where,                              , denote, 
respectively, a typical zero-padded training image, mean value 
of the image, mean-compensated image, and the normalized 
image. Here and henceforth the surface integrations are with 
respect to the image surface. The number of images in the 
training set is N, and BT in Eq. 4 denotes the bank of 
templates. 

The mutual cross correlation surfaces amongst all the 
normalized images of BT and the respective peak cross 
correlations are computed as follows. 

                           
                     

                                                                            (5) 

                                                     (6) 
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where,                denote, respectively, the cross 

correlation surface and the corresponding peak cross 
correlation between two BT images          and         . 
The function          in Eq. 5 is periodically extended along 
both spatial directions.  

One of the templates of BT which has the largest minimum 
peak cross correlation with respect to all the other images is 
declared the prototype template (PT) as shown below. 

                                              (7) 

          
 

            
 

               

                                                           (8) 

                                               (9) 

Where,          denotes PT. If there are multiple images 
that satisfy the condition of Eq. 8, one is chosen randomly and 
is declared as PT.  

All the BT images are spatially aligned with respect to PT. 
This is done by spatially shifting each image such that the 
peak of its cross correlation surface with respect to PT occurs 
at (0,0). 

          
    

              
    

               
                                                (10) 

             
        

                     (11) 

 

                                  (12) 

Where,     is a typical spatially shifted and renormalized 

target template, and     denotes the bank of spatially shifted 
and aligned templates. 

Summing all the spatially aligned target templates of 
Eq.12, and normalizing the resultant synthetic image such that 
the integral of its square is unity, one arrives at the synthetic 
template (ST). 

                
 
                       (13) 
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                                   (15) 

Where,         represents the ST. 

 As explained above, BT  in Eq. 4 consists of the entire set 
of normalized training images, whereas PT in Eq. 9 contains 
only one of those images. PT is deemed the best representative 
of the training set in the sense that it has the largest minimum 
peak correlation with respect to all the trainers. A conceptual 
and geometric account of PT proceeds as follows: in the 
manifold of the training images within the image hyperspace, 
PT is closer to the center of gravity of the training manifold 
than any other BT image. Similar to PT, ST also consists of a 

single template, however, it is none of the actual training 
images, and is synthesized by amalgamation of all the trainers. 
A conceptual and geometric account of ST proceeds as 
follows: in the manifold of the training images within the 
image hyperspace, ST is indeed the center of gravity of the 
training manifold. ST is the center of mass of the convex hall 
of the training images. The spatial dimensions of the 
constituent templates of BT, PT, and ST are identical, namely 
     . The computational complexity of processing a 
typical sensor image with BT is therefore higher than 
processing the same image with PT and ST, by a factor equal 
to the number of training images N. In the operation phase, the 
correlation of the filter template is computed with respect to 
the input image, and if the correlation value exceeds the user-
specified threshold, the presence of target is declared at the 
specified location of the input image.    

It is noted that BT is the conventional matched filter bank 
under the white noise assumption. In the next section the 
performance of correlation filters based on the full bank of 
templates (BT) is compared to those based on two single-
image templates, namely the prototype template (PT) and the 
synthetic template (ST). Also, the performance of the 
correlation filter based on the fractional bank of templates 
(FBT) is examined. The images comprising a typical FBT are 
obtained by random selection of a user-prescribed number of 
images from BT. 

III. TEST RESULTS 

In this section the performance of correlation filters based 
on BT, PT, ST, and FBT are examined using actual images for 
training and testing. The images used in the test scenarios 
presented here are obtained from the Amsterdam Library of 
Object Images (ALOI), details of which are provided in [47] 
and the actual image databases are found at [48]. Many tests 
were conducted, where designated image sets pertaining to 
certain user-specified objects were utilized as the target-class 
training set of images. The images of the chosen target-class 
object which were not employed in the training process as well 
as the images of other non-target objects were utilized as the 
test set of images. Four types of correlation filters were 
constructed, as described in Section II, using the sequestered 
training set of images. The correlation filters were 
subsequently used as binary classifiers in order to classify 
each of the images in the test set as either target-class or non-
target-class. The performance of each type of filter is 
characterized in terms of its receiver operating characteristic 
(ROC), where the probability of detection PD is plotted in 
terms of the probability of false-alarm PFA. In the tests 
presented here, PD and PFA for a particular classification filter 
refer to the proportion of the test images that are, respectively, 
correctly labeled and mislabeled by the corresponding filter. 

Target-class and non-target-class training and test images 
employed in the first experiment were the image masks 
pertaining to objects number - 2, 550, 700, 800, and 950, 
which denote, respectively, lab-keys, winny-the-pooh, daffy-
duck, tea-can, and bananas in ALOI. The database contains 
71 image masks for each object, all taken at the same range 
and at equally spaced view angles in         . In this 
experiment, the target-class universe of images (TCUI) 
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comprises 24 object-2 images with equally spaced view angles 

in         , and the non-target-class universe of images 
(NTCUI) comprises 284 images equally distributed between 
ALOI objects- 550, 700, 800 and 950. The reason for 
restricting TCUI to a prescribed subset of the object-2 image 
set is to ensure that the target-class manifold in the image 
hyperspace is a simply connected zone. The view angles 

          and uniform scale in this example constitute the 
classifier zone of effectiveness. For applications where the 
domains of view angle and scale cover wider ranges, the TCUI 
manifold may have to be partitioned into multiple simply 
connected zones in the hyperspace, and a particular classifiers 
must be devised for each simply connected zone. The focus of 
this paper, however, is the design of a binary classifier whose 
zone of effectiveness in the hyperspace of images is a simply 
connected region. 

Figure 1 shows samples of the image sets associated with 
each of the five objects used in this experiment, where each 
row contains five views of the same object. Minimum peak 
correlation among the 24 images of TCUI is 0.555, and 
maximum peak correlation between TCUI members on one 
hand and NTCUI on the other hand is 0.75917. Ten images of 
TCUI are randomly selected in order to create the training set 
of images, form which four types of correlation filters are 
constructed. Each type of filter is then employed to classify 
members of the 298-image test set comprised of the remaining 
14 target-class and all 284-non-target class images. It is noted 
that the training was based solely on ten target-class images 
and none of the test images were involved in the training 
process. The simulation was repeated 200 times, each time 
randomly selecting a ten-image subset of TCUI, constructing 
four types of binary classifiers, namely BT, PT, ST, FBT, and 
utilizing each classifier in order to label 298 non-trained-on 
test images. The resultant PD and PFA parameters for each 
classifier were then averaged across 200 trials. Figure 2 shows 
one instantiation of the training set of images comprised of ten 
randomly selected images from TCUI, and the computed ST 
for a typical simulation run. 

 
Fig. 1. Samples of target-class objects are shown in the top row. TCUI is 

limited to 24 equally spaced view angles in          of object-2. Rows two 

through five show samples of non-target-class objects pertaining to object 

types 550, 700, 800, 950, respectively. The training set is formed by random 

selection of ten images from TCUI, and the test set is formed by the remaining 
14 target-class and all 284 non-target-class images. 

 
Fig. 2. The target-class training set of images consisting of ten object-2 

images are shown in the top two rows and the two left figures in the bottom 

row. These images, which pertain to a typical simulation run, are randomly 

selected from TCUI and comprise BT. The right image in the bottom row is 

the corresponding ST. 

The performance of each binary classifier is characterized 
in terms of its respective ROC. For a typical filter, setting the 
threshold level at 1 results in PD=PFA=0, and as the threshold 
level is lowered both PD and PFA increase. In the experiments 
presented here, for each filter the threshold was lowered until 
PD=1 was achieved. The classifier performance results are 
plotted in Figs. 3 and 4. The plots of Fig. 3 show that ST 
performance is far superior than PT. These plots also shows 
that for low PFA values, ST outperforms BT in terms of 
achieving higher PD for the same PFA value, even though its 
computational complexity is lower by a factor of ten. The 
performance of ST was also compared to those of different 
FBTs and the results are plotted in Fig. 4. As explained before, 
the images constituting each FBT are obtained by randomly 
selecting a user-prescribed number of images from the ten-
image BT. For each test case, multiple permutations were 
conducted by randomly selecting the prescribed number of 
training images, constructing the FBT, computing the ROC of 
the resultant classifier and averaging the results across 
multiple permutations. Plots of Fig. 4 show the performance 
comparisons between ST and three different FBTs comprised 
of one, five, and eight training images. It is seen that ST 
outperforms the one and five-image FBTs by great margins. It 
is also seen that for low PFA values ST is superior to the eight-
image FBT. Comparing the PT performance result shown in 
Fig. 3 with that of the one-image FBT (M=1) in Fig. 4, it is 
seen that PT is clearly superior. This result is supported by 
intuition, because PT and FBT with M=1, although both 
consist of one target-class template each, PT has a distinct 
property that makes it a better filter. PT is chosen in order to 
minimize its distance to the center of gravity of the training 
manifold, whereas the FBT (M=1) is chosen randomly. Table 
1 lists the probabilities of detection and false-alarm for 
different classifiers. It is seen that ST performs better than 
FBT with seven images by yielding higher PD and lower PFA 
concurrently. It is also seen that, for very low values of PFA, 
ST outperform even the full bank of templates (BT), whose 
computational complexity is ten times that of ST. 
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Fig. 3. Receiver operating characteristic (ROC) plots for BT, PT and ST. The 

training set of images is comprised of N=10 target-class (ALOI object-2) 

images. Test set of images consists of 14 target-class and 284 non-target-class 

(objects-550,700,800,950) images. The top-left corner represents perfect 

recognition and the diagonal line (not shown) connecting (0,0) to (1,1) denotes 
chance. 

 

Fig. 4. Receiver operating characteristic (ROC) plots for ST and three FBTs 

with one, five and eight templates. The training set of images is comprised of 

N=10 target-class (ALOI object-2) images. Test set of images consists of 14 

target-class and 284 non-target-class (objects-550,700,800,950) images.  

TABLE I.  List of several PD-PFA pairs for classifiers based on the 
synthetic template (ST), prototype template (PT), bank of templates (full bank 
BT), and three FBTs. 

 ST PT FBT 

 (M=1) 

FBT 

 (M=4) 

FBT  

(M=7) 

BT 

PD 

PFA 

0.8571 

0 

0.2609 

0 

0.087 

0 

0.6 

0 

0.7647 

0 

0.7857 

0 

PD 

PFA 

0.875 

0 

0.3533 

0.007 

0.8098 

0.1233 

0.8 

0.003 

0.8039 

0.0003 

0.8393 

0.0011 

PD 

PFA 

0.9048 

0.0024 

0.5072 

0.038 

0.8859 

0.1604 

0.8833 

0.0247 

0.8922 

0.0033 

0.9018 

0.0027 

PD 

PFA 

0.9524 

0.02 

0.9384 

0.1879 

0.9620 

0.3098 

0.95 

0.0812 

0.951 

0.021 

0.9554 

0.0092 
 

The next test scenario involves target-class and non-target-
class training and test images pertaining to object masks 9, 23, 
33, 58, and 75 which denote, respectively, shoe, blue-bear, 
chess-horse, blue-car, and boat in the ALOI database. Figure 

5 shows five sample images of each object. Twenty-seven 
object-9 images corresponding to equally spaced view angles 
in          constitute TCUI, and 284 images of the other 
four objects constitute NTCUI. There are 71 images for each 
non-target-class object corresponding to equally spaced view 

angles in         . The zone of effectiveness of the 

classifier in this example includes view angles        at the 
same range. The minimum peak correlation among 27 images 
of TCUI is 0.7739, and the maximum peak correlation 
between TCUI on one hand and NTCUI on the other hand is 
0.8697. The training set of images is formed by randomly 
selecting ten target-class images from the 27-image TCUI. As 
before, the training process does not utilize any non-target-
class images. The 17 remaining target-class and 284 non-
target-class images comprise the test set of images. As 
explained earlier, utilizing the training set of images four types 
of binary classifiers are constructed. Each classifier is then 
employed to label 301 previously unseen test images. The 
simulation was repeated 200 times, where each run involved 
forming new training and test sets of images as outlined 
above, constructing four types of binary classifiers, and 
labeling the test images. The performance of each type of 
classifier was characterized by averaging the respective ROCs 
across 200 simulation runs. Figure 6 shows ten object-9 
images comprising a single instantiation of the training set of 
images involved in a particular simulation run, and the 
respective ST. In the simulation run of Figure 6, BT is 
comprised of the entire set of ten trainers shown, PT is one of 
the trainers whose minimum peak correlation with respect to 
the remaining nine is maximum, and FBT consists of M<10 
randomly selected images from the set of ten trainers. Each 
filter is then utilized to classify each image in the test set as 
target or non-target. Plots of Fig. 7 show the performance 
characteristics of the binary classifiers. It is clearly seen that 
the performance of ST classifier is superior to all the other 
filters. Remarkably the ST-based filter performs even better 
than the full-set bank of templates. In this example, utilization 
of ST results in a classifier which requires ninety-percent less 
storage and ninety-percent less processing compared to BT, 
yet it is more robust.  

 

Fig. 5. Samples of target-class images are shown in the top row. TCUI is 

comprised of 27 images of the type-9 object. Rows two through five show 
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samples of non-target-class images pertaining to object types 23, 33, 58, 75, 
respectively.  

 

Fig. 6. Images in the top two rows and the left two columns of the bottom 

row constitute the training set of images. These ten object-9 images are 

randomly selected from the 27-image TCUI and comprise one instantiation of 
BT. The right image of the bottom row shows the corresponding ST. 

 
Fig. 7.  Receiver operating characteristic (ROC) plots for FBT with (M=5), 

BT, PT and ST. The training set of images is comprised of N=10 target-class 

(ALOI object-9) images. Test set of images consists of 17 target-class and 284 

non-target-class (objects-23,33,58,75) images. The top-left corner represents 

perfect recognition and the diagonal line (not shown) connecting (0,0) to (1,1) 
denotes chance.   

The test results presented in this section are typical of 
numerous performance assessment findings that were obtained 
in conjunction with various experimental campaigns 
conducted using object images derived from the ALOI 
database under various scenarios. In every case, the solo-
template ST performed better than the single-template PT, as 
expected. The classifier performance metrics include the 
overall ROC assessments as well as comparison of the 
probabilities of correct classification, for various classifier 
filters, at fixed user-prescribed values of probabilities of 
misclassification. The ST also outperformed FBTs with 
multiple templates, which is somewhat counter intuitive. What 
is most remarkable, however, is the fact that for low PFA 
values ST consistently outperforms the full bank of matched 
filters (BT) upon which it is based. This means that combining 

multiple target templates and forming the synthetic template, 
results in concurrently higher computational efficiency, 
measured in terms of lower memory and reduced complexity, 
and superior classifier performance. In order to explain what 
initially appears to be a counter intuitive phenomenon, we 
embark on a geometric interpretation of the synthetic template 
concept, which is presented in the next section.  

IV. GEOMETRIC INTERPRETATION  

This section provides a simple geometric interpretation of 
the basic ST theory, where images are represented as vectors 
in a hyperspace. The training set of images is a manifold in the 
image hyperspace, and the classifier comprises a set of hyper-
spheres with equal radii. A plausible explanation of the 
impressive performance of the basic ST classifier, observed 
under various assessment scenarios and test  results partially 
presented in Section III, is given using a simplified 2D vector 
analogy.   

A. Image-Point Analogy  

Let us assume that all images of potential interest inhabit a 
hyperspace, where each image is uniquely represented by a 
point. Let us also assume, for the purpose of explanatory 
simulations presented here, that the 2D analogy to the above 
image hyperspace is the xy-plane of the Cartesian coordinate 
system, and each (x,y) point is the 2D version of a unique 
image. The distance between two points in the plane has an 
inverse relationship to the peak normalized correlation 
between the two respective images.  

 

      
  

        

      

                              (16) 

Where,   and    denote, respectively, a point in the xy-
plane and the corresponding image in the hyperspace,       

 is 

the Euclidean distance between two points in the plane,       
 is 

the peak value of the normalized cross correlation surface 

between  two corresponding images, and  is the user 
prescribed proportionality constant.  

      
        

     
          

                  

    
             

          
       (17)     

Where, (u,v) represents a point in the plane of a particular 
image        , which itself is represented as a single point in 
the image hyperspace, and its 2D counterpart is (x,y).      

In machine learning, a set of images representing an object 
class, say chair, are used in order to create a binary classifier 
(filter) which is capable of distinguishing, in new images,  
chair from other objects (non-chair). one of the standard 
techniques to accomplish this task is template matching. A 
target dictionary comprised of a large number of training 
images of chair is produced, and a threshold level is set. In the 
test phase, the class label of the image under test is determined 
in accordance to its peak cross correlation values with respect 
to the templates contained within the prearranged target 
dictionary. If the peak cross correlation of the test image with 
respect to any one of the target dictionary images exceeds the 
threshold, the test image is classified chair (target), otherwise 
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it is classified non-chair. In practice, the design process places 
stringent limits on the type of chair as well as the sensor view 
conditions such as range, elevation and azimuth angles, and 
lighting, in assembling the template dictionary. The cluster of 
training images which constitute the target dictionary, is a 
meticulous subset of the entire set of known target images. 
Target dictionary elements are all assumed to have high 
mutual peak correlations. In the chair case, for example, if  the 
large set of known target class images represent many 
different types of chair with different view angles and scales, 
the set is judiciously partitioned into multiple clusters (zones 
of effectiveness), each containing several highly correlated 
images. It is this cluster of target (chair) images with high 
mutual peak correlations that constitutes our training set from 
which the binary target filter (classifier) is derived. The filter, 
therefore, has a very limited zone of effectiveness. The 
universal binary classifier, capable of recognizing chair,  is 
comprised of a larger number of such filters, each with a 
limited zone of effectiveness also called the target zone. This 
discussion is concerned with a cluster of tightly bound target 
class training images that we call bank of templates (BT). 
Conceptually, BT is represented by a set of points cloistered 
inside a small volume in the image hyperspace. The trainer 
manifold in the image hyperspace is assumed to be a simply 
connected domain. The volume encompassing BT is inside a 
hyper-sphere. 

  
      

    
                                       (18) 

where,      denotes the minimum value of peak 
correlations                   among all the BT members. 
The target zone has a very small volume and an amorphous 
shape, and is contained within the volume of the sphere of Eq. 
18. It is assumed that all points within the target zone (zone of 
effectiveness) represent chair and no other object. Let us 
assume, BT contains a large number of images, say N=20 or 
so. The filter comprising the fully populated bank of templates 
BT is a zonal classifier and is an element of the universal chair 
classifier. BT can be utilized for recognizing chair in its 
designated zone of effectiveness. In principle, the fully 
populated BT may be employed to recognize prospective 
manifestations of chair. This approach, however, may not be 
practical, due to the fact that the universal chair classifier can 
potentially contain many zonal classifiers, each with its own 
BT. The storage and processing requirements of using the 
universal chair classifier, comprised of many fully populated 
BTs, make this approach prohibitively expensive. Therefore, 
alternatives to the fully populated BT for the zonal classifier 
are sought.  

One solution to the storage and processing problems 
caused by the large number of images contained within BT is 
to replace it with a single template that best represents BT, 
called the prototype template PT. A logical choice for PT, is to 
choose the template whose minimum peak correlation with 
respect to all the remaining BT templates is maximum. 
Geometrically, PT is the template that is closest to the center 
of the hyper-sphere of Eq. 18. This is an intuitively sensible 
solution, since all of the BT elements are very similar to each 
other, and choosing the one which has, on average, the 
greatest similarity to the group, as a whole, seems to be a 

rational choice. Replacing BT with PT reduces both the 
storage and processing requirements by factors of N, where N 
denotes the number of elements of BT. Another logical 
solution would be to amalgamate all the BT elements and form 
a synthetic template ST. In practice, this merging process is 
carried out by first properly scaling and spatially shifting all of 
the BT elements and then adding and rescaling the resultant 
image. It is noted that the image comprising ST is not a 
physical image. Similar to PT, replacing BT with ST reduces 
both the storage and processing requirements by factors of N. 
The third solution is to select a subset of the BT templates and 
form a fractional bank of templates FBT. Replacing BT with 
FBT reduces both the storage and processing requirements by 
factors of N/M, where N, M denote the numbers of templates 
in BT, FBT, respectively, and    .  

The four zonal chair classifiers (filters), described above, 

are each comprised of one or multiple spheres in the image 
hyperspace. The BT, FBT, and PT filters are comprised, 

respectively, of  N, M, and one spheres, each centered at the 

respective template. All spheres associated with a particular 

filter have equal radii. The ST filter is a single sphere, 

centered at a point which may not coincide with any of the 

actual templates in BT. The filter volume is the volume in the 

hyperspace that is contained within the volume(s) of the 

hyper-sphere(s) constituting the classifier. The hyper-sphere 

radii (thresholds) are chosen in order to strike the desired 

balance between probabilities of detection PD and false-alarm 

PFA. In this discussion, PD denotes the proportion of the target 

zone volume that is contained inside the chair filter. PFA, on 
the other hand, represents the non-target zone hyperspace 

volume that falls inside the chair filter. In order to make PD=1, 

the radii of the spheres constituting the filter (BT, PT, ST, 

FBT) must be increased such that the entire target zone is 

contained within the filter volume, which may lead to 

unacceptably large PFA. On the other hand, in order to make 

PFA=0 one must decrease the radii until the non-target zone 

volume contained within the filter volume is vanished, which 

may lead to unacceptably small PD. 

In applications where data storage and processing speed 
are at a premium and one is forced to use a single template for 
the zonal filter, a choice between PT, ST, and FBT with M=1 
has to be made. Contrary to intuitive considerations that the 
performance of PT and ST filters are comparable, we have 
found this to be a false assumption. In many test cases using 
real and simulated images, we have found that ST consistently 
outperforms PT by great margins. In every test we have 
conducted, it has been shown that ST has concurrently higher 
PD and lower PFA than PT. Considering that ST is obtained by 
merging all the N images in BT, it represents in the 
hyperspace a point which is closer to the center of gravity of 
the convex hull representing the target zone (zone of 
effectiveness) than any of the actual templates in BT. 
However, as the number of images in BT increases (say 
N=100), one would expect that PT and ST would have 
comparable PD, PFA performance, which turns out not to be the 
case. The synthetic template (ST) outperforms the prototype 
template (PT) even when the number of templates in BT is 
very large. 
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What is even more striking is the fact that in all the test 
cases that we have conducted, ST outperforms the fractional 
bank of templates (FBT) with substantial number of templates. 
In many test cases using actual images, we have shown that 
the one-template ST has superior performance, in terms of 
higher PD and lower PFA, than FBTs with ten or higher 
templates. This is indeed a remarkable feat, since by creating a 
synthetic template one can achieve a classification system with 
smaller memory requirement, lower latency and higher 
accuracy at the same time. 

B. Simulation Results 

In order to illustrate the detection capability of the 
synthetic template, in the following examples we use the xy-
plane as the 2D representation of the image hyperspace. For 
ease of presentation we assume that the target zone is 
represented by the unit square area with corners at (0,0), (1,0), 
(0,1), and (1,1). Each point of the unit square represents a 
potential target image, and all the exterior points represent 
non-target images. It is assumed that N points in the unit 
square are labeled as target and constitute the known target set 
of images. It is noted that the training process is oblivious to 
the fact that the target zone is comprised of the unit square. 
Rather, all it knows is: the N points it is given belong to the 
target class. In this example, therefore, the set of N labeled 
points represents the training set of images or the bank of 
templates BT. The fractional bank of templates FBT is 
obtained by randomly choosing a subset of BT. The prototype 
template PT is one of the BT elements, and is obtained as the 
point whose maximum distance with respect to all other BT 
points is minimum. The synthesized prototype ST, on the 
other hand, is a point in the unit square whose coordinates are 
means of the respective coordinates of the BT members. It is 
noted that ST, in general, does not coincide with any of the BT 
points. The binary classifiers based on BT, FBT, PT and ST 
are each comprised of one or multiple disks in the xy-plane. 
Each disk is centered at a respective template (actual or 
synthesized point), and all the disks comprising a certain 
classifier have identical radii (thresholds). 

An unlabeled test point (image) is classified as target if it 
is inside any of the disks comprising the classifier, otherwise it 
is labeled as non-target. In order to assess the performance of a 
certain classifier the areas of the unit square and the non-target 
area (outside the unit square) that fall inside the classifier's 
constituent disks are computed. Probabilities of detection and 
false alarm, PD and PFA, are equal to, respectively, the areas of 
the unit square and the outside-region that are contained 
within the disks. Figure 8 illustrates the 2D analogy of the 
image hyperspace, the target zone manifold and the binary 
classifier. 

The performance of four types of classifiers described 
above were studied by conducting the following simulation. A 
user-prescribed number of points (i.e. N=100) were randomly 
selected from the unit-square target area. The set of N labeled 
points forms the training set. The bank of templates BT 
consists of N disks centered at these target points with equal 
radii r. 

 

Fig. 8. The interior dotted square region represents the target zone, the gray 

annular region around the target zone is the exclusion zone, where no images 

can exist, and the exterior brick region represents the non-target universe. The 

circles constitute a binary classifier comprised of a bank of three templates, 

obtained from a potentially larger set of known target images. The target and 
non-target areas overlapping the circles represent, respectively, PD and PFA. 

Clearly, setting r=0 results in PD=PFA=0. Increasing r will 
result in raising PD, while PFA remains zero as long as none of 
the disks protrude from the unit square. In virtually all cases 
PFA=0 is possible only if PD<1 can be tolerated. Likewise, 
PD=1 is achieved at the expense of PFA>0. Computing PD and 
PFA for various values of r and plotting the result, one obtains 
the receiver operating characteristic (ROC) of the classifier. 
This is done by repeating the simulation many times, 
randomly selecting N training points each time, computing the 
respective PD and PFA pairs for various r values, and averaging 
the results across all trials. 

In each simulation round, a subset of the BT's N training 
points consisting of M<N points are randomly chosen to form 
the FBT. One of the N training points which has the smallest 
maximum distance with respect to the remaining N-1 points, is 
chosen to form PT. A new point is synthesized by computing 
the means of the respective coordinates of the N points 
comprising BT to form ST. As before, target filters consist of 
one or multiple disks with equal radii and centered at the 
corresponding points. Similar to the BT classifier, the ROC 
plots for FBT, PT, and ST classifiers are computed. 

In the example of Fig. 9 the number of training points was 
set at N=25 and the simulation was repeated for 100 trials. In 
each trial run, BT consists of 25 randomly selected points in 
the unit square area constituting the target zone, and PT and 
ST are derived from the corresponding BT. The performance 
of each filter is computed by averaging the ROC results across 
100 trial runs for the respective classifier. It is seen that the 
one-template ST clearly outperforms the 25-template BT, 
which is somewhat consistent with the results we have 
obtained using actual images in Section III. In this simulation, 
however, PT performs better than BT for all PFA values, which 
is contrary to the experimental results of Section III. The 
reason for this apparent paradox is the fact that, in the 
simulations of Fig. 9, the non-target region abuts the target 
region. This implies that potential non-targets may have peak 
correlations with respect to potential targets, that approach 

=1. In practice, however, this is not the case.  
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Fig. 9. Performance comparisons for BT, PT, and ST. The number of 

training points is N=25, and there is no exclusion zone between target and 
non-target zones EZ=0. 

In order to present a more realistic scenario, where none of 
the potential non-target elements have extremely high peak 
correlations with respect to target elements, a zone of 
exclusivity was established around the unit target area in the 
2D example. An annular region with width of 0.2 around the 
unit square is assumed to be void of any target or non-target 
elements. All of the tests conducted with this scenario show 
that the single-template ST is superior to target dictionaries 
containing many templates. In the example of Fig. 10, BT 
consists of 25 points randomly selected from the target area. 
As expected BT has superior performance compared to that of 
PT.  

Contrary to expectation, however, ST which consists of a 
single point, determined as the mean of BT points, 
outperforms BT. Performance of FBTs comprised of 5, 10 and 
15 points randomly selected from the 25 BT points are also 
plotted.  Fig. 11 shows the performance of various classifiers 
when number of trainers is set at N=10. The simulation results 
of Figs. 10 and 11 are consistent with the experimental results 
of Section III. 

 
Fig. 10. Performance comparisons between BT, PT, ST, on one hand and 

FBTs with different number of templates on the other. Total number of known 
target points is N=25, and exclusion zone had a width of EZ=0.2. 

 

Fig. 11. Performance comparisons between BT, PT, ST, on one hand and 

FBTs with different number of templates on the other. Total number of known 

target points is N=10, and width of the exclusion zone is 0.2. 

V. CONCLUSIONS 

This paper paves the way towards developing a 
conceptually simple and computationally efficient mechanism 
for replacing voluminous target image dictionaries with much 
smaller sets of synthetic templates for target detection, 
classification and machine vision applications. Synthetic 
template (ST) is a spatial map (grayscale image) obtained by 
combining a set of training images that are ascribed to a target 
of interest. The rudimentary ST presented here is obtained by 
pixel-wise summation of the uniformly weighted, spatially 
shifted and normalized target-class training set of images. It 
constitutes a correlation filter that is used to determine the 
presence and locations of the target of interest in new images, 
or determine if a new image is that of the target of interest. It 
has been shown, using numerous test scenarios, that the solo-
template ST outperforms filter banks comprised of multiple 
target-class training images. The ST classifier produces higher 
probability of correct classification and lower probability of 
misclassification than a large bank of target-class images 
(matched filters). The basic ST is generated offline in a 
straightforward manner and its online utilization results in 
lower system overhead in terms of abbreviated memory space 
requirement and reduced computational complexity, 
potentially leading to systems with more condensed physical 
footprint, lower power consumption, and reduced latency. 
Experiment based quantitative studies using many test 
scenarios with real images were carried out to assess the 
efficacy of ST and a representative sampling of the 
performance results are presented. An intuitive geometric 
interpretation of the basic ST theory and the corresponding 
simulation results provide a plausible explanation for its 
remarkable performance. In this paper, all target images within 
a particular dictionary are assumed to be highly correlated, and 
the dictionary is distilled into a single ST. In practice, where 
the target-class training set of images represent versatile and 
unconstrained views of the target, multiple dictionaries have to 
be created by suitable partitioning of the training set. Each 
appropriately created dictionary is then distilled into a single 
ST. Work on developing efficient algorithms for clustering the 
training set of images and automatic formation of target 
dictionaries is ongoing.     
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