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Abstract—This paper proposes an ultrafast scalable embedded
image compression scheme based on discrete cosine transform.
It is designed for general network architecture that guarantees
maximum end-to-end delay (EED), in particular the Distributed
Multimedia Plays (DMP) architecture. DMP is designed to enable
people to perform delay-sensitive real-time collaboration from
remote places via their own collaboration space (CS). It requires
much lower EED to achieve good synchronization than that in
existing teleconference systems. A DMP node can drop packets
from networked CSs intelligently to guarantee its local delay and
degrade visual quality gracefully. The transmitter classifies visual
information in an input image into priority ranks. Included in the
bitstream as side information, the ranks enable intelligent packet
dropping. The receiver reconstructs the image from the remaining
packets. Four priority ranks for dropping are provided. Our
promising results reveal that, with the proposed compression
technique, maximum EED can be guaranteed with graceful
degradation of image quality. The given parallel designs for its
hardware implementation in FPGA shows its technical feasibility
as a module in the DMP architecture.

I. INTRODUCTION

Greater interest in green technology and rapid technologi-
cal advances opens ways to conceive multi-party collaboration
from distributed places via tele-immersive environment. Near-
natural quality is achievable by tiling auto-stereoscopic multi-
view 3D displays and high-end cameras on all the surfaces
of such environment. The collaborations will soon include
those which are very sensitive to end-to-end delay (EED),
such as remote choir-conducting and dancing. The effect of
EED is very critical to achieve good synchronization between
the collaborating people from different locations. For example,
the optimal EED for synchronizing rhythmic clapping hands
from different places is 11.5ms [3]. It includes propagation,
transmission and all processing delays. Longer EED will
produce increasingly severe tempo deceleration while shorter
ones yield a modest yet surprising acceleration. Percussion
is rhythmically similar to clapping hands. Musicians playing
percussion will then require similar EED for both audio and
video data while collaborating. The same effect of EED to
collaborative dancing is indicated in [22]. Video data is essen-
tial to good synchronization between dancers as they depend
on visual cues [3]. Thus the greatest demand to meet and
guarantee such low EED lies in processing visual information.

The Internet today, however, is unable to deliver such
guarantee with its best-effort design. One approach for it is
to design network nodes with ability to intelligently drop
video packets on-the-fly despite changing traffic conditions
but also with graceful quality degradation. Video compression
by current coding standards is conducted only by the sender.

Higher visual quality comes at the expense of more complexity
and longer encoding time. Therefore very low EED implies
minimizing or even avoiding video coding at the expense of
high increase in bit rate. It implies the use of intraframe,
object-based and parallel processing. To guarantee both the
constant EED and the graceful degradation of visual quality,
a novel network architecture namely Distributed Multimedia
Plays (DMP) has been proposed [16].

Very demanding situations during collaboration, for exam-
ple when the input video from the collaboration environment is
extremely transient, require simplified approach in processing
the data. A simple data representation for parallel image
transmission is shown in Fig. 1. N×N blocks are tiled directly
on the pixels of a video frame, yielding N2 bit streams of
pixel values. In DMP objects in an image can be segmented,
processed and transmitted independently. The number of pixel
streams in a segmented object may vary depending on its
visual content. Thus network nodes can drop pixel streams
after entropy coding to instantly reduce the bit rate according
to immediate traffic conditions.

Fig. 1. The tiling of 3× 3 blocks (N = 3) over an image of 9× 9 pixels,
yielding N2 = 9 streams of pixels (left); the dropping of streams number 3, 4
and 8 (right). Each pixel of dropped streams denoted by × will be optimally
interpolated from the remaining ones at the receiver.

The time for data reduction by network nodes must also
be minimized. This affects how the entropy coding must
be designed later. The dropped pixels will be estimated by
applying optimal interpolation in the sense of mean square
error to the received bit streams at the receiver. Searching
for such interpolation leads us to Kriging, a technique well-
known and widely used in geostatistics. Kriging works better
by using window mechanism, hence called windowed kriging
interpolation. It was proposed and used to interpolate luma and
chroma data in natural images with positive results [12][13].

The collaboration system on the DMP algorithm must
work fast due to the very low EED. Practically it means that
the processing routines are to be implemented in hardware.
In this work we focus on field-programmable gate array
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(FPGA) implementation. To the best of our knowledge, there
is no reliable reported information on the feasibility of FPGA
architecture for Kriging image interpolation. This work is
motivated to fill that void. Some of the calculation routines in
the proposed architecture are reused. Moreover some highly
exhaustive computations are skipped whenever possible. The
paper is structured as follows. Section II presents an in-depth
analysis of the Kriging algorithm that leads to the proposed
FPGA architecture. The computational complexity and the
resource consumption of the architecture are discussed in
Section III. Section IV finally concludes the paper with the
summary and some ideas for future work.

II. ANALYSIS OF THE KRIGING ALGORITHM AND THE
PROPOSED ARCHITECTURE

The computational cost of some parts of the Kriging
algorithm is O(n4) where n is the size in pixels of the
square image interpolated. The strong data dependencies in
the algorithm make parallelization a challenge. Some of the
inherently sequential stages in the algorithm are best performed
on general purpose processor (GPP) rather than on FPGA.

Implementations of the Kriging algorithm on different com-
putational platforms of GPP or graphics processing unit (GPU)
have been reported such as in [6][4][8][17]. The speedup
factors are promising and span from eight [6][4], twelve [17]
and up to 120 [8]. The latter is achieved on GPU by means of
compute unified device architecture (CUDA). The architecture
for OK presented in this paper aims to decrease the overall
latency in FPGAs. Therefore direct use of the aforementioned
speedup benchmarks is not adequate for DMP. The goal of
most of these implementations is to reach high data-processing
throughput rather than low system latency. This is understand-
able as most of the papers focus on geology and geostatistics
[6][4][8][17] instead of image processing. Nevertheless there
are some work that cover the latter in [10][5][14] although
they do not address FPGA implementation.

Ordinary kriging (OK) is employed in this work to in-
terpolate the dropped pixels in an output image. ML605
platform from Xilinx [18] is chosen for system deployment
and estimates. The analysis consists of three computational
steps of the OK algorithm [7]. Step 1 is to find points in an
image which contribute to building an output picture. Step 2 is
to construct the variogram matrix. The last step is to compute
the weights and interpolate the missing points.

A. Step 1: Finding Points as Basis for Interpolation

The step for the windowed Kriging interpolation [11] is
not very difficult since all the input points to be considered are
included in the well-established frame of interest of D×D pix-
els. The optimal size of D is a subject of research and will be
provided later in this paper. A DMP access-node reconstructs
an image out of the received packets according to the employed
dropping scheme [1]. The number of dropped packets varies
depending on the network traffic. Image data in pixels are
gradually delivered to the Kriging interpolation module (KIM)
which is responsible for the image reconstruction. An overview
of the process is depicted in Fig. 2.

Fig. 2. The image reconstruction scheme in DMP.

B. Step 2: Constructing the Variogram Matrix

A variogram provides the information on the contribu-
tion of a given point to that being reconstructed [7]. It is
a function of a distance vector between the points h as
γ(h) = 1

2E[(z(si+h)−z(si))2] where z(si) are observations
in two different locations separated by h. A variogram is
obtained from an experimental semivariance as a result of its
fitting to one of variogram models [7], [11]. Experimental
semivariance for each distance h in an interpolated image
frame may be obtained as

γ(h) =
1

2N(h)

N(h)∑
i=1

E[(z(si + h)− z(si))2] (1)

where N(h) denotes the number of sample pairs separated by
h [7]. There are five stages to compute the variogram:

1) Determining the squares of the distances between all
the points in the area of interest constituted by the
D ×D window

2) Sorting the distances
3) Accumulating the sorted values
4) Building an experimental variogram
5) Fitting the variogram to an appropriate model.

The computational complexity of the first stage can be
shown as D2(D2 − 1)/2 ≈ O(D4). The operations in
this stage involve both subtraction and multiplication of each
pair of the D × D pixels. Multipliers and adders in Stage 1
are connected in a pipeline fashion to the other modules, as
illustrated in Fig. 3. The overall number of different inter-pixel
distances within a picture, N(D), is given by

N(D) = ( D + 12 ) + (D − 1) =
(2 +D − 2)!

2(D − 2)!

=
D(D − 1)

2
+ (D − 1) =

(D − 1)(D + 2)

2

where D is the length of an image frame edge in pixels. N(D)
is plotted against D in Fig. 4.

A separate hardware module can be dedicated to each
processing stream, as encircled in black in Fig. 3, leading to
N(D) streams. The number of pixels processed by a single
stream in such a scheme is expressed by

k =
total number of pixels in a picture

overall number of distances between pixels

=

⌈
D2(D2 − 1)/2

(D − 1)(D + 2)/2

⌉
=

⌈
D2(D + 1)

D + 2

⌉
≈ D2.
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Fig. 3. The proposed architecture of the variogram calculation module.

Fig. 4. The number of different distances as a function of D.

Note that this approach leads to large memory consumption
since N(D) of k KB Block RAMs (BRAMs) or distributed
RAM memory blocks are required. It is because a separate
memory port is needed for data fetching and reading. Sorting
can be performed during the data fetching or by means of a set
of (N(D) to 1) multiplexers (MUXs). The pipeline architecture
of the variogram calculation unit presented in Fig. 3 features
all the processing stages of Step 2.

There are 4[(D − 1)(D + 2)/2] units in a variogram-
calculation module with an approximately 10 clock cycles
(CLKs) + MUX pipeline latency. Here the variogram-fitting
module is not taken into account. It is assumed that a multiplier
consumes 3 CLK while an adder and an accumulator take 1
CLK. The pipeline delay also depends on the data width. To

achieve the final precision of 8 bits, some guard bits are used in
the middle processing stages (see Fig. 3). However to simplify
the analysis, this parameter is set to 0, i.e. no guard bits.

Unfortunately the pixel pairs are not evenly distributed
across the streams. For example, from 2D(D − 1) pairs of
neighboring pixels, two are of the maximum distance, i.e.
the diagonal of an image frame. Therefore the architecture
(without MUX) illustrated in Fig. 3 is not optimal in terms
of data distribution. Some of the streams will finish their
tasks earlier and remain idle while the others are still being
processed. Load balancing procedure may be implemented as
finite state machine (FSM) to provide equal distribution of
pixels across the streams. This procedure would require driving
MUXs that feed the accumulators with data according to the
computed semivariance. However, the delay introduced by the
MUXs is large, due to their sizes and resource consumption.

An interesting alternative would be time-multiplexing of
variogram computations coupled with an accumulator-result
summation. Instead of implementing a set of MUXs, Eq. (1)
may be multiplexed in time, reusing the streams in Fig. 3
multiple times during computations. The decision regarding
the number of parallel streams should consider the expected
size of the input image. Fig. 5 plots the variogram computation
time for one stream against D. The estimate assumes that
the FPGA is clocked at 100 MHz. The remaining part of
the paper also adopts that assumption. As mentioned above,
computation time depends on the degree of parallelism. In the
case of variogram calculation stage, it is strictly related to
the number of processing streams employed. Fig. 6 exhibits
this relationship, as a function of the number of concurrently
working module for D that equals 256, 128 and 64 pixels.

Fig. 5. Computation time of a single stream against D.

The throughput of the external data bus is a key factor in
estimating the system performance. There are two communi-
cation buses employed in DMP: PCIe and 10Gb Ethernet. The
transfer speed of the latter is 2 or 1.25 GB/s. PCIe bus is used
for local data transfer between the camera devices and the
processing boards. The 10Gb Ethernet provides the inter-node
communication [15]. Fig. 7 reflects the expected throughput
of the two interfaces for different values of D. Raw transfer
that includes the overhead of the protocols is considered here
for simplicity. The worst case in Fig. 7 occurs when only one
pixel is missing and must be interpolated from the input data.
In real situation it will not occur since the smallest amount
of data being dropped is 1/N2 of all the image pixels. The
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Fig. 6. The impact of the number of concurrently employed streams on the
computation time.

Fig. 7. Data transfer/computational time against D.

number of dropped pixels varies from 1/N2 to (N2− 1)/N2,
either fully or partially (cf. Fig. 1). Fig. 7 also depicts how
the growth of an image size affects both the data transfer and
computation time as shown by the dotted green line. One can
see that the computation time, rather than the data transfer, is
the constraint.

Consequently it is possible to generate a variogram for
quite large images given enough parallel streams. Here we
focus on 256×256 images. A single stream absorbs roughly
270 look-up tables (LUTs), 252 flip-flops (FFs) and one
BRAM [19]. Thus a single Virtex-6 XC6VLX240T chip
can accommodate 150,720/270 ≈ 558 streams if the time-
multiplexing is chosen, i.e. no resource is reserved for im-
plementing MUXs. Accordingly, a module comprising 256
streams capable of handling computations of a 256×256 image
consumes roughly 46% of all the FPGA resources. It generates
results in approximately 10 CLK or 0.1 µs.

The stream switching tasks in the time multiplexing takes
additional time, but completing the computations under 1µs
is feasible. It is possible to reduce resource utilization by
reducing the number of parallel streams at the expense of
higher multiplexing effort. For instance, the consumption of

resources at 64 streams drops to approximately 11% and the
computation time remains below 1ms, as shown in Fig. 6.

The analysis presented in this section does not cover vari-
ogram fitting procedure due to its sequential nature. Moreover
the other blocks in Fig. 3 absorb many resources. Thus the
computation of variogram matrix is assumed to be made offline
and uploaded to the FPGA before the computations start. This
section is intended to show that implementing Step 2 on FPGA
is feasible. It may be attempted later with high probability. It
would be especially beneficial if some of the other modules
presented later in the paper, e.g. the linear solver, could be
reused for this purpose. It is saved for future research, along
with studying the impact of using fixed variogam on the quality
of the image interpolation. By fixed variograms we mean using
the same variogram matrix for different images, instead of
generating a different one for each new incoming frame.

C. Step 3: Computing the Coefficients and Interpolation

This step is performed directly after Step 2 and imple-
mented as a separate hardware module. It is again useful
to skip the experimental variogram fitting. Therefore it is
assumed here that the variogram matrix is computed offline
and uploaded to FPGA internal memory. This does not exclude
the possibility of incorporating the generation of the variogram
matrix into the system later.

Step 3 features two operations that are implemented as
separate hardware modules. The first is the construction of
the semivariogram matrix. The second is to solve the linear
equation to compute the λ coefficients.

A variogram matrix can be built by gradually filling it up
with data derived from the model equations. The following
exponential model is the most suitable for image interpolation

f(h) = c
(
1− e−3h/a

)
(2)

where h, a, c are the parameters computed in Step 2 or up-
loaded to FPGA memory [16]. The model can be implemented
as hardware module that consists of a exp() unit, a subtractor
and multipliers, as pictured in Fig. 8.

Parameters h, a, c and ln(c) are computed offline, e.g. on
a GPP. Since there are only four parameters, it is possible
to store a few sets of them in the internal memory and use a
pointer to the selected one. The selection could be made based
on the properties of each incoming image. To reduce resource
consumption, the last multiplier in Fig. 8 (b) can be eliminated
by computing ln(c) as shown in Fig. 8 (a).

If the variogram matrix is implemented as a LUT memory,
the number of the entries equals N(D) as shown in Fig. 4.
Thus it is important to take into account the available mem-
ory resources. For example, 256×256 pixel image occupies
roughly 1% of the internal BRAM memory resources of the
Xilinx Virtex-6 XC6VLX240T. Depending on the available
FPGA resources, one can adopt a strategy by either calculating
the variogram values using Eq. (2) or storing a computed
variogram matrix in the internal memory. However, regardless
of how the variogram matrix is generated, it is passed on to
the linear solver.
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Fig. 8. Two block diagrams of the f(h) module.

1) The linear equation solver: The goal of the Kriging
procedure is to interpolate the missing image pixels at the
DMP receiver. Thus, based on the variogram matrix generated
in the previous step of the algorithm, it is essential to compute
the λi coefficients for every missing point p separately as

p =
n∑
i=1

λiw(xi) (3)

where λi and w(xi) are the coefficient vectors and the values
at the known points, respectively [11]. The equation for
computing λi in matrix formulation is given by[

λi 1
1T 0

] [
λ
µ

]
=

[
λp
1

]
(4)

where λi is the variogram matrix and λp is the semivariance
vector of the points being interpolated. Since Eq. (4) is solved
for all the missing points using the same variogram matrix, one
can compute the inverse matrix or use one of the well-known
factorization schemes to simplify the calculations, such as QR,
LU or Cholesky decompositions. Although the computational
complexity of these transformations is O(n3), the cost in
hardware implementation is different. Neither QR nor LU takes
the symmetry of the matrix directly into account. It leads
us to use Cholesky decomposition. FPGA implementation of
Cholesky decomposition has been studied and reported in
many papers such as [9][20][2].

2) Cholesky decomposition: Cholesky factorization can be
performed for symmetric positive definite matrices and this is
the case for the variogram matrix. The decomposition scheme
is given by

A = LLT (5)

where A and L are the input matrix and the lower triangular
matrix, respectively. It is worth noting that only one matrix L

is to be stored in the memory and used. The data throughput
of the module can be efficiently doubled. The example of
Cholesky transformation for a 3×3 matrix is as follows:[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
=

[
l11 0 0
l21 l22 0
l31 l32 l33

][
l11 l12 l13
0 l22 l23
0 0 l33

]
.

Multiplying the matrices in Eq. (5) and solving the set of
six equations by forward-substitution lead to the formula that
defines an algorithm for a general case as

ajk =
k∑
s=1

ljs · lks for 1 ≤ k ≤ j ≤ n (6)

where j, k, s are matrix indices. Eq. (6) can be defined as

ljk =
1

akk

(
ajk −

k−1∑
s=1

ljs · lks

)
for j > k

lkk =

√√√√akk −
k−1∑
s=1

l2ks (7)

The square root occurrence in Eq. (7) is a drawback from
hardware implementation perspective. The computation order
exhibits data inter-dependencies as shown by 1

2 3
. . 5
2 4 ... 2n− 1

 .
The disadvantages can be overcome by incorporating a

third matrix D as
A = LDLT . (8)

The example of 3×3 Cholesky transformation can be com-
puted by setting

D =

[
D1 0 0
0 D2 0
0 0 D3

]
.

General expressions for Eq. (8) with respect to l become

ljk =
1

akk

(
ajk −

k−1∑
s=1

ljs · lks · dk

)
for j > k (9)

dk = akk −
k−1∑
s=1

l2ks · dk (10)

where j, k, s are indices of the matrices.

A naive implementation of Eq. (9) is straightforward for
relatively small matrices. However, when the size of the matrix
grows, logic consumption and complexity of the module rise
significantly. Thus an alternative approach has been adopted
based on the concept introduced in [21]. Given a matrix

An−1 = Ln−1Dn−1A
T
n−1, (11)
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a new matrix can be expressed as

An =

[
An−1 x

xT p

]
=

[
Ln−1 0

zT 1

] [
Dn−1 0
0 dn

] [
LTn−1 z
0 1

]
=

[
LTn−1Ln−1Dn−1 Ln−1Dn−1z
LTn−1zTn−1Dn−1 zzTDn−1 + dn

]
.

Equaling the relevant elements of the matrices yields the
following set of equations

x = Ln−1Dn−1z (12)

p = zzTDn−1 + dn (13)

dn = p−
n−1∑
k=1

dkz2k (14)

where Eq. (12) can be presented as

Ln−1Dn−1z = x (15)

Ln−1y = x (16)

Dn−1z = y (17)

The solution of Eq. (15) is derived from Eqs. (16) and (17)
via substitution.

3) Architecture of the Cholesky decomposition module:
The architecture of the proposed Cholesky factorization mod-
ule is explained by using the 4×4 matrix example used to
generate the 5×5 matrix. The structure of the module shown in
Figs. 9 and 10 is based on Eqs. (12-17) which are exemplified
as follows. 1
l21 1
l31 l32 1
l41 l42 l43 1


 d1 0 0 0

0 d2 0 0
0 0 d3 0
0 0 0 d4


 z1
z2
z3
z4

 =

 x1
x2
x3
x4


 1
l21 1
l31 l32 1
l41 l42 l43 1


 y1
y2
y3
y4

 =

 x1
x2
x3
x4


 d1 0 0 0

0 d2 0 0
0 0 d3 0
0 0 0 d4


 z1
z2
z3
z4

 =

 y1
y2
y3
y4


We conceptualize two architectures of the hardware mod-

ule. The first is a strongly pipeline architecture depicted in
Fig. 9. It can be utilized for small matrices, but the imple-
mentation for larger matrices can be quite problematic. It may
serve as an alternative for the second architecture which is
more scalable, cf. Fig. 10. The first architecture delivers results
every clock cycle but it works properly only for a dedicated and
limited matrix size. Multiple uses of the structure would not be
straightforward if there is a need to compute 6×6 matrices in
contrast to the second architecture which can process matrices
of arbitrary sizes. Nevertheless the implementation of the
scalable architecture imposes a challenge. The control unit
must be designed such that the idle states are minimized. The

Fig. 9. A pipeline architecture for Cholesky decomposition.

Fig. 10. A scalable architecture for Cholesky decomposition.

TABLE I. THE EXECUTION STEPS OF 5× 5 MATRIX CALCULATION
MODULE.

Step 1 Step 2 Step 3

y1 = x1 y3 = x3step1 − l32y2 y4 = x4step2 − l43y3
y2 = x2 − l21y1 y4 = y4step1 − l42y2
y3 = x3 − l31y1
y4 = x4 − l41y1

processing phases should overlap according to Table I and
Eqs. (12-17). Fig. 11 shows the structure of the linear solvers
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Fig. 11. The internal structure of the C0, C1, C2 building blocks.

in the two architectures.

The algorithm defined by Eqs. (12-14) is based on a
gradual decomposition. It is conducted in a row-wise fashion
by iteratively solving triangular linear equations starting with
the top-left element of the matrix A. As shown in Fig. 10, one
triangular linear solver can be used for the whole procedure
and subsequently to compute the λ coefficients via Eq. (4).
Unlike the calculation of the missing points which is performed
multiple times, a variogram matrix is computed just once.

The Cholesky decomposition module is one of those to be
implemented on FPGA such as the network units, e.g. router,
framer composers and decomposers, quality shaping blocks,
and the PCIe components [15]. Due to the scalability of the
architecture, it is possible to trade the size of the linear solver
for accommodating the other modules in FPGA.

III. COMPUTATIONAL COMPLEXITY AND FPGA
RESOURCE CONSUMPTION

A. Computational Complexity

There is a tight relationship between the number of the
known pixels and the size of the matrix A in Eq. (11). The less
pixels are known, i.e. the more pixels to be interpolated, the
smaller A becomes, which means less computations involved
in its decomposition. On the other hand, a low number of
original pixels present in the final picture means a large number
of them are to be interpolated. This results in multiple instances
of Eqs. (3) and (4) to be solved as the following arguments.

The number of points Dp to be used for calculating the
matrix A in Eq. (10) is given by

Dp =

√
D2

fd
=

D√
fd

(18)

where D is the size of the original matrix (the length of the
original image edge in pixels) and fd denotes the decimation
factor (the number of the dropped points).

The number of CLK cycles required for a single iteration
of Eq. (10) as denoted by NCLK is expressed as

NCLK =
1 + (Dp − 1)

2Np
=

Dp

2Np

where Np is the number of parallel processing units. The worst
case or the longest computation time occurs when only one
processing unit in Fig. 10 is implemented.

The number of all the CLK cycles required to calculate a
complete matrix A, denoted as NCLK complete, is proportional
to the size of the variogram matrix formed for a given image
Dp. It is given by

NCLK complete = DpNCLK =
D2

2Npfp
.

Approximately 33,000 clock cycles are needed in the worst
case when computing a 256×256 LDLT matrix as shown
in Fig. 12. It is when both the decimation factor fd and the
number of parallel units equal 1. Assuming that the FPGA is
clocked at 100 MHz, it takes roughly 330µs to perform the
computation.

Fig. 12. The number of CLK cycles essential to compute a complete
an LDLT matrix as a function of the decimation factor or the number of
computational cores as given by Eq. (18).

The number of the missing points Dm is given by

Dm = D2 −D2
p = D2

(
1− 1

fd

)
.

Interpolating each of the missing points requires performing
the following series of matrix operations to generate the λ
coefficients:

An λ = γp (19)

LnDn L
T
n λ = γp (20)

Ln y = γp (21)

Dn L
T
n γ = y (22)

Dn z = y (23)

LTn γ = z. (24)

The computation of Eqs. (22) and (23) can be performed in
one step due to the properties of the linear solver. Twice more
operations are needed for calculating a missing point than for
generating an LDLT matrix.
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The number of CLK cycles required for a single iteration
of λ vector generation, denoted by NCLK λ, is given by

NCLK λ = 2NCLK =
Dp

Np
.

Computing NCLK complete point, which denotes the number of
CLK cycles required to compute all the missing points, follows
the equation below:

NCLK complete point = DmNCLK λ

= D3

(
fd − 1

Npf
3/2
d

)
.

The computational complexity of the routine for calculating
the missing points is O(D3).

Vector p in Eq. (3) can be calculated in parallel to solve
the linear equations for the missing points. The λ coefficients
being generated can be used right away in Eq. (4). It means
that, as the λ coefficients are generated for a given point, its
value is also computed. This operation can be implemented as
a multiplier accumulator block or a single DSP48E. Therefore
it is not accounted for in computing NCLK complete point.

For D = 256 pixels and a single computational core, the
number of clock cycles needed to compute all the missing
points reaches 5×106 CLK cycles (see Fig. 13). The compu-
tational time in this case is roughly 50ms, assuming that the
FPGA is clocked at 100 MHz. It is far beyond the system
latency limit. This is the worst-case assumption, which means
that all the 256×256 points are to be interpolated. In practice
the case when the smallest fd is N2 as in Fig. 1 never occurs.

Fig. 13. The number of CLK cycles essential for interpolating the missing
points in an input image.

B. Resource Consumption

The estimated FPGA resource consumption in a Xilinx
Virtex-6 XC6VLX240T for the building blocks in Figs. 9
and 10 is presented in Table II. A Xilinx ML-605 board
equipped with a Virtex-6 XC6VLX240T is the chosen FPGA
platform for the Kriging module implementation. The FPGA
contains 241,152 logic cells, 150,720 LUTs, 301,440 FFs, 768

DSP48E1 and 832 18Kb BRAM memories [19]. Thus a single
Virtex-6 XC6VLX240T can accommodate 150720/217 = 694
C2 blocks, the basic building cores of the linear solver. The
limitation here is the number of LUT memories. The estimate
does not account for available DSP48 blocks.

TABLE II. RESOURCE CONSUMPTION OF THE LINEAR SOLVER
BUILDING BLOCKS IN FIGS. 9 AND 10.

Module #LUT #FF #DSP slices #BRAM

C0 123 110 0 0
C0 (DSP) 0 0 1 0

C1 332 343 0 0
C2 217 233 0 0

C2 (DSP) 70 91 1 0

If all 694 C2 modules are exhausted to compute the
256 × 256 missing points, the total processing time would
drop to 50ms/694 ≈ 0, 072ms. Unfortunately only a part of
all the FPGA resources can be devoted to KIM unless there
is a separate FPGA dedicated only for its implementation.
Fig. 14 presents a block diagram of an exemplary KIM which
is capable of processing three windows in parallel [11].

Fig. 14. A block diagram of a Kriging interpolation module.

The module works as follows. The Frame Splitting unit
divides the image in window size chunks and sends them to
the Window Formatting blocks. The Window Formatting unit
builds a matrix of the known pixels locations and the set of
vectors of unknown points. These will subsequently be fed into
the Variogram Matrix Constructing module. In most cases it is
just a LUT memory. The module generates a variogram matrix
and passes the results to the λ Computing and Interpolation
Module. As the architecture depicted in Fig. 14 is scalable,
an arbitrary number of processing streams may be chosen.
The optimal performance is achieved when the number of the
processing streams is equal to the number of windows [11].

Let us assume that a single processing stream is used to
process 256× 256 images. It absorbs 25% of all the resources
of Virtex-6 XC6VLX240T. Note here that 173 units of C2
are used, cf. Fig. 11. In that case the generation of the A =
LDLT matrix takes 330µs/173 ≈ 1.9µs and computing all
the missing points lasts 4× 0, 072ms = 0, 288ms. The overall
execution time is expected to be roughly 0,3ms in such a case.
The assumption of 25% logic utilization is reasonable because
it leaves space for implementing the remaining modules, e.g.
PCIe, DDR3 memory controller, DMA and Microblaze.
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IV. CONCLUSION AND FUTURE DIRECTION

The Kriging interpolation module (KIM) is a part of the
quality shaping scheme which is considered as one of key
components of the future networked collaboration system.
Controlled dropping of packets leads to graceful quality degra-
dation. This is achieved provided an effective interpolation
mechanism is implemented for very demanding situations.
Therefore FPGA realization of kriging is critical and requires
special effort to meet a very strict EED of 11ms. A scalable
KIM architecture is proposed and its implementation feasi-
bility is analyzed with respect to the DMP system. It poses
several challenges to be addressed as future work, such as
the implementation of the variogram fitting routine and the
impact of using fixed variogram matrix on the quality of
the interpolation. The modularity of the proposed architecture
makes its future modification or extension straightforward.
The latency introduced by the module is less than 1ms for
a 256× 256 image.
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[11] M. Panggabean, Ö. Tamer, and L.A. Rønningen, ”Parallel image trans-
mission and compression using windowed kriging interpolation,” in
Proc. 10th IEEE Symp. Signal Processing and Information Technology
(ISSPIT), 2010, pp. 315–320.

[12] M. Panggabean and L.A. Rønningen, ”Chroma interpolation using
windowed kriging for color-image compression-by-network with guar-
anteed delay,” in Proc. 17th Int’l Conf. Digital Signal Processing (DSP),
2011, pp.1–6.

[13] M. Panggabean and L.A. Rønningen, ”Parameterization of windowed
kriging for compression-by-network of natural images,” in Proc. 7th
Int’l Symp. Image and Signal Processing and Analysis (ISPA), 2011,
pp. 373–378.

[14] J. Ruiz-Alzola, C. Alberola-Lopez, and C.F. Westin, ”Kriging Filters
for Multidimensional Signal Processing,” Signal Processing, vol. 85,
no. 2, pp. 413–439, 2005.

[15] L.A. Rønningen, The DMP System and Physical Architecture, Technical
Report, Department of Telematics, Norwegian University of Science and
Technology, 2007.

[16] L.A. Rønningen, M. Panggabean, and Ö. Tamer, ”Toward futuristic
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