(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 2, 2013

GASolver-A Solution to Resource Constrained
Project Scheduling by Genetic Algorithm

Dr Mamta Madan

Professor(Comp science)
Vivekananda Institute of Professional Studies,
Affiliated to GGSIPU AU-Block Pitam PuraDelhi, India

Abstract-The Resource Constrained Scheduling Problem
(RCSP) represents an important research area. Not only exact
solution but also many heuristic methods have been proposed to
solve RCPSP (Resource Constrained Project Scheduling
Problem). It is an NP hard problem. Heuristic methods are
designed to solve large and highly Resource Constrained software
projects. We have solved the problem of resource constrained
scheduling problem and named as GASolver. It is implemented
in C# using .net platform. We have used Dependency Injection to
make the problem loosely coupled, so that other arena of
scheduling like Time Cost Tradeoff (CT), Payment Scheduling
(PS) etc can be merged with same solution in the future. We have
implemented GASolver using Genetic Algorithm (GA).

Keywords-Genetic ~ Algorithm; Dependency
GASolver.Core; Resource Constrained Scheduling.

Injection;

I. INTRODUCTION

The Resource Constrained Project Scheduling Problem
represents an important research problem. Not only exact
solution but also many heuristic methods have been proposed
to solve RCPSP. It being an NP hard problem, Alcaraz and
Maroto [5] mentioned that the optimal solution can only be
achieved by exact solution procedures in small software
projects, usually with less than 60 activities, which are not
highly resource constrained.

Therefore heuristic methods are designed to solve large and
highly Resource Constrained software projects. Mohring [6]
mentioned that RCPSP is one of the most intractable problems
in operations research and many latest optimization techniques
and local search were applied to solve it. We have solved the
problem of resource constrained scheduling problem and
named as GASolver. It is implemented in C# using .net
platform. We have used Dependency Injection (DI) to make
the problem loosely coupled, so that other arena of scheduling
like Time Cost Tradeoff, Payment Scheduling etc can be
merged with same solution in the future. We have implemented
GASolver using Genetic Algorithm. The problem statement is
explained in the following section. Problem Statement for
RCPSP (Resource Constrained Project Scheduling Problem)

What is the best way to assign the resources to the activities
at specific times such that all of the constraints are satisfied and
the best objective measures are produced?

Il. GENETIC ALGORITHM

Genetic algorithms (GAs) are search algorithms that are
conceptually based on the methods that living organisms adapt

Mr Rajneesh Madan

Acrchitect,
NIIT Technologies Ltd., Gurgaon-11

to their environment. These methods, known as natural
selection or evolution, combine the concept of survival of the
fittest among string structures with a structured yet randomized
information exchange to form a search algorithm with some of
the innovative flair of human search. In each generation, a new
set of string structures is created from (bits and pieces of) the
fittest strings from the previous generation and occasionally a
randomly altered new part. This process of exploiting historical
data allows the GA to speculate on new search points that will
improve performance thus producing better solutions. Genetic
algorithms were initially developed by JohnH.Holland, a
professor of psychology and computer science at the University
of Michigan. As an optimization tool, the Genetic Algorithm
attempts to improve performance leading to an optimal
solution.

In this process, there are two distinct steps, (1) the process
of improvement and (2) reaching the optimum itself. Of these
two steps, the most important is the process of improvement. In
complex systems, due to the potential high costs involved,
reaching the optimum solution may not be justified as long as
continuous improvement is being made and an optimal
(desirable) solution can be found.

Genetic algorithm (GA) [1][2][3] is a pioneering method of
metaheuristic optimization which originated from the studies of
cellular automata of Holland in the 1970s. It is also known as
an evolutionary algorithm and a search technique that copies
from biological evolution. In Genetic Algorithm, a population
of candidate solutions called individuals evolves toward better
solutions from generation to generation.

ADVANTAGES OF GENETIC ALGORITHM

e GA can quickly scan a vast solution set. Bad proposals
do not affect the endSolution negatively as they are
simply discarded.

e The inductive nature of the GA means that it doesn’t
have to know any rules of the problem - it works by its
own internal rules. This is very useful for complex or
loosely defined problems.

o They efficiently search the model space, so they are
more likely (than local optimization techniques) to
converge toward a global minima.

There is no need of linearization of the problem.

There is no need to compute partial derivatives.

More probable models are sampled more frequently
than less probable ones

210|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

1. RELATED WORK

In 1978, Stinson et al.[9] formulated the multiple resource-
constrained scheduling problem as an integer programming
problem and advanced a branch-and-bound algorithm for
solving it. The algorithm they developed was similar to branch-
and-bound algorithm with differences in the node selection
heuristics employed and the number of resources handled
(Johnson's algorithm allows for a single resource). In their
algorithm, branching corresponds to creating new partial
feasible schedules from given partial feasible schedules.

An experimental investigation was completed in 1988 by
Dumond and Mabert[4]. They studied RCPSP in an
environment where new software projects arrive continuously
or randomly to a system in which software projects share
common resources and receive completion deadlines. Dumond
and Mabert tested the performance of four due date procedures
and five scheduling heuristics with full control on the due date
assignment. A second test was conducted to examine the
performance of the due date procedures when deadlines were
set externally. Their experimental results failed to indicate a
rule that uniformly outperformed the others.

In 2006 an improved Particle Swarm Optimization (PSO)
algorithm[10] for resource-constrained software project
scheduling problem was proposed. Improvements based on the
basic PSO include: the particle swarm is initialized by heuristic
rule to improve the quality of particles; inertia weight was self-
adapted with iteration of the algorithm to decelerate the speed
of particles; crossover mechanism of genetic algorithm were
applied to particle swarm to enable the exchange of good
characteristics between two particles.

Computational results for software project instances of
PSPLIB demonstrate that this improved PSO was effective as
compared with other mataheuristic approaches

In 2007 YanLiu presented a fuzzy genetic algorithm for
software project scheduling problem with resource constraints
and uncertain activity duration [11]. The objective of this
research was to minimize the fuzzy software project make
span. Firstly, fuzzy set was used to represent the uncertainty of
activity duration and the corresponding comparison method of
fuzzy number called integral value approach was introduced.
Second, three genetic operators were used to search for an
approximate shortest software project make span. Therefore,
this study provided another metaheuristic method for solving
resource-constraint software project scheduling problem with
uncertain activity duration.

In 2009 itself Mohammad Amin Rigi, Shahriar
Mohammadi K. N. Toosi [8] proposed a new evolutionary
approach to resource constrained software project scheduling
problem. Hybrid genetic algorithm (GA)-constraint satisfaction
problem (CSP) has been applied to solve resource constrained
software project scheduling (RCPS). GA’s task was to find the
best schedule. Their approach has used CSP in order to
overcome the existing inconsistencies in activities precedence
and resources conflicts. A full state CSP with min-conflict
heuristic has been used for solving precedence conflicts and a
simple iterative CSP is used to resolve the resource conflicts.

Vol. 4, No. 2, 2013

A more realistic resource-constrained software project-
scheduling was solved in 2010[7]. A model that is applicable to
real-world software projects, with discounted cash flows and
generalized precedence relations is investigated under inflation
factor such that a bonus—penalty structure at the deadline of the
software project is imposed to force the software project not to
be finished beyond the deadline. The goal was to find activity
schedules and resource requirement levels that maximized the
net present value of the software project cash flows. A Genetic
Algorithm (GA) is designed using a new three-stage process
that utilizes design of experiments and response surface
methodology. The results of the performance analysis of the
proposed methodology showed an effective solution approach
to the problem.

IVV. SOLUTION TO RESOURCE CONSTRAINED PROJECT
SCHEDULING PROBLEM

To implement RCPSP using GA we need to address the
following objectives:-
A. method of specifying the relationships between the tasks.
B. description of resources, skill, salary to perform the tasks.
C. The representation of the chromosome.
D

. Implementation of selection, crossover and mutation
function.

E. Calculation of an objective function to evaluate the best
schedule and optimal cost.

F. Class Diagram and Implementation Details of RCPSP.

A. A method of specifying the relationships between the tasks

A project is best represented as a Task Precedence Graph
(TPG).A TPG is an acyclic directed graph consisting of a set of
tasks and a set of precedence relationships. With the help of
Task Precedence Graph we will be able to set the precedence
for each task. The Task Precedence graph is shown below in
the form of Table.

TABLE I. TASK PRECEDENCE GRAPH FOR RCPSP

T2 | 0 0 0 0 1 0 0 0 0 0 0 0
T3 |0 0 0 1 0 0 0 0 0 0 0 0
T4 | O 0 0 0 0 0 1 0 0 0 0 0
T5 | 0 0 0 0 0 0 0 0 0 0 0 0
T6 | O 0 0 0 0 1 0 1 1 0 0 0

The task precedence graph describes that Task T1 and T2
are not dependent on any task although for task T3 to finish,
Task T1 should be completely finished. Similarly for task T4 to
complete, Task T1 and T3 should finish and so on. Thus Task

211|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Precedence Graph enables us to set the precedence for various
tasks and maintains the order of execution of tasks.

B. Description of resources, skills, salary to perform the tasks

Employee EmployeeSkil
 EmployeeCd EmployeeCd TaskEstimateDays TaskPrecTask
skilcd = 9 Taskca TaskCd
Estimates PrecdTaskCd

TaskEstimateDays 1
P Taskca
Estimatzs TaskEstimateDays 2
9 Taskcd

Taskworkskill
= 7 Taskcd
7 workskilca

Estimates

Skill
skillca
skillesc
AvgSal

Fig. 1. Data Descriptions for RCPSP

Figure 1 above demonstrates the description of relationship
for Resource Constrained database.

C. Representation of the chromosome for RCPSP

Before Implementation any application with genetic
algorithm, the most important part of genetic algorithm is to
decide the structure for a genome. The genome is an essential
part of genetic algorithm as it will be generated randomly. The
genome for our problem is a two-dimensional array consisting
of employees and tasks. We will randomly generate the
employees who can work on these tasks as the random
numbers generated between 0 and 1. The chromosome
structure is shown below.

TABLE II. CHROMOSOME STRUCTURE FOR RCPSP

Empl

Emp2

Emp3

0
1
0
1

Y =]

0 1
1 0
1 0
0 0

Emp4

D. Design of operators for Genetic Algorithm

The three critical functions of genetic algorithm are
selection, crossover and mutation. These are to be designed for
a specific problem. We have designed these operators for
RCPSP and they are explained below.

SELECTION:

We initially generate a 2 dimensional array of the above
mentioned genome of employee who can work on various

Vol. 4, No. 2, 2013

tasks. First we check the validity of genome by checking the
following

1) Have obeyed the task precedence relationship

2) Have fitness better than death fitness variable

3) Obeys employee skill matrix

Here the death fitness variable signifies the fitness of the
genome. If the fitness of the genome is -1 , (value of death
fitness) then the genome is an invalid genome. We calculate the
fitness of the genome. We select only those genome which are
good reproducers i.e. which can reproduce. If the fitness is
better, only then it will reproduce otherwise it is removed from
the genome list and if it is able to reproduce it will be added to
the list of genomes which will be further utilized for crossover
and mutation. This way we will be able to select the genomes
which have the capability to reproduce further.

Crossover

The crossover operator mimics the way in which bisexual
reproduction passes along each parents good genes to the next
generation. Normally, two parents Genomes create two new
offspring Genomes by combining their “genes” using one point
crossover. Let’s take an example of two genomes which are
successfully randomly generated and passed the first operator
of genetic algorithm.

Before crossover

Randomly we have chosen two genomes from the list of
selected genomes which can reproduce well. They are
represented as Genomel and Genome2.

TABLE III. GENOME 1
| E1|E2 E3 E4 E5]E6|E7]
T1 (1 0 0 0 0 0 0
T2 |0 0 0 0 0 0 1
T3 |1 0 0 0 0 0 1
T4 |1 1 1 0 1 0 0
T5 (1 1 1 0 1 0 0
T6 |1 1 1 0 1 0 0

The crossover can be performed row wise as well as
column wise. Let’s take we have randomly generated the row
wise crossover point as 2. So we will swap genome 1 and
genome? after T2, the two baby genomes will be as follows:

After Crossover

TABLE IV.

El1|E2| E3|E4| E5| E6 E7|

GENOME 2

T1/1 |0 (O |O (O |O |O
T2|0 |0 (0 |O (O |O |1
T3(1 (0 |0 |O |O |O |1
T4|11 |1 |1 |0 (1 |0 |O
7511 |1 |1 |0 (1 |O |O
T6(1 (1 (1 (0 (1 |0 (O

212 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE V.BABY GENOME1

El E2 E3 E4| E5 E6 E7

T1 11 |0 (0 (O (O |O 0
T2 {0 |O (O |O |O |O 1
3|1 |0 (0 (O (O |O 1
T4 |1 1 1 |0 1 |0 0
T5 |1 1 1 |0 1 |0 0
T6 ({0 |0 1 1 1 1 1

We have thus four genomes after crossover. They are
Genomel, Genome2 and two 2 baby genomes. They will be
sorted according to the fitness values and best of the two are
stored in the list of genomes. We have used row wise
crossover, we will also perform column wise crossover. We
will generate a random number and based on that random we
will decide for row wise or column wise crossover operator.

TABLE VI. BABY GENOME 2
 E1 E2 E3 |E4 E5 E6 |E7|
T1 |1 0 0 0 0 0 0
T2 |0 0 0 0 0 0 1
T3 |1 0 0 0 0 0 1
T4 | 1 1 1 0 1 0 0
T5 | 1 1 1 0 1 0 0
T6 | 1 1 1 0 1 0 0
MUTATION

Following the crossover operator the offspring may be
mutated by the mutation operator. Mutation is basically to get
some variation in the result. Similar to random mutation in the
biological world, this function is intended to preserve the
diversity of the population, thereby expanding the search space
into regions that may contain better solutions. Here for problem
of Resource Constrained Project Scheduling, we have a two
dimensional array of genome.

TABLE VII. GENOME BEFORE MUTATION
El E2 E3 E4 E5 E6 | EY

T1 |1 0 0 0 0 0 0
T2 |0 0 0 0 0 0 1
T3 |1 0 0 0 0 0 1
T4 |1 1 1 0 1 0 0
T5 |1 1 1 0 1 0 0
T6 |1 1 1 0 1 0 0

Vol. 4, No. 2, 2013

TABLE VIII. GENOME AFTER MUTATION
EREEEERENE e
T1 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 1
T3 1 0 0 0 0 0 1
T4 1 1 0 0 1 0 0
T5 1 1 1 1 1 0 0
T6 1 1 1 0 1 0 0

We randomly pick a genome. We randomly generate an
index value, pick any array value randomly, e.g. (4, 3).
Presently the array value of this cell is one. We flip this value
to zero. And index (5,4) which is O is flipped to 1. This way we
can have variation in the genome results. After mutation we
again calculate their fitness and put it in the final list of
genomes.

E. Calculation of an objective function to evaluate the best
schedule

Our objective is to find a schedule which should finish in
minimum duration and should have an optimal cost. Another
important objective is that no task should be undone. Our
project will not be complete if any of the tasks is left
incomplete, so we have maintained a check that no task is left,
it should be managed by at least one of the employee. We have
made functions like calculate project duration () that is to
calculate the duration of the entire project which is shown
below with the help of an example. Let say we have chosen this
genome to calculate the project duration and project cost which
is mentioned below.

TABLE IX. GENOME 1
T1 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 1
T3 1 0 0 0 0 0 1
T4 1 1 1 0 1 0 0
T5 1 1 1 0 1 0 0
T6 1 1 1 0 1 0 0

TABLE X.TASK VS ESTIMATED DAYS

TL T2 T3 T4 T5 |76
15 25

20 10

As mentioned earlier the task and Estimated man days are
also stored in the above Table. Based on the Task and Estimate
days, we have calculated the Task Duration of Genome as
shown in Table 11.

213|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE XI.
CHROMOSOME

TASK DURATION FOR RANDOM

jﬂ i E4 E5 E6 j Task
Duration
1 o |o 0 |20
T2/0 |0 |0 |0 [0 [0 [1 |10
3|1 |0 |0 |0 |0 |O |1 |75
Tal1 |1 |1 |0 |1 |0 [0 [6.25
51 |1 |1 o |1 |0 [0 [175
T6 /1 |1 |1 |0 |1 |0 |0 |25
TABLE XIlI. PROJECT DURATION

t1 t2 | t3 t4 t5 t6
11 0 0 1 1 0 0
12 0 0 0 0 1 0
t3 0 0 0 1 0 0
t4 0 0 0 0 0 1
t5 0 0 0 0 0 0
6 0 0 0 0 0 0

20 10 | 27 | 33.75 | 11.75 | 36.25

5

On the basis of Table 11, the project duration is calculated
and shown in Table 12.

Thus the project Duration comes out to be 36.25 Mandays
Based on the salary of various skills, Project cost is calculated
as the summation of these entire task cost.

F. Fitness Function

Genetic Algorithm mimics the survival of the fittest
Principle of nature to make a search process. Therefore, GAs is
naturally suitable for maximization problems, minimization
problems are usually transformed into maximization problems
by some suitable transformation. In general fitness function
F(x) is first derived from objective function and used in
successive genetic operations. For maximization problems, the
fitness function can be considered to be the same as
objective function F(x) =f(x). Where F(x) is the fitness
function and f(x) is the objective function. For
minimization problems:

F(x)= 1/(1+f(X))

In our case for RCPSP, Since we have to minimize the
objective function ,the fitness function will be same as
described in the above equation.

Therefore

Vol. 4, No. 2, 2013

Fitness= 1/1+functionvalue

Where function value =
wl*projectduration+w2*projectcost.

Where wl and w2 are the weights attached to project
duration and project cost respectively. Depending on which is
more crucial for our organization whether cost or duration we
can decide the weights. If we have to give more weight to
duration, the weight of duration will be increased and similarly
for cost also and vice versa.

So we compare the fitness of this genome, with the
previous generated genome and iterate this process and
generate various generation and looks for best fitness that can
be achieved. The best fit genome will be displayed by the
console application.

V. CLASS DIAGRAM AND IMPLEMENTATION DETAILS

A. GASolver.Core

GASolver .Core is the main component of the solution. It is
responsible for implementing all the three operators namely
selection, crossover and mutation on various generations. It
also provides a contract IGenome to be implemented in
different genomes who wish to use GASolver for optimizing
their problem. Following is the class diagram of
GASolver.Core. It has a population (generation) class which
essentially is collection of similar genomes.

Q IPopulation
| Population 7)
Class
i # Fields
16:4“ . 2 = Properties
o = Best2
es
=+ IComparable '
5 CurrentPopulation
= Properties % Generation
é oh ' Genomes
- P kCrossover

3‘ CurrentFitness
= Methods

Fig. 2. Class diagram for GASolver

RCProjectSchedulingGenome

7 kDeathFitness
' KinitialPopulation
5 kMutationFrequency

W CalcvlateFiness i

$ Cantic j kPopulationLimt

¥ ' kReproductionFitness

v Cooy = Methods

¥ Crossover ¥ CalculateFitnessForaAl
v Initialze @ DoCrossover

v Mutate ¥ GetHighestScoreGenome
W SetCrossoverfoit @ Initialize

v ToString

4% Mutate
W NextGeneration
¥ WriteNextGeneration

implements a common

contract 1Genome, as shown in Figure 2 below, it does not
worry about actual implementation of genome.

Hence with the use of interface I1Genome, the solution is
loosely coupled and there is no direct coupling between
RCProjectSchedulingGenome and population class.

214|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Q IGenome

RCProj 2
Class

= Fields
«¥ _CrossoverPoint
4% _CurrentFitness
&% rcsObj

= Properties
' CrossoverPoint
7' CurrentFitness
% ResObj

= Methods

CalculateFitness
CanDie
CanReproduce
CompareTo

Copy

Crossover
Initialize

Mutate
RCProjectSchedulingGenome
SetCrossoverPoint
ToString

<

LR 3E oK o o o oF oF o ¢

Fig. 3. RCProjectSchedulingGenome Class

GASolver.Core population class is also responsible for
creating collection of genomes objects, it must know about the
actual implementation of IGenome e.g
RCProjectSchedulingGenome. But we cannot instantiate the
actual genome object since it will tightly couple the population
class to that genome implementation and the population class
could not be used for other Genomes. We have used
dependency injection object oriented programming principle to
overcome this problem.

I Population

=+ IPopulation f, RCProjectSchedulingGenome

= IGenome

Fig. 4. GASolver’s Dependencies Diagram

B. GASolver.RCPSP

GASolver.RCPSP is implementation of Resource
constrained project scheduling problem.
RCProjectSchedulingGenome class implements interface

IGenome. This class is representation of genome and has
methods for mutation, crossover and calculating fitness of
genome. RCPSPDataConnection class is responsible making
the connection to database and fetching different data from
RCPSP database.

Above diagram is dependency graph of GASolver solution.
GASolver.Core component instantiate
RCProjectSchedulingGenome using dependency
injection container.

unity

Vol. 4, No. 2, 2013

VI. TEST RESULTS AND ANALYSIS

A. Test Case 1

Find a valid schedule that has lowest (PC), irrespective of
the duration of the Project.

This is the first test case in which, we wish to optimize cost.
We had two variables in the code, cost and duration. We
changed the weight factor of cost to one and for duration it is
made to zero i.e. the total focus is on project cost.

Project Cost is fully optimized while duration may vary
high or low. The results are shown below in Table 13.

TABLE XIII. OPTIMIZED PROJECT COST

Generations Project Duration Project cost

1 65 2910910
3 65 2810910
61 31.67 2795520
66 51.67 2710040
73 47 2664760
94 29.35 2545550

el cOSt

COST OPTIMIZATION

3000000 70
2900000 - 60
2800000 - - 50 2

=2700000 40 2

82600000 \V4 - 30 §
2500000 20 B
2400000 10
2300000 ——— 0

1 3 61 66 73 94
GENERATIONS

Fig. 5. RCPSP-Cost Optimization

The above Figure 5 shows the graph of cost optimization.
We can analyze from the graph that Project Cost is constantly
decreasing during higher generations while Project Duration is
varying between higher and lower values as the weight factor
for Project Cost is kept one.

B. Test Case 2

Find a valid schedule that has optimized duration,
irrespective of the cost of the project.

This is the test case in which, we wish to optimize duration.
We had two variables in the code, cost and duration. We
changed the weight factor of duration to one and for cost it is
made to zero i.e. the total focus is on Project Duration. Project
Duration is fully optimized while Cost may vary high or low.
The results are shown below in Table 14

215|Page

www.ijacsa.thesai.org

es=gu=s Duration

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE XIV. RCPSP DURATION OPTIMIZATION
Generation Duration Cost

1 53.83 3153140
2 50.5 3109650
44 47.5 2758670
190 44.14 2589405
194 40.14 2565615
210 37.08 2702700
308 33 2667710

The Figure 6 below shows the graph of Duration
Optimization. We can analyze from the graph that Project
Duration is constantly decreasing during higher generations
while Project Cost is varying between higher and lower values
as the weight factor for Project duration is kept one and project
cost is kept at zero.

Vol. 4, No. 2, 2013

TABLE XV. RCPSP- DURATION AND COST

OPTIMIZATION
Project

Generation Duration | Project Cost

1 72 3038030
5 68 3013045
8 73.75 3012420
13 73 2946170
127 41.67 2614705
137 40 2507620
157 44.17 2347185

DURATION OPTIMIZATION
3500000 60
3000000 50
2500000
40
o
= 2000000 o O et Cost
o] 30 g
© 1500000 s
a
20
1000000
500000 10
0 0
1 2 44 190 194 210 308
GENERATIONS

RESOURCE CONSTRAINT SCHEDULING-PROJECT +
COST OPTIMIZATION

3500000 80

3000000 - - 70
- 60
2500000 >
= \ - 50 o
= 2000000 » — =
8 1500000 -
30 2
1000000 L 90
500000 | 10—I—Project
0 0 Cost
1 5 8 13 127 137 157 Duration
GENERATIONS

Fig. 6. RCPSP Duration Optimization

C. Test Case 3

Find the optimum valid schedule, satisfying a composite
function including cost and duration.

This is the test case in which, we wish to optimize Cost and
Duration both. We had two variables in the code, Cost and
Duration.

We changed the weight factor of cost to 0.5 and for
Duration it is made to 0.5 i.e. focus is on optimizing both Cost
and Duration. The results are shown below in Table 15.

The Figure 7 shows the graph of Cost and Duration
Optimization. We can analyze from the graph that Project
Duration and well as Project Cost both are constantly
decreasing during higher generations as the weight factor for
Project duration is kept at 0.5 and Project Cost is also kept at
0.5.

Fig. 7.RCPSP- Duration and Cost Optimization

VII. CONCLUSION AND FUTURE DIRECTIONS

Resource Constrained Project scheduling is an important
problem as studied in literature survey. We have implemented
this with Genetic Algorithm using C#.net. Most of the
solutions that existed earlier for RCPSP were not extendable.
We have implemented GASolver .core using which any
specific problem domain genome can be constructed. The
fitness function is only to be specified by the project manager
for their own specific domain. The same GASolver .core can
be extended to other important research areas like Time Cost
trade off, Payment Scheduling problem etc. Once all these
areas will be part of GASolver, it will be the complete solution
to project scheduling problems.

List of abbreviation:
RCSP
PS - Payment Scheduling

- Resource Constrained Scheduling Problem

DI - Dependency Injection
CT - Cost Trade off

GA - Genetic Algorithm
PC - Project Cost

216 |Page

www.ijacsa.thesai.org

(1

(2]
(3]
(4]

(5]

(6]

(7]

(IJACSA) International Journal of Advanced Computer Science and Applications,

REFERENCES

Chambers LD (ed.) (1999) Practical handbook of genetic algorithms:
complex coding

systems. CRC Press, Boca Raton

David E. Goldberg “ Genetic Algorithm, in search Optimisation and
Macine Learning

Davis L (1991) Handbook of genetic algorithms. Van Nostrand
Reinhold, New York

Dumond, J. and Mabert, V.A., "Evaluating Software project Scheduling
and Due Date Assignment Procedures: An Experimental Analysis”,
Management Science, Vol. 34 No. 1, 1988, pp. 101-18

J.Alcaraz, C.Moroto, “ A Robust Genetic Algorithm for resource
allocation in software project scheduling, Annals of operations Research
102(2001) 83-109.

R.Mohring, A.Schulz, F.Stork, M.Uetz, “ Solving Software project
scheduling problems by minimum cut computations, Management
science 49 (3) (2003) 330-335

Moslem Shahsavar a,1, Seyed Taghi Akhavan Niaki b,*, Amir Abbas

(8l

[°]

[10]

[11]

Vol. 4, No. 2, 2013

Najafi c,2 “An efficient Genetic Algorithm to maximize net present
value of software project payments under inflation and bonus—penalty
policy in resource investment problem”, 2010 Elsevier

Mohammad Amin Rigi, Shahriar Mohammadi K. N. Toosi Finding a
Hybrid Genetic Algorithm-ConstraintSatisfaction Problem
basedSolution for ResourceConstrained Software project Scheduling
University of Technology, Industrial faculty, 1T group Tehran, Iran,
2009 International Conference on Emerging Technologies.

Stinson, J.P., Davis, E.W. and Khumawala, B.M., "Multiple Resource-
constrained Scheduling Using Branch-and-Bound"”, AIIE Transactions,
Vol. 10 No. 3, 1978, pp. 252

Xinggang Luo 1,2, Dingwei Wang 2, Jiafu Tang 2, Yiliu Tu 3Resource-
Constrained Software project Scheduling Problem , Proceedings of the
6th World Congress on Intelligent Control and Automation, June 21 23,
2006, Dalian, China.

Yan Liul,2,Sheng-Li zharo2, Xi-Ping Zhang2, Guang-Qiandu2, A GA-
Based Approach for solving fuzzy siftware project scheduling
Proceedings of the Sixth International Conference on Machine Learning
and Cybernetics, Hong Kong, 19-22 August 2007.

217|Page

www.ijacsa.thesai.org

