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Abstract—In this paper we investigate methods for selecting
the best algorithms in classic distributed constraint optimization
problems. While these are NP-complete problems, many heuris-
tics have nonetheless been proposed. We found that the best
method to use can change radically based on the specifics of
a given problem instance. Thus, dynamic methods are needed
that can choose the best approach for a given problem. We
found that large differences typically exist in the expected utility
between algorithms, allowing for a clear policy. We present a
dynamic algorithm selection approach based on this realization.
As support for this approach, we describe the results from
thousands of trials from Distributed Constraint Optimization
problems that demonstrates the strong statistical improvement
of this dynamic approach over the static methods they are based
on.

I. INTRODUCTION

When multiple agents operate within a joint envi-
ronment, inter-agent constraints typically exist be-
tween group members. Assuming these agents oper-
ate within a cooperative environment, the team must
decide how to coordinate satisfying as many of these
constraints as possible [21]. Instances of such prob-
lems are classic distributed planning and schedul-
ing domains including specific applications such as
supply chain management, disaster rescue manage-
ment, Personal Data Assistant (PDA) scheduling,
and military conflict planning [9], [19]. However,
solving these real-world problems are challenging
as they are known to be of NP-complete, or worse,
complexities [10], [12], [19].

Despite the computational complexity inherent
in these problems, a variety of algorithms have
been suggested [4], [10], [11], [12], [15], [17],
[21]. These algorithms differ in what and how
agents communicate to attempt to find an optimal
assignment. Each of these approaches have different
resource cost requirements (e.g., time, number of
messages), and are often useful in different problem
classes. Thus, an important task for designers of
these planning and scheduling systems is to find the
algorithm that will work best for a given problem
instance.

In this paper we claim that an algorithm selection
approach is helpful in dictating which type of ap-
proach to use. The key to this approach is that differ-
ences between algorithms are typically quite large,
and can be locally measured. This allows agents to
locally control what information to transfer to group
members. To demonstrate the effectiveness of this
approach we study a general Distributed Constraint
Optimization Problem (DCOP) domain [10], [11],
[21]. We performed thousands of trials involving
a variety team sizes and problem parameters and
found that the described algorithm selection ap-
proach was effective in significantly outperforming
the static methods they were based on.

II. DOMAIN FORMALIZATION
AND ALGORITHMS DESCRIPTION

In this section, we formally present a general Dis-
tributed Constraint Satisfaction and Optimization
Problem domain (DCSP and DCOP respectively).
The goal within a DCSP or DCOP problem is
for distributed agents, each with control of some
variables, to either satisfy (in DCSP) or to optimize
(in DCOP) a global utility function. DCOP is a
generalization of the DCSP problem as the goal is
to minimize the number of non-fulfilled constraints,
and is thus more suitable for most real-world prob-
lems [9]. The DCOP problem has been previously
defined as follows [4], [10]:

• A set of N agents A = A1, A2 . . . , AN

• A set of n variables V = x1, x2 . . . , xn

• A set of domains D = D1, D2 . . . , Dn where
the value of xi is taken from Di. Each Di is
assumed finite and discrete.

• A set of cost function f = f1, f2 . . . , fm where
each fi is a function fi: Di,1 × . . . × Di,j →
N ∪ ∞. Cost functions represent what must
be optimized and are typically referred to as
constraints.

(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 2, 2013 

267 | P a g e  
www.ijacsa.thesai.org 



• A distribution mapping Q : V → A assigning
each variable to an agent. Q(xi) = Ai denotes
that Ai is responsible for choosing a value for
xi. Ai is given knowledge of xi, Di and all fi
involving xi.

• An objective function F defined as an aggrega-
tion over the set of cost functions. Summation
is typically used.

DCOP problems are often represented as con-
nected graphs where nodes must be assigned one of
k colors. For simplicity, the assumption is typically
made that one assigns an agent to every node within
the graph to decide how these nodes should be
colored. Thus, the notation Ai and xi can be used
interchangeably [4]. In the DCSP variation the goal
of the problems is for every node be assigned a
color such that no connected node (often referred
to as a neighbor within the graph) has the same
color. There is a cost function of ∞ for having
two connected nodes with the same color, or in
other words, the DCSP contains a hard constraint
between nodes (agents). The DCOP problem is a
relaxation of this problem. Here the group’s utility
is based on minimizing the number of constraints
that have not been satisfied. According to the DCOP
formalization this referred to as F [11].

A range of algorithms exist for solving DCSP
and DCOP problems. Well-known algorithms in-
clude distributed breakout (DBO) [21], asyn-
chronous backtracking (ABT) [20], asynchronous
weak-commitment (AWC) [20] and the Optimal
Asynchronous Partial Overlay (OptAPO) [10]. In
general, the DBO, ABT, and AWC algorithms are
fully distributed algorithms. As such, each algorithm
focuses on finding a solution without sending con-
straint information beyond the local agents (nodes
in the graph) with which they have direct commu-
nication. These algorithms differ in what local in-
formation should be communicated between neigh-
boring nodes, and how neighboring nodes should
be prioritized to first attempt a solution. In con-
trast, the OptAPO requires merging semi-centralized
solutions. This algorithm has a “mediator” stage
where agents are allowed to directly communicate
constraint information of non-local agents. This me-
diator agent can recommend a potential solution to

a set of agents for which it mediates1, allowing for a
solution to be found much more quickly [10]. Thus,
these algorithms not only differ in what constrain
information is communicated, but also as the degree
of problem centralization is used [4].

As the degree of centralization between OptAPO
and other DCOP algorithms differs, debate exists
how performance should be measured. The most
common performance measure, which we based our
experiments on, is how many cycles were needed
to solve a given problem instance [20]. Within this
measure, one unit of “time” is taken as the series
of actions where agents process all incoming mes-
sages, process those messages, and send a response.
In our experiments, we chose the more accepted
cycle based measure to evaluation performance2.

For example, Figure 1 provides an example of
a simple DSCP (or DCOP) problem with 6 agents
(nodes) and binary constraints (either black or white
colors). At left, one finds the original problem state,
and the right side provides a solution (or in the
DCOP variation F = 0, or no constraints are broken).

We expected that different algorithms perform
best in different problem and domain attributes.
These attributes can include factors relating to the
structure of the problem instance such as the number
of nodes (agents), the total number of allowed
node colors, and the density of connections between
nodes (forming the problem constraints). Addition-
ally, attributes that are external to the graph structure
but are domain factors are also likely to be important
in deciding which algorithm to use. These factors
include the cost of communication between agents,
if non-local communication is allowed and if so at
what cost, and the time to find a solution.

1Note that this set of agents is typically of some size between the number
of local agents and the total number of agents [4]. Thus, while OptAPO does
not constitute a distributed, local solution, it does not constitute a classic
centralized solution either.

2Other measures besides cycles have been proposed to evaluate the DCOPs’
performance. Meisel et al. [7] have argued that performance should be
measured based in terms of the number of computations each distributed
agent performs and proposed a concurrent constraint checks measure (ccc) to
quantify this amount. A hybrid measure, proposed by Davin and Modi [4],
suggest using a Cycle-Based Runtime (CBR) measure that is parameterized
between latency between cycles and computation speed as measured by the
concurrent constraint checks measure. In their opinion, this measure between
accounts for differences in centralization in DCOP algorithms. Note that if one
chooses the ccc or CBR measures, or if new DCOP algorithms are found with
better performance within the cycle based measure, they can be substituted
to study the relative performance of the algorithms under consideration.
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Fig. 1. A sample DCSP problem with 6 nodes (N=6) and 2 colors. The original problem state is at left, with one possible solution at right.

III. USING PHASE TRANSITIONS TO AID ALGORITHM
SELECTION

This paper focuses on developing an algorithm
selection approach for constraint optimization prob-
lems. Previously, Rice generally defined the algo-
rithm selection problem as the process of choosing
the best algorithm for any given instance of a prob-
lem from a given set of potential algorithms [16].
We define the constraint optimization coordination
selection process used in this paper as follows:
Let GR = {a1, . . . , aN} be a group on N agents
engaged in some cooperative behavior. Each agent,
a, can choose out of a library of coordination al-
gorithms, {CA1 . . . CAk}. We denote this selection
CAaj , where 1 ≤ aj ≤ k.

Using CAaj affects the group’s utility by a certain
value, UT a(CAaj). UT a(CAaj) is composed of a
gain, G(CAaj), that the group will realize by using
algorithm CAaj , and the agent’s cost, C(CAaj), by
using that same algorithm. As this paper assumes
the agents within these problems are cooperative,
the goal is to maximize

∑N
a=1 UT

a(CAaj). To
achieve this, each agent must select the algorithm
CAaj from the k possible algorithms in the library
whose value G(CAaj) - C(CAaj) is highest.

One possible solution involves performing no
learning in advance and instead attempts to identify
the best algorithm exclusively during run-time. For
example, Allen and Minton [1] suggest running

all algorithms {CA1 . . . CAk} in the portfolio for
a short period of time on the specific problem
instance. Secondary performance characteristics are
then compiled from this preliminary trial to select
the best algorithm. Gomes and Selman [5] suggest
running several algorithms (or randomized instances
of the same algorithm) in parallel creating an al-
gorithm portfolio. However, assuming running each
algorithm incurs costs C(CA1) . . . C(CAk), these
approaches are likely to be inefficient as the cu-
mulative costs of running all algorithms are likely
to be higher than the potential gain of finding even
the optimal choice.

Instead, we claim that the best algorithm within
these problems can be quickly identified based
on finding phase transitions within these types of
problem instances. The basis of this claim is the
previous findings that NP-complete problems are
not all equally difficult to solve [3], [13]. Many
instances of NP-complete problems can still be
quickly solved, while other similar instances of
problems from the same domain cannot. They found
that phase transitions are a well known phenomenon
across which problems display dramatic changes in
the computational difficulty and solution character
[13].

The concept of phase transitions has been ap-
plied to differentiate classes of these “easy” and
“hard” NP-complete problem instances [13]. Within
distributed constraint satisfaction problems (DCSP),

(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 2, 2013 

269 | P a g e  
www.ijacsa.thesai.org 



these problems can typically be broken into an easy-
hard-easy pattern [11], [13]. The first set of easy
problems represent a category of under-constrained
problems. All DCSP algorithms typically find an
optimal solution quickly for these instances. At
the other extreme, the second easy category of
problems are those that are over-constrained. Within
these problems, the same algorithms can typically
demonstrate that no solution exist, and thus these al-
gorithms end in failure. The hardest DCSP problems
to solve are those within the phase transition going
from under to over-constrained problems, a category
of problems also called “critically constrained”.
These problems are the hardest to solve, with no
solution often being found [13].

One may view the DCOP problem as a generaliza-
tion of the more basic DCSP decision form of the
problem. Again, in problems where there are few
cost constraints, the optimization requirements are
low, and an optimal solution can be quickly found.
The “hard” problems exist where optimization re-
quirements are high. However, debate exists if a
third set of problems exist similar to the third “easy”
problem set where DSCP problems can be quickly
shown to have no solution. It would seem that even
over-constrained DCOP instances cannot be easily
optimized and still comprise “hard” problems [22].
Consequently, DCOP problems should be divided
only into Easy-Hard categories (instead of Easy-
Hard-Easy) or those easy problems to solve before
the problem’s phase transition, and “hard” problems
after this point [14], [22]. Others have claimed
[14] that certain optimization problems may in fact
follow an easy-hard-easy distribution. However, this
debate is not central to our thesis. According to
both opinions, problem clusters do exist, and the
difference of opinion revolves around the number of
these clusters. If we follow the easy-hard model we
should expect to see two clusters of problems with a
transitionary phase between the two, but following
the easy-hard-easy model should yield three such
clusters with two transitionary phases.

Despite the computation complexity in solving all
but trivial DCOP problems, a variety of algorithms
can be used for attempting a solution in this do-
main. These algorithms impact when constraints are
communicated between agents, thus impacting how
the agents attempt to minimize F. We can formally

expand the classic DCOP model into an algorithm
selection based model by modeling the selection
of algorithms {CA1 . . . CAj} that each agent can
choose in deciding what and how to communicate
while attempting a solution. The intrinsically differ-
ent approaches used by algorithms {CA1 . . . CAj}
makes them best suited for problems of differing
levels of complexity.

This realization significantly simplifies the pro-
cess of finding those problems instances where a
given DCOP algorithm, CAaj , will be superior to
other algorithms within {CA1 . . . CAj}. Based on
this knowledge, we expect to find attributes that
separate between fundamentally different types of
problems. Assuming each algorithm is best suited
for different clusters of problems, a clear policy
will be evident as to which algorithm to select,
even when agents are confined to using only lo-
cally available information. Instead of viewing all
domain problems as an enormous state space where
we must map the relative effectiveness of algo-
rithms {CA1 . . . CAj}, we instead focus on find-
ing the problem attributes that differentiate these
algorithms, significantly reducing the state space.
After these attributes have been found, we expect
to be able to further cluster problems as “easy” or
“hard” types of interactions. One type of algorithm
will then be dominant within the easy problems,
followed by phase shift(s)3 where differences be-
tween algorithms are smaller and less apparent,
followed by another large problem cluster where a
second algorithm becomes dominant. As a result,
our research focuses on two important questions: 1.
What are the attributes that differentiate between
algorithms {CA1 . . . CAj}? 2. At what attribute
values should one switch between algorithms?

IV. RESULTS

Our first step was to implement the algorithm li-
brary of the ABT, AWC, DBO, and OptAPO within
the previously defined DCOP domain. To do this,
we used the Farm simulation environment [6] to
create randomized instances of 3-color optimization

3We refer to differences in problem instance clusters as phase shifts instead
of phase transitions. This follows the distinction made by Brueckner and
Parunak [2] who reserve the term “phase transition” to clusters that have been
analytically derived and refer to “phase shifts” to describe problem clusters
that have been emperically found. As this work derives these problem sets
based on emperical observation, we use the second term.
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Fig. 2. Graph coloring performance with ABT, AWC, DBO, and OptAPO algorithms with random graphs with 5-100 nodes (X-axis) and edges = 2.0n (left)
and 2.7n (right). Each datapoint represents averaged results from 30 runs with 100 cycles per run.

Fig. 3. Graph coloring performance with ABT, AWC, DBO, and OptAPO algorithms with random graphs with 5-100 nodes (X-axis) and edges = 2.0n (left)
and 2.7n (right). Each datapoint represents averaged results from 30 runs with 10 cycles per run.

problems. We first varied parameters such as the
number of nodes (agents) and edges (which control
the number of constraints) within these problems.
Specifically, we studied “sparse” coloring graph
problems where the number of edges (m), is two
times the number of nodes (n), and “dense” graph
problems with 2.7 times the number of edges (m)
to nodes (n). Traditionally, these parameters were
thought to control if a problem instance would be
“easy” or “hard” [10].

Figure 2 represents the performance results of the
ABT, AWC, DBO, and OptAPO within problem
instances. We measured the number of non-fulfilled
constraints (F) after 100 cycles. The agents using
each of the algorithms did not know in advance how
much time would be available to reach a solution.
As a result, after each cycle, the system would
check if the global utility (F) had improved. If

it had, it created a snapshot of this solution, so
that the process could be interrupted at any time,
and still return the best solution yet found. This
allows for creating an interruptible anytime version
of these algorithms as per previous definitions of
anytime algorithms [23]. Note that in the easiest
problems (with 30 or less nodes in both problem
sets), no significant differences existed between
algorithms as all algorithms were able to solve these
problems equally (with the notable exception of
ABT). Beyond this point, the OptAPO algorithm
on average outperformed all other algorithms. This
result is consistent with previous finding demon-
strating the effectiveness of the OptAPO algorithm
in solving challenging DCOP problems regardless
of the number of nodes or constraints (edges) within
the problem [10].

However, we found that the best algorithm to use
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also differed radically based on parameters such as
the time allotted to solve a problem instance. In
Figure 3 we again ran the ABT, AWC, DBO, and
OptAPO algorithms but allotted only 10 cycles of
runtime. Note how the APO algorithm performs
significantly worse than the other algorithms (in
problems with > 40 nodes) with the DBO algorithm
performing significantly better, especially in dense
graphs with more than 60 nodes. This result is not
surprising as the OptAPO is fundamentally different
from other algorithms in the amount of problem
centralization used. Evidently, this algorithms needs
an initialization period in order that its “mediator”
nodes have enough information about non-local
nodes in order to attempt an effective solution. As
such, in these cases this algorithm underperformed
that of other purely localized algorithms that had no
such overhead.

Communication costs can also radically affect
which algorithm we should select. Recall that the
goal of our algorithm selection model is to maxi-
mize

∑N
a=1 UT

a(CAaj) where UT a(CAaj) is the
gain G(CAaj) the group achieves by using that
algorithm minus the cost, C(CAaj), paid by using
the same algorithm. Again, the OptAPO algorithm
is fundamentally different from other algorithms in
that it uses non-local communication, giving this
algorithm a potential cost C(CAaj) not existent in
other algorithms. Assuming such cost is significant
– say because of privacy concerns or communication
link cost, the OptAPO algorithm should also be
avoided even if unlimited time exist to solve these
problems. Indeed we found that the best of the breed
of the localized algorithms, (such as the DBO or
AWC algorithms), clearly outperforms OptAPO in
these types of problem instances.

Figure 4 demonstrates the impact of non-local
communication cost on algorithm selection. In this
graph we compared the performance of the OptAPO
and DBO algorithms in dense graph problems with
100 cycles allotted. When communication was free
the APO algorithm (APO-100 Cost 0) did signifi-
cantly outperform DBO. However, once non-local
communication had a cost of 0.02 quality units per
communication link, the DBO algorithm outperform
OptAPO (APO-100 Cost 0.2)

Because of the radically different performance
of these algorithms, the selection policy is often

Fig. 4. The impact of non-local communication cost on algorithms studied

quite clear. Let us assume that agents are aware
of performance limitations such as the time to
complete the task, or the cost of non-local links. A
clear policy typically becomes immediately evident.
For example, assume there is no communication
cost and agents need to find the best DCOP solution
given a relative long period of time (e.g. 100 cycles
or more). OptAPO is then clearly the best choice.
Conversely, assuming communication is costly (e.g.
cost of 0.02 or more), or only a very short period
of time is allocated (e.g. time of 10 cycles or less),
the best of the local algorithms, e.g. DBO, was
selected. In cases with problem attributes between
those with a clearly defined policy (e.g. 50 cycles
of time to solve the problem), we considered two
possibilities. In the first possibility, a random selec-
tion is taken between the borderline algorithms. A
second possibility is to calculate the midpoint within
the attribute space between these algorithms and to
choose the first algorithm for instances before the
midpoint and use the second algorithm after this
point. While random selection or midpoint heuris-
tics will not likely form the optimal choice in many
of these instances, we hypothesized the difference
between algorithms in these cases is not large as
this the transitional range for this attribute. Thus, the
difference between optimal and non-optimal choices
within these types of problems was not expected to
deviate significantly from the optional choice.

Figure 5 demonstrates the effectiveness of the
Selection algorithm just described. For comparison,
we also display the average group utility (F) as taken
from the the static DBO and OptAPO algorithms.
We also created an Optimal group could run all
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Fig. 5. Comparing the effectiveness of the Selection algorithm policy versus
the static DBO and OptAPO algorithms

static algorithms without cost, and then accept the
algorithm that returned the highest utility. The re-
sults in Figure 5 were generated from a total of
100 DCOP 3-color graph problems with random
problem attributes in the time to solve the problem,
the number of nodes and edge constraints, and
non-local communication costs. As these problems
instances were randomly selected, many of these
problems had problem attributes fell within the
problem space where a clear policy existed. Such
instances included: instances with long times to
solve the problem, very short times, or where non-
local communication had a significant cost. In order
to strengthen the significance of this experiment, we
ensured that at least 25 percent of the problem in-
stances were taken from the category when no clear
policy existed. Notice that the Selection approach
closely approximated the optimal choice, and sig-
nificantly outperformed statically choosing either
DBO or OptAPO. In order to evaluate the statistical
significance of these findings, we performed a two-
tailed t-test to compare the Selection approach to the
static DBO and OptAPO methods. The resulting p-
score was well below 0.05 (0.02), supporting the
significance of the presented approach. Similarly,
we compared the dynamic approach with the opti-
mal selection policy and found only an insignificant
difference (p-score greater than 0.8) between these
values. This supports the claim that randomly se-
lecting between algorithms in borderline cases does
not significantly hurt performance.

V. CONCLUSION AND FUTURE WORK

In this work we present an algorithm selection
approach for solving constraint optimization prob-
lems. We focused on two factors: what attributes
differentiate between the algorithms and how can
we build a selection policy based on those attributes.
We present strong empirical evidence of the success
of this approach in a general DCOP domain, sug-
gesting the generality of this work.

For future work, several directions are possible.
In this work, we manually found the attributes that
differentiated the coordination algorithms within
the domains we studied. We hope to study how
algorithms can be created to automate this process
so that novel interaction measures may be learned
for quantifying coordination in other domains.

The success of our coordination selection ap-
proach was rooted in the realization that different
clusters of problems can be created based on the
hardness of different agent interactions. We drew
upon the “phase transition” concept used to de-
scribe some constraint satisfaction problems [13].
However, following Brueckner and Parunak [2] we
reserve the term “phase transition” to refer to a term
used by physicists for mathematically describable
behavior within the system, and instead term the
clusters of problems we empirically observed as
phase shifts. We hope to study in the future what
formal models can be created that can predict where
and when these transitions should occur. We believe
this study could strengthen the theoretical basis of
the work we present.
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