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Abstract—Inverted Indexing is an efficient, standard data 

structure, most suited for search operation over an exhaustive set 

of data. The huge set of data is mostly unstructured and does not 

fit into traditional database categories. Large scale processing of 

such data needs a distributed framework such as Hadoop where 

computational resources could easily be shared and accessed. An 

implementation of a search engine in Hadoop over millions of 

Wikipedia documents using an inverted index data structure 

would be carried out for making search operation more 

accomplished. Inverted index data structure is used for mapping 

a word in a file or set of files to their corresponding locations. A 

hash table is used in this data structure which stores each word 

as index and their corresponding locations as its values thereby 

providing easy lookup and retrieval of data making it suitable for 
search operations. 
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I. INTRODUCTION 

Wikipedia is an online encyclopaedia which contains over 
four million articles. In general, searching over such text based 
documents involves document parsing, index, tokenisation, 
language recognition, format analysis, section recognition.  
Hence a search engine for such large data which is done in a 
single node with a single forward index built over all the 
documents will consume more time for searching. Moreover 
the memory and processing requirements for this operation 
may not be sufficient if it is carried out over a single node. 
Hence, load balancing by distribution of documents over 
multiple data becomes necessary. 

Google processes 20PB of data every day using a 
programming model called MapReduce. Hadoop, a distributed 
framework that processes big data is an implementation of 
MapReduce. Hence it is more apt for this operation as 
processing is carried out over millions of text documents. 

Inverted index is used in almost all web and text retrieval 
engines today to execute a text query. On a user query, these 
search engines uses this inverted index to return the 

documents matching the user query by giving the hyperlink of 
the corresponding documents. As these indices contain the 
vocabulary of words in dictionary order only a small amount 
of documents containing the indices need to be processed. 

Here, the design of a search engine for Wikipedia data set 
using compressed inverted index data structure over Hadoop 
distributed framework is proposed. This data set containing 
more than four million files needs an efficient search engine 
for quick access of data. No compromise must be made on the 
search results as well as the response time. Care should be 
taken not to omit documents that contain words synonymous 
user query. Since accuracy and speed is of primary importance 
in search, our methods could be favoured in such cases. 

II. LITERATURE SURVEY 

[2] For large-scale data-intensive applications like data 
mining and web indexing MapReduce has become an 
important distributed processing model. Hadoop–an open-
source implementation of MapReduce is widely used for short 
jobs requiring low response time.  Both the homogeneity and 
data locality assumptions are not satisfied in virtualized data 
centres. This paper [2] shows that ignoring the data locality 
issue in heterogeneous environments can noticeably reduce the 
MapReduce performance.  

The authors also address the problem of how to place data 
across nodes in a way that each node has a balanced data 
processing load. Given a data intensive application running on 
a Hadoop MapReduce cluster, their data placement scheme 
adaptively balances the amount of data stored in each node to 
achieve improved data-processing performance. Experimental 
results on two real data-intensive applications show that their 
data placement strategy can always improve the MapReduce 
performance by rebalancing data across nodes before 
performing a data-intensive application in a heterogeneous 
Hadoop cluster. The new mechanism distributes fragments of 
an input file to heterogeneous nodes based on their computing 
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capacities. Their approach improves performance of Hadoop 
heterogeneous clusters. 

According to [1], a virtualized setup of a Hadoop cluster 
that provides greater computing capacity with lesser resources 
is presented, as virtualized cluster requires only fewer physical 
machines with master node of the cluster set up on a physical 
machine, and slave nodes on virtual machines (VMs).  

The Hadoop virtualized clusters are configured to use 
capacity scheduler instead of the default FIFO scheduler. The 
capacity scheduler schedules tasks based on the availability of 
RAM and virtual memory (VMEM) in slave nodes before 
allocating any job. Instead of queuing up the jobs, the tasks are 
efficiently allocated on the VMs based on the memory 
available. Various configuration parameters of Hadoop are 
analysed and the virtualized cluster is fine-tuned to for best 
performance and maximum scalability. The results show that 
the approach gives a significant reduction in execution times, 
which in turn shows that the use of virtualization helps in 
better utilization of the resources of the physical machines 
used. Given the relatively under power of the machines used 
in the real cluster the results were fairly relevant. The addition 
of more machines in the cluster leads to an even greater 
reduction in runtime. 

According to [8], Hadoop, the emerging technology made 
it feasible to combine it with virtualisation to process immense 
data set. A method to deploy cloud stack with Map Reduce 
and Hadoop in virtualised environment was presented in this 
paper. A brief idea on setting up a Hadoop experimental 
environment to capture the current status and the trends of 
optimising Hadoop in virtualised environment was mentioned. 
The advantages and the disadvantages of the virtualised 
environment was discussed, ending with the benefits of one's 
compromise over the other. Making use of the virtualised 
environment in Hadoop fully utilizes the computing resources, 
make it more reliable and save power and so on. On the other 
side, we have to face the lower performance of virtual 
machine. Then some methods to optimize Hadoop in virtual 
machines were discussed. 

III. PROBLEM STATEMENT 

The result of any user’s search query must be fast, should 
not miss any relevant data related to the query. A search 
engine designed by using distributed framework like Hadoop 
and inverted index data structure is fast and returns all the 
relevant results. In order to do this and to analyse the 
feasibility of deployment of a search engine for Wikipedia 
various requirements and parameters to be considered must be 
well understood and analysed. 

IV. PARAMETERS FOR PERFORMANCE METRICS 

The performance of a search operation through an inverted 
index built over millions of Wikipedia documents distributed 
over a multiple node Hadoop cluster in a virtual node could be 
effectively measured using various parameters such as 
response time ,throughput, speed up,  latency hiding, 
computation time, communication time and thereby 
computation and communication ratio. In terms of the search 
operation in this distributed and parallel platform, response 
time indicates the time taken for the first of the relevant wiki 

documents to appear when a query is made. Through put in 
other words can be defined as the number of transactions per 
second or the maximum number of search queries that can be 
made per second, speed up factor refers to the time that could 
be saved due to a fraction of process that could be parallelized 
.As the documents are distributed across multiple documents, 
the percentage of search operation that can be parallelized and 
thereby the speedup achieved could be measured. [6]  

Speed-up factor= 
  

  
 

Where    -Time taken for serial execution of the process 
and    - time taken after parallelization. As more time is 
consumed in start-up of a communication between nodes, 
making use of this time effectively for completing as much 
computations as possible would improve performance. This 
can be achieved via non-blocking send routines thereby 
helping in achieving latency hiding. Sometimes, even blocking 
send routines allow computations to take place until the 
expected messages reach the destination aiding in improving 
latency hiding. Total processing time includes computations 
and the communications carried out. 

T process = T computation +T communication 

The computation time for the search operation can be 
calculated by counting the number of computations per 
process. Computation involves locating the node that has the 
relevant documents. [9]Communication time depends on the 
size of the data transferred, start-up time for each message and 
number of messages in a process and the mode of data 
transfer. Communication in multiple cluster node involves 
requesting a node for certain documents based on the query 
and the nodes responding with the requested documents. 

T communication = T start up + w*T data 
Where 

T start-up – Time needed to send a blank message 

T data     - Time to send/receive a single data word 
W         - No. of data words 

 

Speed-up factor =
  

  
=

  

                                
      

 
The computation communication ratio throws light on the 

how much time communication takes as a result of increased 
amount of data. 

V. INVERTED INDEXING 

Indexing refers to creating a link or a reference to a set of 
records so as to enable better identification or location. 
Forward indexing and inverted indexing are two main types of 
indexing. When an element say 97 is accessed through its 
index say Arr [3] in Fig 1, then it is forward indexing. When 
the same element is searched based on its occurrence or the 
number of occurrences, then it is inverted indexing. 

 
Fig. 1. Illustration of Forward and Inverted Indexing 
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      An inverted index for a document or set of documents 
contains a hash table with each word as its index and a posting 
list as value of each index. A postings list consists of a 
document id, position of word in that document and frequency 
of occurrence of each word in that document. 

Fig. 2. Inverted Indexing-Working 

If there are n documents to be indexed then a unique 
document id is set for each document from 0 to n-1. The 
postings list for a term is sorted based on various criteria. 
Though it is easy to sort it based on document id, for search 
operations other parameters are considered for sorting. Sorting 
done based on frequency of a term in a document is more apt 
for a search operation. At the end of sort processing this data 
structure returns the top k documents in the postings list where 
k is the maximum returning capacity of a search engine in a 
single stretch. [7]. 

A. Algorithm 

Inverted_Index (int docID[n], string doc[n]) 

M  new HashMap 

Count  0 

For all document with docID m from 0 to n-1 

   For all term tm and position pos in doc    

   With    docID m do 

M {tm, previous pos, previous m}  M 

{tm, pos, m} +1 

       Count (tm, m) ++     

   

   For each tm in M with docID m 
        Sort (count (tm, m)) 

As explained in Fig 2, input to the indexing algorithm is 
the set of document IDs and the contents of all the documents. 
Each new term in the document is formed as an index in the 
hash table. For each occurrence in a document its document 
ID is added to the postings list of that term along with its 
position. After each occurrence of a term in a document its 
corresponding frequency variable count is incremented. 
Postings list of each term is finally sorted based on the 
frequency of words in each document. 

Algorithm Search (HashMap M, string word) 

             return M[word] 
In the search part of an inverted index, the word which is 

queried by the user is passed as input along with the hash map 
which has the set of all positions of the each word in the 

document. Hash map takes the word as its index and returns 
the value stored in that index. 

VI. DATA SET - WIKI DUMPS 

All the contents of Wikipedia are available in 
downloadable format as wiki dumps. This can be taken by 
users for archival/backup purposes, offline storage, 
educational purpose, for republishing, etc. There are over four 
million files in Wikipedia, compressed form as wiki dumps of 
size 9.5 Giga bytes approximately. When extracted from the 
compressed form, it comes to around 44 Giga bytes. Database 
backup dumps have a complete copy of all Wikipedia 
documents as wikitext and the set of all its metadata in XML. 
Static HTML dumps has copies of all pages of Wikipedia 
wikis in HTML form. 

Contents of dumps include page-to-page link, media 
metadata, title, information about each page, log data, Misc 
bits, etc. These are in the wrapper format described at schema 
Export Format which is compressed in bzip2 and .7z format. 
They are provided as dumps consisting of entire tables using 
mysqldump. Internal file system limit must be taken into 
account before extracting these files from compressed format. 

VII. HADOOP 

Map Reduce method has emerged as a scalable model that 
is capable of processing pet a bytes of data. Fundamental 
concept of MapReduce: Rather than working on one, huge 
block of data with a single machine, Big Data is broken up 
into files that further are broken into blocks by Hadoop and 
parallel processing and analysis is carried out. [5] 

The Hadoop is a map reduce framework that provides 
HDFS (Hadoop Distributed File Systems) infrastructure. 
HDFS was designed to operate and scale on commodity 
hardware. Breakdown in hardware is largely compensated by 
replication of blocks of data in multiple nodes.  

A. Hadoop Distributed Filesystem (Hdfs) Overview 

HDFS (Hadoop Distributed File System) is a distributed 
user level file system which stores, processes, retrieves and 
manages data in a Hadoop cluster. HDFS infrastructure that 
Hadoop provides, include a dedicated master node called 
Name Node which contains a job tracker, stores meta-data, 
controls the overall distributed process execution by checking 
out whether all name nodes are functioning properly through 
periodic heart beats. It also contains many other nodes called 
Data Node which contains a task tracker, stores applications 
data. The Ethernet network connects all nodes. HDFS is 
implemented in Java and it is platform independent. Files in 
HDFS are split into blocks and each block is stored as an 
independent file in the local file system of Data Nodes. Each 
block of a HDFS file is replicated at least three times in 
multiple Data Nodes. Through replication of application data, 
provides data durability.[9] 

The Name Node manages the namespace and physical 
location of each file. File system operations are done by HDFS 
client by contacting the Name node. Name Node checks a 
client’s access permission and gets the list of Data Nodes 
hosting replicas of blocks. Then, requirements are sent to the 
“closest” Data Node by requesting a particular block. Then, a 
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socket connection is created between the client and the Data 
Node. The data is transferred to the client application. When a 
client application writes a HDFS file, it first splits the file into 
HDFS blocks and the Name Node gets the list of Data Nodes 
which are replicas of each block and writing data is done by 
multithreading. [3] 

If the client application is running on a Data Node, the first 
replica of the file is written into the local file system of the 
running Data Node. If the client application isn’t running on a 
Data Node, a socket connection is created between the client 
and the first Data Node. The client splits the block into smaller 
packets and starts a pipeline: the client sends a packet to the 
first Data Node; the first Data Node on getting this packet, 
writes this to the local file system, and also sends it to the next 
Data Node. A Data Node can receive the data from a previous 
node and at the same time forward the data to the next node. 
When all nodes in this pipeline write the block into local file 
system successfully, the block write is finished and then Data 
Nodes update the block physical information to the Name 
Node. The architecture of multiple cluster implementations 
has been explained in Fig 3. 

 
Fig. 3. Hadoop Multiple node Cluster Architecture 

B. Working process of Hadoop Architecture 

Hadoop is designed to run on a large number of machines 
that don’t share any memory or disks. When a data is loaded 
into Hadoop, the software splits that data into pieces and 
spreads it across different servers. Hadoop keeps track of 
where the data resides. And because there are replica of single 
data, data stored on a server that goes offline or dies can be 
automatically replicated from a known good copy. 

In a Hadoop cluster, every one of those servers has two or 
four or eight CPUs. Each server operates on its own little piece 
of the data. Results are then delivered back through reduce 
operations. MapReduce maps the operation out to all of those 
servers and then reduces the results back into a single result 
set. Since Hadoop spreads out data, it is possible to deal with 
lots of data. Since all the processors work in parallel and 
harness together, complicated computational questions can be 
performed. Node failures are automatically handled by the 
framework for both map and reduce functions. 

VIII. ASSUMPTIONS AND GOALS 

Applications that run on HDFS have large data sets. A 
typical file in HDFS is Gigabytes to Terabytes in size. 
Therefore, HDFS must provide high bandwidth and scalability 
to hundreds of nodes. HDFS applications need a write-once-
read-many access model for files. If a file is created and 
written, it is assumed that it will not be changed in future. This 
is to simplify data coherency and to get high throughput data 
access. 

IX. PROPOSED SOLUTION 

A Hadoop cluster is established by passing Wikipedia files 
as input data and inverted indexing is done by taking 
advantage of Map Reduce. 

In the map phase, the Wikipedia files are divided equally 
among mappers and passed as inputs. Each Wikipedia file is 
given a unique document ID. Each mapper indexes each term 
in its file into the hash map with the corresponding document 
ID and position in that document as a posting list. When it 
finds that term for the first time it creates that term as the 
index and writes the corresponding postings list of that term. 
When the term is found again, the corresponding posting list 
for that position is appended with the previous list to index 
holding that term. 

A. Map function pseudo-code 

Algorithm Map (int docID[x], string doc[x]) 

M  new HashMap 

Count 0 

For all document of docID m from 0 to x-1 

For all term tm and position pos in             doc   

with docID m do 

         M {tm, previous pos, previous m}                                              

  M{ tm, pos, m }+1        

      Count (tm, m) ++         

emit (M, count (tm, m)) 
 

In the above algorithm X is the maximum number of 
documents processed within a mapper. The input file is read 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No. 11, 2013 

160 | P a g e  
www.ijacsa.thesai.org 

word by word and indexed accordingly with its document ID 
and corresponding position in a hash map. The variable count 
keeps track of the frequency of a term within each document 
in that mapper. At the end each mapper returns its hash map 
with the count value of each term in a document. 

In reduce phase each reducer takes in its responsibility a 
term or set of terms. These terms are given an index position 
in a global hash map where all the terms are stored as index.  
When a reducer encounters its term from a mapper it appends 
the posting list of that mapper to its value in this hash map. 
After appending the entire list of that term from all the 
mappers, reducer sorts posting list based on count value of 
each document. The more the value, the preference is higher. 
In the same way, all the terms in this whole document are 
indexed in the hash map in this reduce phase.  

B. Reduce function pseudo-code 

Algorithm   Reduce (term tm, List of hash maps of each 

mapper[], count{tm, docID}) 

     G  new HashMap //G is common HashMap for all 

reducers 

      for each hash map H from all mappers  

for each term tm in document with docID m and 

position pos in H 

//n is the total number of documents   
G{ tm , previous pos, previous m}           

                            H{ tm, pos , m }+1        

Sort( count (tm , m )) 

//values in list is sorted based on the count value of 

each term in a document 

         emit(G)  
In the above pseudo code each reducer takes as its input all 

the hash maps of various mappers and the count values of each 
term in a document. Reducer checks each hash map with its 
allotted term and if it matches with any mapper’s index it 
appends that value in global hash map. When all the values are 
appended for a term it is finally sorted based on its count value 
in each document. 

C. Retrieval 

The terms in global hash map is divided among the 
mappers along with their corresponding posting list. When the 
user queries a term, the name node sends this query to the 
corresponding data node. Value of the term is passed to the 
reducer as a complete list. Reducer returns the first k values of 
that term to the user where k is the maximum number of pages 
returned for a user query. 

X. FUTURE WORKS 

First a distributed, multiple node Hadoop cluster has been 
built and the millions of wiki documents has been distributed 
over these nodes. A compressed inverted index containing 
indices for words in dictionary order is to be built over these 
documents. After building inverted index, distributed 
performance evaluation for searching documents based on 
keyword is intended to be made. Further data analysis and text 
mining could be made based on index support. The results of 
text mining and data analysis would help in suggesting related 
pages based on data such as other documents where the 

synonyms of the query are predominantly found. Indexing can 
be further partitioned in to local index partitioning and global 
index partitioning. In term based partitioning or global index 
partitioning, each node in the multiple cluster stores posting 
list only for a subset of the term in the collection. Local index 
partitioning is each server building a separate index for the 
files that it contains. When this is done, each server indexes 
only the document that it contains, reducing the number of 
documents to thousands. This is very much lesser compared to 
the actual number of indices that had to be built if indexing is 
to be done for over a million documents. So, instead of 
building a single index over 4 million Wikipedia documents, 
local index would be built over documents on each node and 
an index would be built on these indices thereby quickening 
search and compressing indices. Further, indices built over 
articles (a, the, an) and other such common words would be 
deleted for adding accuracy. 

XI. CONCLUSION 

In this paper, a compressed inverted index data structure 
that could help in crawling for words in dictionary order such 
that all the indices built for millions of documents need not be 
processed has been proposed. In addition, basic factors for 
designing indices such as merge factors, storage technique, 
index size, look up speed, maintenance, fault tolerance etc. 
will also be taken into account. Building a local index for files 
within those system will prove to be a great way to solve 
problems that could arise in parallelism such as when a file is 
added, whether index updating should happen before the 
search operation that is currently going on and vice versa as 
only a portion of the entire set of documents need to be 
updated making the ‘index merging’ process very simple. In 
addition to storing a token word, its document id and the 
position in which it appears, we have suggested to add token 
word document id and its frequency to rank up the relevant 
documents.  Our work has motivated several interesting open 
questions such as which type of inverted index data structure 
would be most useful for text mining. Other ways to optimise 
performance in search is being investigated and added over to 
the suggested methods.  
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