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Abstract—Wind turbine systems are increasing in technical 

complexity, and tasked with operating and degrading in highly 

dynamic and unpredictable conditions.  Sustaining the reliability 

of such systems is a complex and difficult task. In spite of 

extensive efforts, current prognostics and health management 

(PHM) methodologies face many challenges, due to the 

complexity of the degradation process and the dynamic operating 

conditions of a wind turbine. This research proposed a novel 

adaptive and multi-regime prognostics and health management 

(PHM) approach with the aim to tackle the challenges of 

traditional methods. With this approach, a scientific and 

systematic solution is provided for health assessment, diagnosis 

and prognosis of critical components of wind turbines under 

varying environmental, operational and aging processes. The 

system is also capable of adaptively selecting the tools suitable for 

a component under a certain health status and a specific 

operating condition. The adopted relevant health assessment, 

diagnosis and prognosis tools and techniques for wind turbines 

are warranted by the intensive research of PHM models by the 

IMS center for common rotary machinery components. Some 

sub-procedures, such as information reconstruction, regime 

clustering approach and the prognostics of rotating elements, 

were validated by the best score performance in PHM Data 

Challenge 2008 (student group) and 2009 (professional group). 

The success of the proposed wind turbine PHM system would 
greatly benefit current wind turbine industry. 

Keywords—PHM; Adaptive tool selection; Multi-regime 

prognostics; Information reconstruction; Holo-coefficient 

I. INTRODUCTION  

Wind energy is an unlimited, renewable and clean energy 
source and makes it possible to establish a large number of 
Megawatts in a relatively short time. Wind energy has become 
a progressively more competitive source of energy. The 
American wind energy association reported that wind 
percentage in all the new capacity added increased from 2% in 
2004 to 42% in 2008 (Figure 1). It is remarkable that the 
United States and China have now become the leaders in the 
wind power market industry in terms of newly installed 
capacity, surpassing Germany, the previous leader in wind 
power (Figure 2). The US market’s new wind energy 
converter installations, reaching up to 8.5 GW at the end of 
2008, have increased the total wind power generating capacity 
by half when compared to the previous year.  Such a notable 

feat is due in part to the US Department of Energy’s 2008 
report [1] purporting that the power that can be harvested from 
the country’s wind resources has the potential to supply 20% 
of its domestic demand for electricity.  

 

Fig. 1. Percentage Of New Capacity Additions (Source: AWEA-Annual 

Wind Industry Report 2009)[2] 

 

Fig. 2. Total increased wind turbine capacity from 2005 to 2008  

The increased reliance on wind energy as an energy source 
for the world makes the increased uptime and reliability of 
wind turbine systems become more critical issues. The 
degradation of wind turbine critical components’ health in the 
dynamic operating conditions could badly impact the wind 
energy generation efficiency. In recent years, increasing 
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interests have been put on researching the condition 
monitoring and health management technologies based on the 
fact that the preventing the failure of critical equipments in 
advance could result in a significant amount of time and cost 
savings, and the overall improved reliability and safety of 
operations.  

Ciang et al. provided a review of fault detection 
approaches for wind turbines, such as, acoustic emission 
events method, thermal imaging method, ultrasonic methods, 
various modal-based approaches, fiber optics method, laser 
Doppler vibrometer method, electrical-resistance based 
damage detection method, strain memory alloy method, x-
radioscopy method and eddy current method [3]. The 
techniques surveyed focus more on physical models for 
structural health monitoring. In recent decade, with the spread 
of artificial intelligent and machine learning technologies, data 
driven methods, which base on the analysis of signals (e.g. 
vibration from accelerometers) to assess the asset’s health 
degradation status, diagnose current failure modes, and predict 
future health, have gained wide attention for their success in 
rotary machines [4][5][6].  

In spite of extensive efforts by current prognostics and 
health management (PHM) methodologies, based on both 
data-driven and physical models, a successful deployment of 
these existing techniques to wind turbine applications still 
faces many challenges, such as, the complexity of the wind 
turbine health degradation and the dynamic operating 
conditions of a wind turbine. Wind turbine systems are 
increasing in technical complexity, and are tasked with 
operating in highly dynamic and unpredictable operating 
conditions.  

Each component may degrade to various health statuses 
even under a same operating condition. Multi-regime approach 
is necessary to be researched to extend traditional health 
management techniques to consider the dynamic behavior of 
these components by segmenting the component health aging 
and operating conditions to various operating regimes. 
Moreover, considering the health management models may 
not have the same performance on different regimes, the 
selection of the proper model for a certain component under a 
specific application condition is significant. In practice, health 
representative data collected is a complicated and energy 
wide-range distributing signal. Only some parts of the signal 
related to the particular regime are of interest. In order to 
remove or reduce noise, a novel and effective information 
reconstruction method is desired to filter and reassemble the 
signal components without losing the information of interest. 

An investigation of current industrial health management 
systems was conducted for the largest wind turbine 
manufacturers, namely GE Energy, Vestas and Siemens 
[7][8][9]. It is found that GE Energy’s system provides more 
advanced functionalities in diagnosis and fault detection for 
drive train components than the others. Nevertheless, some 
functions, such as, system degradation assessment and failure 
prediction based predictive condition monitoring, adaptive and 
multi-regime prognostics for dynamic conditions, are non-
existent. 

 
Fig. 3. Survey of critical components of wind turbines[10][11][12] 

Numerous surveys conducted on faults experienced by 
wind turbine components have revealed that gearbox, 
generator and rotor blades have longer downtime once they 
fail. (Figure 3). Maintenance costs are estimated to make up 
approximately 15% of production costs in many industries. In 
the survey of the failure modes and hot spots of the critical 
component gearbox conducted by Musial [13], almost 100% 
of the 500 to 900 kW gearbox designs have had at least one 
retrofit/design change to the high speed bearing arrangement. 
More than half change happened on planet bearings and 
intermediate shaft locating bearings. A more accurate health 
estimation of critical components of wind turbines would be 
significant for their reliability improvement and breakdown 
cost reduction.  

In order to minimize breakdown performance and 
associated maintenance and logistics costs, and improve 
efficiency of power generation and safety considerations, an 
adaptive and multi-regime prognostics and health management 
(AMPHM) approach is proposed in this paper. The proposed 
wind turbine AMPHM is a data driven method for health 
assessment, diagnosis and prognosis through the analysis of 
vibration signals from accelerometers.  Its key technology was 
validated upon the research that resulted in the first place 
award in the international PHM Challenge in 2009. The 
proposed AMPHM system aims to provide an effective and 
systematic solution to improve the uptime and reliability of 
wind turbines working under the varying environmental, 
operational and aging processes, which will make a 
breakthrough for traditional PHMs.   

This paper is structured as follows: the architecture of the 
adaptive and multi-regime wind turbine PHM system, which 
consists of data acquisition, health management, and health 
visualization, is firstly presented in section 2.  The data 
acquisition is introduced in section 2 too. Health management 
details, including adaptive tool selection and multi-regime 
PHM, are explained in sections 3 and 4 respectively.  Section 
5 takes gearbox as an example to demonstrate the health 
visualization. A conclusion is made at the end section 

II. ARCHITECTURE OF ADAPTIVE AND MULTI-REGIME 

WIND TURBINE PHM SYSTEM  

The architecture of adaptive and multi-regime wind turbine 
prognostics and health management system working in remote 
and online mode is proposed in Figure 4. Inside Nacelle, the 
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up-tower data acquisition sub-system continuously collects 
signals, including both the operating conditions and the system 
behaviors, from installed sensors, as well as the wind turbine 
control system. Data files are transmitted through wind farm 
network from the nacelle to the remote health management 
database and server, where, the data files are downloaded and 
processed for health assessment, diagnosis and prognosis. The 
processing result will be visualized in a user-friendly human-
machine interface (HMI) on client computer so that users can 
immediately understand and determine the health condition 
the critical components, and decision aid actions (e.g. 
predictive maintenance) can be taken on wind turbines timely, 
and accordingly. 

 
Fig. 4. Architecture of adaptive and multi-regime wind turbine PHM 

System 

The proposed instrumentation plan for the up-tower 
condition monitoring sensor data acquisition (DAQ) for the 
critical components of wind turbine, gearbox and generator, is 
demonstrated in Figure 5. One low frequency PCB IEPE 
accelerometer, typically with sensitivity 500mV/g and 
frequency span 0.2-3000Hz, is placed on the main shaft (blade 
passing, main bearing) to collect vibration signals. Five PCB 
IEPE accelerometers with sensitivity 100 mv/g and frequency 
span of 0.5-15000Hz are positions on the gearbox and 
generator which have higher rotational speeds and gear mesh 
frequencies. One PCB laser tachometer is used to monitor the 
main bearing speed and synchronize the vibration. Three 
Compact DAQ NI USB 9234 (4 channels) are adapted for 
accelerometers and the tachometer signal collection. An 
industrial controller (NI 3110) is sitting in the Nacelle 
connected to NI USB 9234 to collect data continuously. 

 

Fig. 5. Data acquisition solution (source: NI) 

III. TECHNICAL APPROACH 

Figure 6 illustrates the flow of the proposed wind turbine 
PHM which is conducted on health management server. As 
rotational components of a wind turbine work under dynamic 
conditions, an adaptive tool selection agent is designed to 
select the proper tool for a certain component under a specific 
situation. With the multiple operating regimes segmented, the 
health representative features are extracted and fed into the 
corresponding health assessment models. After health 
assessment, multi-dimensional features will be converted into 
a 1-Dimention health index between 0 and 1, with 1 indicating 
a perfect health condition and 0 indicating an unacceptable 
heath condition. The history of the health index can then be 
further processed for fault diagnosis and health prediction.  

An illustrative example is presented in the following 
sections to demonstrate the procedure of the adaptive tool 
selection, multi-regime PHM approach, and the health 
visualization at users’ end as well. 

 

Fig. 6. Flow of adaptive and multi-regime wind turbine PHM 
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A. Adaptive Model Selection  

Due to constantly changing operating conditions, such as 
wind speed and wind direction, as well as slow evolving 
environmental conditions such as temperature, the electrical 
and mechanical system of a wind turbine actually operates 
under highly dynamic conditions (Figure 7a). These operating 
conditions will be classified into different regimes in the 
following study. On each operating regime, wind turbine will 
experience different health statuses during degradation (Figure 
7b). The combinations of various regimes and corresponding 
health statuses constitute the multiple application conditions. 
Considering a wind turbine has multiple components, and the 
performance of different PHM models may be sensitive to 
application conditions, the selection of the proper model for a 
certain component under a specific application condition is 
significant. An adaptive tool selection agent (Figure 7c) is 
designed for this purpose. This agent self adapts to the input of 
the customer requirements (e.g. implementation cost, human 
involvement, system knowledge, computation efficiency and 
signal sampling frequency, etc.) and application conditions, 
and automatically identifies a particular model that is suitable 
for that specific condition. 

 

a) Multiple operating regimes 

 
b) Multiple health degradation statuses under a certain operating regime 

 

c) Adaptive Tool Selection 
Fig. 7. Operating regime and analyze tool 

The expert knowledge of various situations that a 
particular model is suitable to use will be structured to 
initialize a model selection rules knowledge base. 

Taking the customer requirements and applications 
conditions as inputs, and the models used in those situations as 
outputs, a reinforcement learning model will be trained to 
learn the model selection knowledge under different situations 
[14].  

Formally, the basic reinforcement learning model 

according to Wikipedia consists of: 

1) a set of environment states S (i.e. a set of user 

requirements and application conditions);  

2) a set of actions A ( i.e. a set of models suitable for that 

state); and  

3) a set of scalar "rewards" in .  
The environment is typically formulated as a finite-state 

Markov Decision Process (MDP). At each time t, the 

reinforcement learning agent perceives its state and the 

set of possible actions . It chooses an action 

and receives from the environment the new state  and a 

reward .  

Based on these interactions, the reinforcement learning 
agent must develop a policy which maximizes the 

quantity  for MDPs which have a 
terminal state, or the quantity.  

The adaptive tool selection agent selects the most 
appropriate model for each application condition by choosing 
the largest Q-value for all the application condition /model 
pairs in the row of that application condition. The Q-value is 
determined by the sum of the (maybe discounted) 
reinforcements received when performing an action following 
a given policy.  

Model selection rules will then be updated and structured 
into a knowledge base again. The reinforcement learning agent 
will iterate when receiving a new state. 

B. Multi-regime Prognostics and Health Management 

The changing operating conditions have significant 
influence on the baseline of a data-driven wind turbine PHM 
model. The relationship between the operating conditions and 
the model baseline is very hard to be established analytically 
or experimentally. To conquer the problem, it is proposed to 
use the operating regime approach [15] to employ multiple 
simple PHM models developed for static operating conditions 
to deal with dynamic operating conditions, which will be 
referred to as multi-regime PHM here.  

The procedure of multi-regime prognostics is illustrated in 
Figure 8. First, the collected data, including those indicating 
system operating conditions and those indicating system 
behaviors, will be used to identify what regime the system is 
operating in. If the new measurement cannot fit to any of the 
existing patterns, a new operating regime will be learned. 
Once the operating regime is identified, the data will be fed 
into the corresponding PHM model that has either been 
established, or will have to be created for a newly-learned 
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operating regime. The PHM models include sub-procedures, 
such as feature extraction, health assessment and fault 
diagnostics, which have been studied and applied intensively 
by the IMS center for common rotary machinery components. 
Finally, the health indices obtained from different operating 
regimes will be fused together to form a continuous time series 
of the system health, which will be used for health prediction. 

 

Fig. 8. Multi-regime Wind Turbines Health Assessment and Prediction 

1) Signal Processing 
Due to frequent environmental changes and unpredictable 

wind turbulence, as well as the frequent stopping and starting 
of a wind turbine, recorded raw sensor data are not appropriate 
as direct input to various signal processing tools, even though 
they are continuous vibration or acoustic time series. In order 
to enhance data quality and improve signal processing 
efficiency, data preprocessing, such as de-noising and data 
segmentation, is a necessary preliminary step for signal 
processing. In order to remove or reduce noise and effects 
from other unrelated sources, de-noising can be performed by 
using noise smoothing filters or band pass filters, based on 
knowledge of the frequency distribution of wind turbine 
signals. Data segmentation can be performed by using 
working condition data to sift and retain the active vibration or 
acoustic time series. 

To detect changes in the vibration signatures caused by 
abnormal behaviors, recorded data can be analyzed in the time 
domain. A number of simple signal metrics based on the time 
domain waveform, such as peak level, root mean square 
(RMS) value and kurtosis, have widespread applications in 
condition monitoring and fault detection for wind turbines. 
However, in order to gain more comprehensive knowledge 
and extract more reliable and effective health indicators for 
wind turbines, signals need to be observed in the frequency 
domain and time-frequency domain. Fast Fourier Transform 
(FFT) and cepstral analysis are applied for frequency domain 
analysis to decompose a signal into its component frequencies 
and amplitudes, and to isolate individual components of a 
complex signal for easier pattern identification. Spectral 
analysis of the electric power and of accelerations measured in 
the wind turbine system is performed effectively for stationary 
signal analysis where energy variation over time is 

dispensable. For non-stationary, non-linear time series which 
can be observed from time to time in wind turbine systems 
under varying environmental and operating conditions, more 
advanced signal processing tools in time-frequency domain 
such as short-time Fourier Transform (STFT), Wigner-Ville 
distribution (WVD), Wavelet Transform (WT), and Hilbert-
Huang transform (HHT) are applied. A time-frequency 
representation is a view of a signal represented over both time 
and frequency. In a wind turbine system, non-stationary, non-
liner time series often appear during the transient period 
between different working conditions, and they usually carry 
abundant dynamic information of the system. The 
aforementioned advanced signal processing tools, especially 
WT and HHT methods, are able to capture the transient 
characteristics of non-stationery vibration data and are suitable 
for impact detection caused by a stroke of lightning, a 
collision with a large bird, or wave-induced tower oscillations 
of off-shore plants. 

2) Feature Selection 
After signal processing, various features can be extracted 

such as mean, peak, RMS in time domain, characteristic 
frequency, amplitude and phase in frequency domain and 
energy-time-frequency distribution in time-frequency domain. 
There may be, however, a lack of quality features, or there 
may be redundant features which increase feature dimension 
and affect the efficiency of the prognostics and health 
management activity. Feature selection has become the focus 
for applications in which tens or hundreds of variables are 
available. Appropriate feature selection can improve the data 
mining performance, help data visualization and reduce 
dimensionality and noise. For wind turbines, feature selection 
is further complicated by the fact that a wind turbine system is 
usually operating in varying environmental conditions, under 
diverse operating conditions and experiencing different aging 
processes. To establish an accurate and effective feature set to 
facilitate operation regime segmentation and health assessment 
of critical rotary components, it is necessary to identify 
operating condition parameters and select damage-sensitive 
features. 

For feature selection, four methods are proposed; principal 
component analysis (PCA), fisher criterion, SVM-based 
feature selection and GA-based feature selection. PCA 
transforms a number of possibly correlated variables into a 
smaller number of uncorrelated variables, called principal 
components, and usually involves the calculation of the eigen-
value decomposition of a data covariance matrix, or the 
singular value decomposition of a data matrix after mean 
centering the data for each attribute. Fisher criterion seeks the 
features that are efficient for discrimination to minimize the 
within-class distance and maximize the between-class 
distance. The objective of the SVM-based feature selection 
method is to find a subset of size r among d variables (r<d), 
which maximizes the performance of the classifier and 
predictor. This method is a backward sequential selection 
approach. It starts with all the features and removes one 
feature at a time until only r features are left, and until the 
performance of the classifier and predictor are maximized. In a 
GA-based approach, a given feature subset is represented as a 
binary string of length d, with a zero or one in position i 
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denoting the absence or presence of feature i in the set. A 
population of chromosomes is maintained. Each chromosome 
is evaluated to determine its “fitness”. Based on a “fitness” 
threshold setting, an optimized binary string can be obtained to 
describe the feature selection result. 

3) Information Reconstruction  
The mechanical drive-train of a wind turbine is a very 

complex system that can generate vibrations from its various 
elements, such as gears, shafts, and bearings. Transmission 
path effect, signal coupling, and noise contamination can 
further induce difficulties in the development of a PHM 
system for wind turbines. In practice, vibration data collected 
by accelerometer is a complicated and energy wide-range 
distributing signal. But only some parts of the signal related to 
the particular machine condition are of interest. In order to 
remove or reduce noise and effects from other unrelated 
sources and further enhance signal components of interest, a 
novel information reconstruction method for filtering and 
reassembling the signal components to reconstruct signal 
without losing the information of interest is introduced. This 
method can also work for signal clustering and wind turbine 
diagnosis in varying operating conditions.   

 

Fig. 9. Information Reconstruction 

Firstly, the signal is transformed from time domain to 
frequency domain or time-frequency domain with FFT, WT, 
or HHT. Then, reconstruction filters are employed to sift the 
frequency components in FFT spectrum, to sift the 
decomposed band signals from WT analysis, or to sift the 
intrinsic mode functions (IMFs) from empirical mode 
decomposition (EMD) process of HHT. Next, sifted signal 

components are reassembled together to reconstruct a new 
signal.  

4) Regime Clustering 
Energy coefficients are then calculated for the 

reconstructed energy index model, in which energy 
coefficients are selected to have certain classification power. 
The basic idea is to identify and further classify the data with 
similar attributes to the same specified group. Moreover, 
energy coefficients are also supposed to be comprehensible for 
the user or have physical meaning. This is necessary whenever 
the classified pattern is to be used for supporting a decision to 
be made. Knowledge comprehensibility can be achieved by 
using high-level knowledge representations from experts or 
historic data resources. 

Then, correlation analysis (CA) and distance measurement 
(DM) techniques are utilized to cluster signals under diverse 
shaft speeds and loads.  CA on two energy coefficient vectors 
is defined as 

 

where • means dot product, |•| means the largest singular 
value of a vector. The result of CA ranges between zero and 
one, with higher CA signifying a higher correlation.  

DM on two signals is 

 

where ||•|| is the Euclidean distance, with lower DM 
signifying a higher similarity.  

5) Diagnosis  
Finally, energy coefficients are used as health indicators in 

holo-coefficients radar chart for the purpose of health 
assessment and prognostics of rotating elements in the wind 
turbine mechanical drivetrain.  A holo-coefficients radar chart 
consists of all the energy coefficients. The multivariate 
coefficients are displayed in radar chart starting from the same 
point and in different equi-angular spokes, with each spoke 
representing one of the variables. The data length of a spoke is 
proportional to the magnitude of the variable. In the chart, the 
contribution rate of each coefficient can be revealed very 
clearly along with its variation with operating conditions. 
Figure 10 shows an example of using holo-coefficients radar 
chart to identify two patterns. In Pattern A, input shaft 
unbalance (radials 1 and 19) and bearing outer defect at input 
shaft output side (radial 21) are diagnosed. Figure 10 (b) 
shows the holo-coefficients radar chart of another pattern 
(Pattern B). It is determined that this pattern contains gear 
error defect at idler shaft 2 location (radials 8 and 26).    

( ) / ( )Ei Ej Ei EjCA C C C C  

Ei EjDM C C 
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Fig. 10. Holo-coefficients Radar Chart of (a) Pattern A, (b) Pattern B 

6)  Prognosis  
The similarity-based prognostics (SBP) approach is 

adopted from The Watchdog Agent® toolbox developed by 
the IMS Center for predicting future values of health indicator 
under dynamic operating conditions [16].  

This similarity based prognostic technique was validated in 
the 2008 Prognostics and Health Management Society data 
challenge in which it produced the best prediction estimates 
and achieved number one overall in the competition [17]. By 
using multiple SBP models under different regimes, the given 
sensor data are fused into a single time series of health indices, 
which is then used in multi-regime SBP model.  

IV. HEALTH VISUALIZATION  

An illustrative example is taken to demonstrate the 
visualization of the detection of mechanical faults and 
prediction of future health for a generic gearbox using 
accelerometer data and information about bearing geometry. 
On the first step (Figure 11), the operating conditions are 
classified to different regimes, and the vibration signals 
collected from gearbox is segmented to corresponding 
regimes.  

The second step in Figure 12 applies the adaptive tool 
selection approach and selects the time domain, frequency 
domain and wavelet analysis tools to process the raw data in 
different regimes and extract corresponding features. The third 
step, Figure 13, selects the principle features, reconstructs 
signals and generates energy coefficients, which are used as 
health indicators in holo-coefficients radar chart for the 
purpose of health assessment and diagnosis. A fault of chipped 
tooth problem in the first gear, for instance, is diagnosed. Also 
higher risk in high speed regime is alarmed. And the last step 
as in Figure 14, similarity based Match Matrix method is 
chosen to learn the health pattern based on the historical runs 
of similar gearboxes, and predict the future health.   

The above mentioned information reconstruction and 
regime clustering approach, and the prognostics of rotating 
elements, were validated by the best score performance in the 
PHM Data Challenge Competitions 2008 (student group) and 
2009 (professional group)[18]. 

 

 

 

 

Fig. 11. Step 1 of wind turbine PHM: regime segmentation 

 

 

Fig. 12. Step 2 of wind turbine PHM: signal processing and feature 

extraction 

 

 

Fig. 13. Step 3 of wind turbine PHM: health diagnosis 
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Fig. 14. Step 4 of wind turbine PHM: prognostics 

V. CONCLUSION 

The adaptive and multi-regime PHM system developed in 
this paper provides a more accurate health estimation, 
diagnosis and prognosis of critical components of wind 
turbines. The proposed research advances the understating of 
how to adaptively apply PHM to the various situations 
composed by dynamic operating conditions of wind turbines 
and the health condition of rotary components. This approach 
could be used in an intelligent and predictive maintenance 
program to minimize the time needed for inspection of 
components via on-line inspection, conducting remote site 
supervision and remote diagnosis, preventing catastrophic 
failures and secondary defects, preventing unnecessary 
replacement of components, allowing utility companies to be 
confident of power availability, improving designs and 
supporting further development of wind turbine. The reduction 
of maintenance risks and costs and improvement of reliability 
and efficiency will eventually make this green energy sector 
more competitive. 
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