(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 12, 2013

Anonymous Broadcast Messages

Dragan Lazic

School of Computer Science
University of Guelph
Guelph, ON, CANADA

Abstract— The Dining Cryptographer network (or DC-net) is
a privacy preserving communication protocol devised by David
Chaum for anonymous message publication. A very attractive
feature of DC-nets is the strength of its security, which is inherent
in the protocol and is not dependent on other schemes, like
encryption. Unfortunately the DC-net protocol has a level of
complexity that causes it to suffer from exceptional
communication overhead and implementation difficulty that
precludes its use in many real-world use-cases. We have designed
and created a DC-net implementation that uses a pure client-
server model, which successfully avoids much of the complexity
inherent in the DC-net protocol. We describe the theory of DC-
nets and our pure client-server implementation, as well as the
compromises that were made to reduce the protocol’s level of
complexity. Discussion centers around the details of our
implementation of DC-net.

Keywords—Dining Cryptographer network; Privacy; sender-
untraceability

. INTRODUCTION

The issue of privacy and anonymity on the Internet has
become a challenging one, especially with the growing
influence that the Internet has on our day-to-day social lives.
With the increased use of social networking sites and mobile
Internet based communication, being anonymous and
maintaining privacy has becoming something that the average
computer has great difficulty in achieving. Preserving the
anonymity of the communicating parties is crucial in situations
where knowledge of the identity of the source of
communicated messages could create a conflict of interest,
jeopardize the integrity of a process or endanger the
participants. The concept of maintaining anonymity is simple
to conceive. However, they can be rather difficult to
implement. The trails left by the protocols and technologies
involved in digital communication can be difficult to erase or
hide to a point where the identity of the communicating parties
is not exposed. The trails created in these communications are
often required for the communication itself often to maintain a
quality of service or integrity of the message being
communicated. This paper describes a digital, computer based
form of communication that preserves the anonymity of all
communicating parties. The program takes heavy influence
from David Chaum's Dining Cryptographers problem and the
DC Net concept.

A. Background

According to Nissenbaum [1], online anonymity is
“unreachability”, i.e. the inability of communication, or action
of an individual to be traced to a specific person at a specific
address in the real world.

Charlie Obimbo

School of Computer Science
University of Guelph
Guelph, ON, CANADA

A precise, mathematical definition of anonymity has been
elusive [2][3]. Uncommon attributes of an individual may still
be used to “fish-out” a person’s identity, even though one may
not know their name, phone number, or address explicitly from
a database [4][5][6][7].

Online anonymity has its pros and cons in the society. It
can provide a means for free speech and criticism of
established power without fear of reprisal [8]. An example of
this is when it was used in the media of communication in the
North Africa, Middle-East uprising [9][10][11]. The essence of
anonymity — and the need to assure deterrence from
repercussions created the need for the setting up of a system
that protected message conveyors from being identified in the
quasi-changed political systems. However, online anonymity
can also have detrimental effects in the society. Examples of
this include anonymous hacking [12], and communication by
terrorists [13].

The anonymous communication method described in this
paper is based upon the Dining Cryptographers problem. The
Dining Cryptographers problem was first proposed by David
Chaum [14][15] in 1988. David describes a thought experiment
and proposes a solution, which he develops into a theoretical
Dining Cryptographers Protocol (AKA. DC-net) that can be
used for broadcasting of unconditional anonymous messages
(Chaum 1988). Prior to the development of the DC-net
protocol, Chaum developed the concept of multiparty-secure
sender-untraceability protocol’ which he called the mixed-net
protocol. The mixed-net protocol idea was then used and
actually implemented in the onion routing protocol of TOR.

To illustrate the theory behind the DC-net the story of the
dining cryptographers is often used. The original Dining
Cryptographers problem begins with three cryptographers
having dinner together at a restaurant. Their waiter informs
them that arrangements had been made for the bill to be paid
anonymously. One of the three cryptographers might be paying
for the bill, or it could be the U.S. National Security Agency
(NSA). The three cryptographers want to respect each other’s
right to privacy but they would also like to know if the NSA
covered the bill. They devise their plan, while hiding behind
their menus they each flip a coin so that only the person sitting
on their right can see. Then they say aloud if the face of the
coin they flipped coincides with the face of the coin flipped by
the person to their left.

An odd number of differences uttered by the cryptographers
would indicate that one of them paid (assuming that the bill
was paid once). Yet the payer remains anonymous to the rest of
the Diners in that case.

36|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

For simplicity, the truth table below indicates the results of
the sums of the differences uttered as a result of the comparison
of the coin-toss, had none of them paid. It is easy to verify that
the above statement is correct.

TABLE I. RESULTS OF THE SUMS OF THE DIFFERENCES UTTERED AS A
RESULT OF THE COMPARISON OF THE COIN-TOSS
Differences
D1 D2 D3 | of Utterances
T T T 0
T T H 2
T H T 2
T H H 2
H T T 2
H T H 2
H H T 2
H H H 0

1) Peer-to-Peer

With peer-to-peer the clients all make connections to each
other in a ring design. For each bit that is transmitted, the
results from the first stage of the DC-net protocol are combined
by sending them around the ring network. Each user sends their
result to the “next” user in a previous determined direction on
the ring network. Now each user has 2 stage-one result bits and
XORs them. Then they pass the XOR result onto the next user.
This process repeats until the results have Figure 1: Dinning
Cryptographers

Non of them paid:

-
/ /

B 1 C B ——
w0 o

lxor0Oxorl=0 oxor0Oxorl=1
Fig. 1. Dinning Cryptographers

A paid:

made an entire circuit of the ring (equal in length to the
number of participants). Now every member of the ring should
have the stage-two result and the entire process repeats for the
next bit. The obvious problem with this implementation the
overhead of waiting for each client to process then send and
also the restructuring that would have to happen every time a
new client joins the ring. Figure 2 shows a basic layout of Peer-
to-Peer connection.

2) Hybrid Client-server

In this implementation the users send their results to a
server, which XORs them and sends back the results. However
the pair-wise shared secrets between clients is still
communicated in a peer-to-peer manner with direct
connections between peers.

Vol. 4, No. 12, 2013

@ v -~ @
@ — @

Fig. 2. Peer-to-Peer Model

The hybrid client-server implementation has the advantage
of communication efficiency compared to the peer-to-peer
implementation. The communication overhead for each client
is drastically reduced since a circuit of the ring network doesn’t
need to be made in order to broadcast messages. The primary
disadvantage of this implementation is the necessity of a server
in addition to the existing peer-to-peer connections, which
increases complexity. Figure 3 shows a basic layout of the
Hybrid Client-server connection.

Client
1

Client ™l
3

Fig. 3. Hybrid Client Server Model

Il. LIMITATIONS

The DC-net protocol is straightforward and elegant in
theory. It’s also highly secure. However, it has several
limitations, which may make it undesirable in certain use-
cases. The limitations of the DC-net protocol can be

generally grouped into three areas: collisions, disruption and
complexity.

A. Collisions

Due to the nature of the DC-net protocol only one byte can
be processed at a time. Otherwise if multiple clients send a
message the XORed result on the server at the end would be
unreadable text. To mitigate this problem, a system of start and
end messages will be used. Before a clients message is sent to a
server, a specially selected start character is sent before the
message. This start character means that the server will then
know to expect a message and that the end of the message will
be followed with an end-message character. During that time it
send a message to the clients notifying them that a message is
being received and to not send.

37|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Another similar collision issue is a race condition for
sending the start message. To address this a check was put in
place, if the XORed result on the server side came out to be
anything other then a 0 or a start message the server would then
not print the message but instead wait until it was XORed
zeroes again and then sent a broadcast notifying of a collision
and asking the clients to send again.

B. Complexity

The level of complexity and overhead that exists and can be
added to this protocol is rather larger. The existing complexity
adds to the communication overhead, which only gets worse
with more connections. The clients are constantly sending data
to the server, which then has to be processed by the server,
even when no actual message is being broadcast. Also if you
were to choose to encrypt the connection that would add
additional complexity and overhead for both the client and
server and decrease performance further. All these overhead
results decrease the performance of the server, and as more
clients connect performance continues to drop. However this is
a necessary limitation and without it, their would be no
anonymity.

C. Integrity

The DC-net protocol has no way of checking the integrity
of the clients or the server. Essentially this allows anyone to do
as they please within certain confines. For example a rouge
server can be hosted that works at identifying the clients that
connect and broadcast, or a client might be capable of jamming
someone or the server from broadcasting. Adding additional
checks in place to prevent this kind of action however could
result in the loss or the risk of loosing anonymity.

. IMPLEMENTATION

The implementation deed 24asone in this project is
different from the ones outlined earlier [16]. The Client-Server
scenario detailed in the previous section required too much
communication overhead [17], and the peer-to-peer scenario
was even worse. In the archetypical DC-net protocol model
discussed previously, both stages of the DC-net protocol are
performed for each single bit of data transmitted. This was
determined to be extremely wasteful. To lower communication
overhead of the DC-net protocol, random number generators
were introduced to replace the function of “coin flips”. This
allows DC-net protocol rounds to be conducted 8-bits at a time.

The server is implemented as a dedicated application that
acts as a broadcast hub for the clients as well as the calculator
for stage two of the DC-net protocol. The server cannot
participate in the chat in the same manner as a client would,
however it does send informational broadcasts when required.
However, just like in the original Client-Server DC-net
scenario, the server is used to keep sessions of the chat. The
clients have the ability to send and receive messages. The
clients handle stage one of the DC-net protocol and send the
results to the server. The clients have two operating rooms, one
for regular chat and another for anonymous chat. When all
clients have entered into the anonymous room and indicated
their readiness the anonymous mode will begin and a count
down timer for their session will also start.

Vol. 4, No. 12, 2013

Client
4 p

Client

Client
3

Fig. 4. The client-server connection model

A. DC-Net Implementation

Given the two-sided client-server design and the two stages
involved in the DC-net, implementation was done in two
stages. The first stage was to ensure that there was an operating
general chat program to work of off. The bases for the chat
program was found online and modification were made to
insure it better fit the needs of the project [18]. The general chat
program offers a simple chat interface that requires a unique
nickname and the IP address of the server. Once the chat client
was done adding the DC-net protocol was the next stage and
the bulk of the implementation.

Once the client connects and enters the anonymous room
and everyone is ready, the server generates a random seed for
each client in the ring at the point of connection. This random
seed is then sent to each client as well as the client to their
“left”. Therefore each client will have two seeds. Once
anonymous mode has been activated in the room, the client
uses the two seeds to generate the results of the 'coin toss'. The
DC-net protocol cycle operates thusly. During stage-one, each
client uses their seeded random number generators to produce
two sets of bits, 1 byte each in size. These two sets are XORed
to produce a single stage-one-result byte. The clients then
immediately send the stage-one-result byte to the server using
the primary communication channel (implemented by a TCP
byte stream).

The server logs the stage-one results as they are received
but performs no further action until all stage-one result bytes
have been received from every client. Once all the results have
been logged from every participating client, the server XORs
all the results in the log, producing the stage-two result. Finally
the server broadcasts the stage-two result to all clients using the
secondary communication channel (implemented by TCP text
stream). When the clients receive the stage-two result, a new
round of the DC-net protocol is triggered.

B. Client Classes
The client is a stand-alone program consisting of several
classes.

1) ClientRunner.java and ChatClient.java
ClientRunner is a very simple and small class. It essentially
is used to start the client. ChatClient, is the class containing all

38|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

of the code for the GUI. This class also handles creating and
executing the socket connection for the basic chat client.
Besides the methods used for the creation and handling of the
GUI, the class also has two other methods, one that creates a
byte stream over the socket connection to receive data and
another that does the same except to send data. Figure 5 shows
the GUI design for the normal chat room while Figure 6 shows
the design for the anonymous chat room.

2) ServerReader.java

The class starts an infinite loop and, using the receiver
method created in the ChatClient class, it listens on the read
byte stream for any data sent in by the server. Once the class
finds data on the stream, it will act in accordance to that data.

P
2 Chat Clignk w e m

File

Chat Room | Anony mous Room

Fig. 5. Normal chat room desigh

- E
2 Chat Cliert AN
File

Chat Room | Anonymous Room

Click ready to start
Anonymous modse

Session Timar
ke Cocrmy

Fig. 6. Anonymous chat room d'esign

This class essentially acts as a communication hub for the
client to the server. Should the server need to send anything
relevant to the client it will be received and handled by this
class. If the server needs to send notice of a collision or that a
message is being received then this class will receive the
message and print it in the client chat window.

3) ByteSender.java

When anonymous mode is activated this class is triggered
and starts an infinite loop. It uses the seed given to the client by
the server and also by the other client, to generate the pseudo-

Vol. 4, No. 12, 2013

random ‘coin tosses'. These coin tosses will be represented by a
string of numbers. Each number's binary value will equal 8
coin tosses. Once the coin tosses have been generated they are
XORed. The class then makes a check against a Boolean
variable to see if the user has made an inputted a message in
the chat client. If the user has inputted a message it will start
reading the bytes of the message and XORing them against the
results of the XORed generated coin tosses. If the user doesn't
input a message then only the XORed results of the coin tossed
will be sent to the server. This procedure continues until the
client receives a signal to stop

C. Server Clases

1) Server.java

The Server class creates many of the foundation objects for
the DC-net protocol and for the chat environment in general.
The class creates the vectors collection that contains the socket
connection for each client, the socket objects for both the client
and the server and the generator for the pseudorandom seed to
be used by the client.

The class starts an on-going loop as it waits for an incoming
connection from the clients. Once a connection is established it
creates a user land thread for the client that made the
connection. The thread is then added to the appropriate vector
object in the collection. The class then creates an instance of
another class, CThread, and assigns it to the recently added
client thread. The Server class continues this process for every
client connection it makes.

2) CThread.java

The CThread class creates the required objects and posses
the needed methods to cover all the actions executed by the
client. It begins by calling the input and output streams created
as a result of the clients connection to the server. It then starts
an infinite loop, checking the 10 streams for traffic and
reacting appropriately to any traffic. The class also acts as the
main point of communication between the client and the server
on the server side.

All messages sent by the client, whether they are meant for
the server or for broadcast will come down to and be handled
by CThread. The class will also handle any operations that the
server must make due to the client. For example, if the client
moves rooms from the general chat to the anonymous room or
if they client gets put on a wait list. The class will check if the
clients nickname is unique, and if it meets the requirements to
enter anonymous mode. If the client cannot enter anonymous
mode CThread will notify the client why. Overall the CThread
class handles a lot of the smaller tasks related to the Client-
Server interaction.

3) ByteReader.java/SeedSender.java/SessionTimer.java

SeedSender, will parse through the vectors collection and
send each active client object in the vector their appropriate
seeds. SeedSender will also notify the clients that the server is
ready once all the seeds have been distributed. Afterwards
SeedSender will call the ByteReader class and terminate itself.
Once called, ByteReader will immediately call the
SessionTimer class to start tracking the session time. An
infinite loop is then created, and the class calls a method in
CThread of each client to fetch a byte of data coming in from

39|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

the client. This will essentially be the XORed results that the
clients are continually sending to the server. The fetched byte
will be stored in a byte array, using one element for each client.
It then takes the bytes and XORs them together as it should for
a stage two process. It will also convert the XORed result to a
string and check the character result. If the result is a start
message then the server will know a message is about to be
sent. Otherwise it should result in a zero if there was no
collision.

When SessionTimer is called it will set the timer for every
active client to 15min. This will be the default duration of the
anonymous session. As it counts down, at every minute interval
it will update the timer for each client. Once the timer has hit
the 0 mark, it will check the waiting list for the anonymous
room and move over any clients on the waiting list into the
room and reset itself.

IV. RESULTS

The implementation of the DC-net protocol created for this
project is a functional implementation. It operates in as
described by the DC-net protocol and performs both stages of
the DC-net protocol for each bit of data sent. However it is not
a complete or direct implementation of the protocol as it
eliminates all the peer-to-peer communications. The
implementation is also relatively practical. It offers both
standard user-attributable messaging as well as anonymous
messaging. By eliminating all peer-to-peer communication and
centralizing the entire DC-net protocol to operate through a
server, | have also significantly reduced the communication
overhead associated with the DC-net protocol. The pure client-
server implementation developed for this project also largely
solves the problem of complexity in the DC-net protocol. With
all communications centralized at the server, there is reduced
overhead and a reasonable number of network connections.

A. Known Issues

The program is not perfect and therefore has some
unresolved bugs.

e Leaving the room while waiting for anonymous mode to
initiate will not be recognized by the server

e Server notice of incoming message will be attached to a
client message if connection speeds are very fast.
Example: running on a Local host or a fast LAN.

This is just a list of what was found in test.

V. CONCLUSION

There are cases where privacy preservation is important
even in instances where communication is taking place.
Examples of this include online-surveys. The Dining
Cryptographer network (DC net) was devised by David Chaum
for anonymous message publication. This is an elegant and
straightforward protocol in theory.

However, it has three main drawbacks, Collisions,
Complexity and Integrity. Collisions: according to the
protocol, only one byte can be processed at a time, multiple
clients sending a message would result in a futile attempt at
XORing.

Vol. 4, No. 12, 2013

A. The DC net is not easily scalable and its performance
quickly deteroriates when large numbers of clients are
added, this is refered to as the Complexity problem in this
paper. Lastly DC net protocol has no way of checking the
integrity of the clients or the server, thus it has problems
with its integrity.

This paper presents shows how these issues can be
resolved, and the research provides an implementation of the
DC-net protocol that is practical to deploy and. The application
represents a proof of concept for a pure client-server
implementation of the DC-net protocol, which avoids the
complexity problem found in the implementation scenarios.

VI. FUTURE WORK

Numerous improvements to the implementation can be
made with regard to security. To increase the security of the
protocol and reduce the chance that a malicious third-party can
intercept information with which to compromise the security of
the protocol, the primary communication channel used
specifically for the DC-net protocol can be encrypted.
Currently the server has no ability to police the clients on the
server.

Functionality for administration of the server should be
added to a production quality implementation to allow the
administrators to remove and ban users, among other possible
functions. Further improvements to add production quality to
the server would be the development of a GUI for the server. A
malicious disruption detection method should be implemented
to detect users who use customized clients designed for
disrupting the DC-net communication on the server. Once
identified, these users can be forcibly ejected from the server
and their IP address may be banned.

REFERENCES

[1] Nissenbaum, H. 1999. The Meaning of Anonymity in an Information
Age. The Information Society , 15:141-144

[2] Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam,
M. 2007. I-diversity: Privacy beyond K-anonymity. ACM Transactions
on Knowledge Discovery from Data (TKDD) , 1 (1), 3.

[3] Li, N., T. Li, and Venkatasubramanian, S. 2007. t-Closeness: Privacy
Beyond k-Anonymity and I-Diversity. International Conference on Data
Engineering (ICDE) , pp.106-115.

[4] R. Collier, C. Fobel, L. Richards, and G. Grewal A Formal and
Empirical Analysis of Recombination for Genetic Algorithm Based
Approaches to the FPGA Placement Problem IEEE Canadian
Conference on Electrical and Computer Engineering, Montreal, Canada,
2012.

[5] 5. Ohm, P. 2010. Broken Promises of Privacy: Responding to the
Surprising Failure of Anonymization, UCLA LAW REVIEW 57 p.
1701 - 1777. Available from: http://papers.ssrn.com/sol3/papers.cfm
?abstract_id=1450006. Retrieved October 1, 2013.

[6] Sweeney, L. 2002. 'K-anonymity: A Model for Protecting Privacy.'
International Journal of Uncertainty, Fuzziness, and Knowledge-based
Systems 10(5): 557-570.

[71 Arvind, Narayanan and Vitaly Shmatikov. 2008. Robust De-
Anonymization of Large Sparse Datasets, in Proc. of the 2008 IEEE
Symp. On Security and Privacy 111 -121.

[8] Akdeniz, Y. 2002. Anonymity, Democracy, and Cyberspace. Social
Researc h, 69(11), 223-237.

[9]1 Sharp J. M., Specialist in Middle Eastern Affairs. Egypt: Background

and us. Relations. June, 2013.
http://www.fas.org/sgp/crs/mideast/RL33003.pdf. Retrieved: October 1,
2013.

40|Page

www.ijacsa.thesai.org

[10]

[11]

[12]

[13]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Ryan, Yasmine (26 January 2011). "How Tunisia's revolution began —
Features”. Al Jazeera. Retrieved 13 February 2011
http://www.aljazeera.com/indepth/features/2011/01/2011126121815985
483.html. Retrieved: October 1, 2013.

Heydemann S. Syria’s Uprising: sectarianism, regionalization, and state
the Levant. Fride and Hivos, 2013. http://www.fride.org/download
/WP_119_ Syria_Uprising.pdf. Retrieved: October 1, 2013.

Kelly, Brian (2012). "Investing in a Centralized Cybersecurity
Infrastructure: Why 'Hacktivism' can and should influence cybersecurity
reform". Boston University Law Review 92 (5): 1663-1710.
http://www.bu.edu/law/central/jd/organizations/journals/bulr/volume92n
4/documents/KELLY .pdf. Retrieved October 1, 2013.

Hancock, Jeffrey T. and Beaver, David I. and Chung, Cindy K. and
Frazee, Joey and Pennebaker, James W. and Graesser, Art and Cai,
Zhigiang. Behavioral Sciences of Terrorism and Political Aggression,

[14]

[15]
[16]

[17]

[18]

Vol. 4, No. 12, 2013

2010 vol 2:2 pp 108 - 132. Retrieved October 1, 2013.

Chaum, David. "The Dining Cryptographers Problem: Unconditional
Sender and RecipientUntraceability.” Journal of Cryptology, 1988: 65-
75.

Chaum, David. "Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms. "Communications of the ACM, 1981: 84-88.
SOcketka, (2011, May 30). Dining cryptographers problem [online].
Auvailable: http://en.wikipedia.org/wiki/Dining_cryptographers_problem
Oracle's Java Tutorials, Lesson: All About Sockets [online]. Available:
http://download.oracle.com/javase/tutorial/networking/sockets/index.ht
ml.

Simple Java Chat Client-Server ,(2008, January 14). Client-server chat
download[online].Available: http://breakdesign.blogspot.com/2008/01/
simple-java-chat-client-server.html

41|Page

www.ijacsa.thesai.org

