
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

156 | P a g e
www.ijacsa.thesai.org

Inverted Indexing In Big Data Using Hadoop

Multiple Node Cluster

Kaushik Velusamy

Dept. of CSE Amrita University

Coimbatore, India

Deepthi Venkitaramanan

Dept. of CSE Amrita University

Coimbatore, India

Nivetha Vijayaraju

Dept. of CSE Amrita University

Coimbatore, India

Greeshma Suresh

Dept. of CSE Amrita University

Coimbatore, India

Divya Madhu

Dept. of IT Amrita University

Coimbatore, India

Abstract—Inverted Indexing is an efficient, standard data

structure, most suited for search operation over an exhaustive set

of data. The huge set of data is mostly unstructured and does not

fit into traditional database categories. Large scale processing of

such data needs a distributed framework such as Hadoop where

computational resources could easily be shared and accessed. An

implementation of a search engine in Hadoop over millions of

Wikipedia documents using an inverted index data structure

would be carried out for making search operation more

accomplished. Inverted index data structure is used for mapping

a word in a file or set of files to their corresponding locations. A

hash table is used in this data structure which stores each word

as index and their corresponding locations as its values thereby

providing easy lookup and retrieval of data making it suitable for
search operations.

Keywords—Hadoop; Big data; inverted indexing; data structure

I. INTRODUCTION

Wikipedia is an online encyclopaedia which contains over
four million articles. In general, searching over such text based
documents involves document parsing, index, tokenisation,
language recognition, format analysis, section recognition.
Hence a search engine for such large data which is done in a
single node with a single forward index built over all the
documents will consume more time for searching. Moreover
the memory and processing requirements for this operation
may not be sufficient if it is carried out over a single node.
Hence, load balancing by distribution of documents over
multiple data becomes necessary.

Google processes 20PB of data every day using a
programming model called MapReduce. Hadoop, a distributed
framework that processes big data is an implementation of
MapReduce. Hence it is more apt for this operation as
processing is carried out over millions of text documents.

Inverted index is used in almost all web and text retrieval
engines today to execute a text query. On a user query, these
search engines uses this inverted index to return the

documents matching the user query by giving the hyperlink of
the corresponding documents. As these indices contain the
vocabulary of words in dictionary order only a small amount
of documents containing the indices need to be processed.

Here, the design of a search engine for Wikipedia data set
using compressed inverted index data structure over Hadoop
distributed framework is proposed. This data set containing
more than four million files needs an efficient search engine
for quick access of data. No compromise must be made on the
search results as well as the response time. Care should be
taken not to omit documents that contain words synonymous
user query. Since accuracy and speed is of primary importance
in search, our methods could be favoured in such cases.

II. LITERATURE SURVEY

[2] For large-scale data-intensive applications like data
mining and web indexing MapReduce has become an
important distributed processing model. Hadoop–an open-
source implementation of MapReduce is widely used for short
jobs requiring low response time. Both the homogeneity and
data locality assumptions are not satisfied in virtualized data
centres. This paper [2] shows that ignoring the data locality
issue in heterogeneous environments can noticeably reduce the
MapReduce performance.

The authors also address the problem of how to place data
across nodes in a way that each node has a balanced data
processing load. Given a data intensive application running on
a Hadoop MapReduce cluster, their data placement scheme
adaptively balances the amount of data stored in each node to
achieve improved data-processing performance. Experimental
results on two real data-intensive applications show that their
data placement strategy can always improve the MapReduce
performance by rebalancing data across nodes before
performing a data-intensive application in a heterogeneous
Hadoop cluster. The new mechanism distributes fragments of
an input file to heterogeneous nodes based on their computing

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

157 | P a g e
www.ijacsa.thesai.org

capacities. Their approach improves performance of Hadoop
heterogeneous clusters.

According to [1], a virtualized setup of a Hadoop cluster
that provides greater computing capacity with lesser resources
is presented, as virtualized cluster requires only fewer physical
machines with master node of the cluster set up on a physical
machine, and slave nodes on virtual machines (VMs).

The Hadoop virtualized clusters are configured to use
capacity scheduler instead of the default FIFO scheduler. The
capacity scheduler schedules tasks based on the availability of
RAM and virtual memory (VMEM) in slave nodes before
allocating any job. Instead of queuing up the jobs, the tasks are
efficiently allocated on the VMs based on the memory
available. Various configuration parameters of Hadoop are
analysed and the virtualized cluster is fine-tuned to for best
performance and maximum scalability. The results show that
the approach gives a significant reduction in execution times,
which in turn shows that the use of virtualization helps in
better utilization of the resources of the physical machines
used. Given the relatively under power of the machines used
in the real cluster the results were fairly relevant. The addition
of more machines in the cluster leads to an even greater
reduction in runtime.

According to [8], Hadoop, the emerging technology made
it feasible to combine it with virtualisation to process immense
data set. A method to deploy cloud stack with Map Reduce
and Hadoop in virtualised environment was presented in this
paper. A brief idea on setting up a Hadoop experimental
environment to capture the current status and the trends of
optimising Hadoop in virtualised environment was mentioned.
The advantages and the disadvantages of the virtualised
environment was discussed, ending with the benefits of one's
compromise over the other. Making use of the virtualised
environment in Hadoop fully utilizes the computing resources,
make it more reliable and save power and so on. On the other
side, we have to face the lower performance of virtual
machine. Then some methods to optimize Hadoop in virtual
machines were discussed.

III. PROBLEM STATEMENT

The result of any user’s search query must be fast, should
not miss any relevant data related to the query. A search
engine designed by using distributed framework like Hadoop
and inverted index data structure is fast and returns all the
relevant results. In order to do this and to analyse the
feasibility of deployment of a search engine for Wikipedia
various requirements and parameters to be considered must be
well understood and analysed.

IV. PARAMETERS FOR PERFORMANCE METRICS

The performance of a search operation through an inverted
index built over millions of Wikipedia documents distributed
over a multiple node Hadoop cluster in a virtual node could be
effectively measured using various parameters such as
response time ,throughput, speed up, latency hiding,
computation time, communication time and thereby
computation and communication ratio. In terms of the search
operation in this distributed and parallel platform, response
time indicates the time taken for the first of the relevant wiki

documents to appear when a query is made. Through put in
other words can be defined as the number of transactions per
second or the maximum number of search queries that can be
made per second, speed up factor refers to the time that could
be saved due to a fraction of process that could be parallelized
.As the documents are distributed across multiple documents,
the percentage of search operation that can be parallelized and
thereby the speedup achieved could be measured. [6]

Speed-up factor=

Where -Time taken for serial execution of the process
and - time taken after parallelization. As more time is
consumed in start-up of a communication between nodes,
making use of this time effectively for completing as much
computations as possible would improve performance. This
can be achieved via non-blocking send routines thereby
helping in achieving latency hiding. Sometimes, even blocking
send routines allow computations to take place until the
expected messages reach the destination aiding in improving
latency hiding. Total processing time includes computations
and the communications carried out.

T process = T computation +T communication

The computation time for the search operation can be
calculated by counting the number of computations per
process. Computation involves locating the node that has the
relevant documents. [9]Communication time depends on the
size of the data transferred, start-up time for each message and
number of messages in a process and the mode of data
transfer. Communication in multiple cluster node involves
requesting a node for certain documents based on the query
and the nodes responding with the requested documents.

T communication = T start up + w*T data
Where

T start-up – Time needed to send a blank message

T data - Time to send/receive a single data word
W - No. of data words

Speed-up factor =

=

The computation communication ratio throws light on the

how much time communication takes as a result of increased
amount of data.

V. INVERTED INDEXING

Indexing refers to creating a link or a reference to a set of
records so as to enable better identification or location.
Forward indexing and inverted indexing are two main types of
indexing. When an element say 97 is accessed through its
index say Arr [3] in Fig 1, then it is forward indexing. When
the same element is searched based on its occurrence or the
number of occurrences, then it is inverted indexing.

Fig. 1. Illustration of Forward and Inverted Indexing

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

158 | P a g e
www.ijacsa.thesai.org

 An inverted index for a document or set of documents
contains a hash table with each word as its index and a posting
list as value of each index. A postings list consists of a
document id, position of word in that document and frequency
of occurrence of each word in that document.

Fig. 2. Inverted Indexing-Working

If there are n documents to be indexed then a unique
document id is set for each document from 0 to n-1. The
postings list for a term is sorted based on various criteria.
Though it is easy to sort it based on document id, for search
operations other parameters are considered for sorting. Sorting
done based on frequency of a term in a document is more apt
for a search operation. At the end of sort processing this data
structure returns the top k documents in the postings list where
k is the maximum returning capacity of a search engine in a
single stretch. [7].

A. Algorithm

Inverted_Index (int docID[n], string doc[n])

M  new HashMap

Count  0

For all document with docID m from 0 to n-1

 For all term tm and position pos in doc

 With docID m do

M {tm, previous pos, previous m}  M

{tm, pos, m} +1

 Count (tm, m) ++

 For each tm in M with docID m
 Sort (count (tm, m))

As explained in Fig 2, input to the indexing algorithm is
the set of document IDs and the contents of all the documents.
Each new term in the document is formed as an index in the
hash table. For each occurrence in a document its document
ID is added to the postings list of that term along with its
position. After each occurrence of a term in a document its
corresponding frequency variable count is incremented.
Postings list of each term is finally sorted based on the
frequency of words in each document.

Algorithm Search (HashMap M, string word)

 return M[word]
In the search part of an inverted index, the word which is

queried by the user is passed as input along with the hash map
which has the set of all positions of the each word in the

document. Hash map takes the word as its index and returns
the value stored in that index.

VI. DATA SET - WIKI DUMPS

All the contents of Wikipedia are available in
downloadable format as wiki dumps. This can be taken by
users for archival/backup purposes, offline storage,
educational purpose, for republishing, etc. There are over four
million files in Wikipedia, compressed form as wiki dumps of
size 9.5 Giga bytes approximately. When extracted from the
compressed form, it comes to around 44 Giga bytes. Database
backup dumps have a complete copy of all Wikipedia
documents as wikitext and the set of all its metadata in XML.
Static HTML dumps has copies of all pages of Wikipedia
wikis in HTML form.

Contents of dumps include page-to-page link, media
metadata, title, information about each page, log data, Misc
bits, etc. These are in the wrapper format described at schema
Export Format which is compressed in bzip2 and .7z format.
They are provided as dumps consisting of entire tables using
mysqldump. Internal file system limit must be taken into
account before extracting these files from compressed format.

VII. HADOOP

Map Reduce method has emerged as a scalable model that
is capable of processing pet a bytes of data. Fundamental
concept of MapReduce: Rather than working on one, huge
block of data with a single machine, Big Data is broken up
into files that further are broken into blocks by Hadoop and
parallel processing and analysis is carried out. [5]

The Hadoop is a map reduce framework that provides
HDFS (Hadoop Distributed File Systems) infrastructure.
HDFS was designed to operate and scale on commodity
hardware. Breakdown in hardware is largely compensated by
replication of blocks of data in multiple nodes.

A. Hadoop Distributed Filesystem (Hdfs) Overview

HDFS (Hadoop Distributed File System) is a distributed
user level file system which stores, processes, retrieves and
manages data in a Hadoop cluster. HDFS infrastructure that
Hadoop provides, include a dedicated master node called
Name Node which contains a job tracker, stores meta-data,
controls the overall distributed process execution by checking
out whether all name nodes are functioning properly through
periodic heart beats. It also contains many other nodes called
Data Node which contains a task tracker, stores applications
data. The Ethernet network connects all nodes. HDFS is
implemented in Java and it is platform independent. Files in
HDFS are split into blocks and each block is stored as an
independent file in the local file system of Data Nodes. Each
block of a HDFS file is replicated at least three times in
multiple Data Nodes. Through replication of application data,
provides data durability.[9]

The Name Node manages the namespace and physical
location of each file. File system operations are done by HDFS
client by contacting the Name node. Name Node checks a
client’s access permission and gets the list of Data Nodes
hosting replicas of blocks. Then, requirements are sent to the
“closest” Data Node by requesting a particular block. Then, a

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

159 | P a g e
www.ijacsa.thesai.org

socket connection is created between the client and the Data
Node. The data is transferred to the client application. When a
client application writes a HDFS file, it first splits the file into
HDFS blocks and the Name Node gets the list of Data Nodes
which are replicas of each block and writing data is done by
multithreading. [3]

If the client application is running on a Data Node, the first
replica of the file is written into the local file system of the
running Data Node. If the client application isn’t running on a
Data Node, a socket connection is created between the client
and the first Data Node. The client splits the block into smaller
packets and starts a pipeline: the client sends a packet to the
first Data Node; the first Data Node on getting this packet,
writes this to the local file system, and also sends it to the next
Data Node. A Data Node can receive the data from a previous
node and at the same time forward the data to the next node.
When all nodes in this pipeline write the block into local file
system successfully, the block write is finished and then Data
Nodes update the block physical information to the Name
Node. The architecture of multiple cluster implementations
has been explained in Fig 3.

Fig. 3. Hadoop Multiple node Cluster Architecture

B. Working process of Hadoop Architecture

Hadoop is designed to run on a large number of machines
that don’t share any memory or disks. When a data is loaded
into Hadoop, the software splits that data into pieces and
spreads it across different servers. Hadoop keeps track of
where the data resides. And because there are replica of single
data, data stored on a server that goes offline or dies can be
automatically replicated from a known good copy.

In a Hadoop cluster, every one of those servers has two or
four or eight CPUs. Each server operates on its own little piece
of the data. Results are then delivered back through reduce
operations. MapReduce maps the operation out to all of those
servers and then reduces the results back into a single result
set. Since Hadoop spreads out data, it is possible to deal with
lots of data. Since all the processors work in parallel and
harness together, complicated computational questions can be
performed. Node failures are automatically handled by the
framework for both map and reduce functions.

VIII. ASSUMPTIONS AND GOALS

Applications that run on HDFS have large data sets. A
typical file in HDFS is Gigabytes to Terabytes in size.
Therefore, HDFS must provide high bandwidth and scalability
to hundreds of nodes. HDFS applications need a write-once-
read-many access model for files. If a file is created and
written, it is assumed that it will not be changed in future. This
is to simplify data coherency and to get high throughput data
access.

IX. PROPOSED SOLUTION

A Hadoop cluster is established by passing Wikipedia files
as input data and inverted indexing is done by taking
advantage of Map Reduce.

In the map phase, the Wikipedia files are divided equally
among mappers and passed as inputs. Each Wikipedia file is
given a unique document ID. Each mapper indexes each term
in its file into the hash map with the corresponding document
ID and position in that document as a posting list. When it
finds that term for the first time it creates that term as the
index and writes the corresponding postings list of that term.
When the term is found again, the corresponding posting list
for that position is appended with the previous list to index
holding that term.

A. Map function pseudo-code

Algorithm Map (int docID[x], string doc[x])

M  new HashMap

Count 0

For all document of docID m from 0 to x-1

For all term tm and position pos in doc

with docID m do

 M {tm, previous pos, previous m}

 M{ tm, pos, m }+1

 Count (tm, m) ++

emit (M, count (tm, m))

In the above algorithm X is the maximum number of
documents processed within a mapper. The input file is read

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

160 | P a g e
www.ijacsa.thesai.org

word by word and indexed accordingly with its document ID
and corresponding position in a hash map. The variable count
keeps track of the frequency of a term within each document
in that mapper. At the end each mapper returns its hash map
with the count value of each term in a document.

In reduce phase each reducer takes in its responsibility a
term or set of terms. These terms are given an index position
in a global hash map where all the terms are stored as index.
When a reducer encounters its term from a mapper it appends
the posting list of that mapper to its value in this hash map.
After appending the entire list of that term from all the
mappers, reducer sorts posting list based on count value of
each document. The more the value, the preference is higher.
In the same way, all the terms in this whole document are
indexed in the hash map in this reduce phase.

B. Reduce function pseudo-code

Algorithm Reduce (term tm, List of hash maps of each

mapper[], count{tm, docID})

 G  new HashMap //G is common HashMap for all

reducers

 for each hash map H from all mappers

for each term tm in document with docID m and

position pos in H

//n is the total number of documents
G{ tm , previous pos, previous m} 

 H{ tm, pos , m }+1

Sort(count (tm , m))

//values in list is sorted based on the count value of

each term in a document

 emit(G)
In the above pseudo code each reducer takes as its input all

the hash maps of various mappers and the count values of each
term in a document. Reducer checks each hash map with its
allotted term and if it matches with any mapper’s index it
appends that value in global hash map. When all the values are
appended for a term it is finally sorted based on its count value
in each document.

C. Retrieval

The terms in global hash map is divided among the
mappers along with their corresponding posting list. When the
user queries a term, the name node sends this query to the
corresponding data node. Value of the term is passed to the
reducer as a complete list. Reducer returns the first k values of
that term to the user where k is the maximum number of pages
returned for a user query.

X. FUTURE WORKS

First a distributed, multiple node Hadoop cluster has been
built and the millions of wiki documents has been distributed
over these nodes. A compressed inverted index containing
indices for words in dictionary order is to be built over these
documents. After building inverted index, distributed
performance evaluation for searching documents based on
keyword is intended to be made. Further data analysis and text
mining could be made based on index support. The results of
text mining and data analysis would help in suggesting related
pages based on data such as other documents where the

synonyms of the query are predominantly found. Indexing can
be further partitioned in to local index partitioning and global
index partitioning. In term based partitioning or global index
partitioning, each node in the multiple cluster stores posting
list only for a subset of the term in the collection. Local index
partitioning is each server building a separate index for the
files that it contains. When this is done, each server indexes
only the document that it contains, reducing the number of
documents to thousands. This is very much lesser compared to
the actual number of indices that had to be built if indexing is
to be done for over a million documents. So, instead of
building a single index over 4 million Wikipedia documents,
local index would be built over documents on each node and
an index would be built on these indices thereby quickening
search and compressing indices. Further, indices built over
articles (a, the, an) and other such common words would be
deleted for adding accuracy.

XI. CONCLUSION

In this paper, a compressed inverted index data structure
that could help in crawling for words in dictionary order such
that all the indices built for millions of documents need not be
processed has been proposed. In addition, basic factors for
designing indices such as merge factors, storage technique,
index size, look up speed, maintenance, fault tolerance etc.
will also be taken into account. Building a local index for files
within those system will prove to be a great way to solve
problems that could arise in parallelism such as when a file is
added, whether index updating should happen before the
search operation that is currently going on and vice versa as
only a portion of the entire set of documents need to be
updated making the ‘index merging’ process very simple. In
addition to storing a token word, its document id and the
position in which it appears, we have suggested to add token
word document id and its frequency to rank up the relevant
documents. Our work has motivated several interesting open
questions such as which type of inverted index data structure
would be most useful for text mining. Other ways to optimise
performance in search is being investigated and added over to
the suggested methods.

REFERENCES

[1] Raj, A. Kaur, K. ; Dutta, U. ; Sandeep, V.V. ; Rao, S. "Enhancement of

Hadoop Clusters with Virtualization Using the Capacity Scheduler",
Third International Conference on Services in Emerging Markets

(ICSEM),Mysore, India, Dec 2012. Page(s): 50 - 57. Print ISBN: 978-1-
4673-5729-6. INSPEC Accession Number: 13343537. D.O.I:

10.1109/ICSEM.2012.15. Link:
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6468179

[2] Jiong Xie; Shu Yin ; Xiaojun Ruan ; Zhiyang Ding ; Yun Tian ; Majors,

J. ; Manzanares, A. ; Xiao Qin. "Improving MapReduce performance
through data placement in heterogeneous Hadoop clusters". IEEE

International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), Atlanta, GA, April, 2010.

Page(s): 1 - 9. Print ISBN: 978-1-4244-6533-0. INSPEC Accession
Number: 11309800. D.O.I : 10.1109/IPDPSW.2010.5470880. Link:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5470880

[3] Kala Karun, A ; Chitharanjan, K ; "A review on hadoop — HDFS
infrastructure extensions ", IEEE Conference on Information &

Communication Technologies (ICT), JeJu Island, April 2013. Page(s):
132 - 137. Print ISBN: 978-1-4673-5759-3. INSPEC Accession Number:

13653440. D.O.I: 10.1109/CICT.2013.6558077. Link:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6558077

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

161 | P a g e
www.ijacsa.thesai.org

[4] Richard Mccreadie ; Craig Macdonald ; Iadh Ounis; "MapReduce

indexing strategies: Studying scalability and efficiency". International
Journal of Information Processing and Management. Volume 48 Issue

5, September, 2012. Pages: 873-888. Publisher Pergamon Press, Inc.
Tarrytown, NY, USA. ISSN: 0306-4573

doi>10.1016/j.ipm.2010.12.003. Link:
http://dl.acm.org/citation.cfm?id=2337723

[5] Apache Hadoop, Hadoop, HDFS, Avro, Cassandra, Chukwa, HBase,
Hive, Mahout, Pig, Zookeeper are trademarks of the Apache Software

Foundation. http://www.hadoop.apache.org/ Last Published: 10/16/2013
06:37:41. Copyright © 2012. The Apache Software Foundation. 2nd

October 2013.

[6] Barry Wilkinson; Michael Allen; “Parallel Programming: Techniques
and Applications Using Networked Workstations and Parallel

Computers” (2nd Edition). Publication Date: March 14, 2004, ISBN-10:
0131405632, ISBN-13: 978-0131405639 , Edition: 2. Link :

http://www.amazon.com/Parallel-Programming-Techniques-
Applications-Workstations/dp/0131405632

[7] Gal Lavee ; Ronny Lempel ; Edo Liberty ; Oren Somekh ; " Inverted

index compression via online document routing" Published in: WWW
'11 Proceedings of the 20th international conference on World Wide

Web. Pages 487-496. ISBN: 978-1-4503-0632-4
doi:10.1145/1963405.1963475. Publisher ACM New York, NY, USA

©2011. Link: http://dl.acm.org/citation.cfm?id=1963475

[8] Guanghui Xu; Feng Xu; Hongxu Ma; "Deploying and researching

Hadoop in virtual machines". Published in: IEEE International
Conference on Automation and Logistics (ICAL), Zhengzhou, Aug.

2012. Page(s): 395 - 399. ISSN: 2161-8151. E-ISBN: 978-1-4673-0363-
7. Print ISBN: 978-1-4673-0362-0. INSPEC Accession Number:

13000378. D.O.I:10.1109/ICAL.2012.6308241. Link:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6308241

[9] Shvachko, K.; Hairong Kuang ; Radia, S. ; Chansler, R. " The Hadoop
Distributed File System". Published in: IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), Incline Village, NV, May
2010. Page(s): 1 - 10. E-ISBN: 978-1-4244-7153-9. Print ISBN: 978-1-

4244-7152-2. INSPEC Accession Number: 11536653. D.O.I:
10.1109/MSST.2010.5496972. Link:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5496972

[10] Ishii, M.; Jungkyu Han; Makino, H; "Design and performance evaluation
for Hadoop clusters on virtualized environment" Published in:

International Conference on Information Networking (ICOIN),
Bangkok, Jan. 2013. Page(s): 244 - 249. ISSN: 1976-7684. E-ISBN:

978-1-4673-5741-8. Print ISBN: 978-1-4673-5740-1. INSPEC
Accession Number: 13431469. Digital Object Identifier:

10.1109/ICOIN.2013.6496384. Link:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6496384

