
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

217 | P a g e

www.ijacsa.thesai.org

TX-Kw: An Effective Temporal XML Keyword

Search

Rasha Bin-Thalab

Department of Information System

Faculty of Computers and Information

 Cairo University, Egypt

Neamat El-Tazi

Department of Information System

Faculty of Computers and Information

Cairo University, Egypt

Mohamed E.El-Sharkawi

Department of Information System

Faculty of Computers and Information

Cairo University, Egypt

Abstract—Inspired by the great success of information

retrieval (IR) style keyword search on the web, keyword search

on XML has emerged recently. Existing methods cannot resolve

challenges addressed by using keyword search in Temporal XML

documents. We propose a way to evaluate temporal keyword

search queries over Temporal XML documents. Moreover, we

propose a new ranking method based on the time-aware IR

ranking methods to rank temporal keyword search queries

results. Extensive experiments have been conducted to show the

effectiveness of our approach.

Keywords—temporal XML; Keyword Search; ranking

I. INTRODUCTION

The success of keyword search in IR has encouraged its
emergence in XML [1-3] and databases [4, 5]. Although,
temporal data are used commonly in historical applications
(web logs, financial, scientific, and georeferencing
applications), existing XML keyword search methods are not
aware of temporal expressions in keywords. Temporal
keyword refers to exploiting time dimension that is embedded
inside the XML documents to provide alternative search
methods and user experience.

A study made by Zhang et al. [6] showed that about 13.8%
of queries have explicit time predicate and 17.1% of queries
implicitly contain temporal intent. An example of a query with
explicit time provided is "U.S. Presidential election 2008". An
implicit time query example can be "Germany FIFA World
Cup", here the time is not declared but the user is referring to
the World Cup event in 2006. Furthermore, database
applications contain information for long time periods, like,
DBLP which keeps all publications that cover the years 1954
up till now. When searching in these documents archives, a
temporal dimension plays an important role.

Keyword search in XML model is used to find nodes that
contain keywords and checks the interconnections among
them based on their lowest common ancestors (LCA) [1]. For
example, query Q1 "Michael, Adams" in Fig. 1 returns node;
0.2.0.2.

However, LCA has a lot of drawbacks since it does not
give a meaningful answer in all cases, e.g., as in query Q1,
node 0.2.0.2 might not be the user intention. Another

drawback is that it does not consider ID/IDREF relationship
between nodes, which may result in missing some relevant
results. Recent approaches [4, 7, 8] preferred to model XML
document as a set of interrelated objects rather than nodes.
Each object is represented as a sub tree rooted by a
representative node with its set of attributes. Also, ID/IDREF
connections are considered in such approaches to increase
relevant results.

In this paper, we integrate temporal constraints into
keyword search approaches for temporal XML databases (TX-
Kw). We perform semantic matching at object level rather
than using traditional LCA techniques. There are three basic
reasons that motivated us to use object-level in temporal
keyword search over temporal XML documents. First, XML
can be recognized as a set of real world objects, each of which
has attributes and interacts with other objects through
relationships in certain temporal intervals, for example player,
team and coach entities in NBA DB as shown in Fig. 1 are
considered objects in real world. Second, users aim to find a
specific object information by typing a set of words and a
specific time about such object. They do not aim to find if the
information exists or not by retrieving the node that contains
this information. Finally, temporal nature of nodes in temporal
XML documents can be captured well in objects as long as
their attribute values and relationships output change over
time. Thus, object-level may be very helpful to give more
relevant answers especially if we adapt ranking objects rather
than ranking nodes by taking time dimension into account. In
this case, keyword search results is either a single object
which contains all keywords in the time specified or a set of
interconnected objects that contain the keywords in that
specified time.

Our objective in this paper is to effectively retrieve a single
temporal object (STO) or a set of related temporal objects
(RTO) that are the closest to user intention while considering
ID/IDRef links. A brute force approach, which considers all
result objects before the top-k scores, requires expensive
processing time. We build several index structures for
keywords and temporal objects to provide better performance.
We propose an efficient algorithm based on these structures to
get top-k results of temporal objects.

We summarize the contribution of this paper as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

218 | P a g e

www.ijacsa.thesai.org

 Modeling XML into temporal objects based on their
ID/IDRef attributes

 Build an efficient temporal keyword search algorithm
for processing temporal keyword search queries over
temporal XML documents.

 Design adaptive temporal ranking method for XML
keyword search

The rest of this paper is structured as follows. Section II
describes related work. Section III presents background and
definition used through the paper. Section IV introduces
semantic matching of objects to keywords. Section V
addresses ranking functions used to rank result objects.
Section VI presents structure indexes for enhancing
performance. Keywords search algorithms are presented in
section VII. We implement experiments to compare our
algorithm to the state-of-the-art methods in Section VIII.
Finally, Section IX provides concluding remarks and future
works.

II. RELATED WORK

In literature, keyword search has been studied well in
XML environment [9]. We categorize these approaches into
two categories; tree and graph models. Approaches for XML
graph model are more related to our work. On XML tree
model, XSearch [10] and SLCA [2] provided an efficient way
to calculate the smallest LCA (SLCA) XML node that
contains all keywords. However, successive works were
proposed to improve effectiveness like VLCA [11], and
efficiency ELCA [3, 12]. Next, Bao [13] proposed an IR-style
approach (called XReal) which basically utilizes the statistics

of underlying XML data to present a novel XML TF*IDF
ranking strategy to rank the individual matches of all possible
search intentions. On XML graph model, ObjectRank [4] is
one of the earliest studies which designed a semantically
meaningful ranking method using the authority transfer
paradigm. However, ObjectRank results in only single objects
and does not take a group or a cluster of objects as alternative
results. On the other hand, several XML approaches were
presented to implement graph model in XML keyword search
result, in more effectiveness in trade of efficiency. XKeyword
[8] provided an efficient keyword proximity queries for large
XML graph databases. The authors adopt the concept that a
keyword proximity query is a set of keywords and the results
are trees of XML fragments (called Target Objects) that
contain all the keywords. However, ranking of target objects is
restricted to the distance between elements which leads to
missing objects that are more related to the keywords,
although they do not contain them. Recently, Bao [7]
presented an object-level to retrieve effective results which are
based on schema document. The result is either a single object
or a set of interconnecting objects. In fact, the authors only
considered object class but ignored object ID. Thus, they
cannot discover duplicate objects and suffer the same
problems as LCA-based approaches.

All the mentioned approaches did not take benefit from the
temporal nature of temporal XML documents in retrieving
results of temporal keyword search queries.

In information retrieval, several proposals addressed time-
aware ranking of pages in www environment. They are
divided into two categories: link based [14, 15], and content-

Fig.1. NBA DB portion (with Dewey IDs)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

219 | P a g e

www.ijacsa.thesai.org

based [16, 17]. In link-analysis approach, Yu [18] modified
the PageRank [19] algorithm by accumulating the weights of
its citations, where each citation receives a weight that
exponentially decreases by its age. Berberich [14] also
extended PageRank to rank documents with respect to
freshness. The difference is that this work defines freshness as
a linear function that will give a maximum score when the
date of document or link occur within the user specified period
and decrease a score linearly if it occurs outside the interval.
Second type of ranking methods is based on an analysis of
document content [17]. Jatowt [20] presented an approach to
rank a document by its freshness and relevance. A document is
ranked high if it is modified significantly and recently. Diaz
and Jones [21] used timestamp from document metadata to
measure the distribution of retrieved documents and create the
temporal profile of a query.

To the best of our knowledge, the first study of temporal
keyword search in XML has been addressed by Manica [22].
They identified temporal constraints in a keyword query and
intercepted the query processing, executed by a conventional
XML search engine, in order to evaluate those constraints.
However, temporal ranking results were not handled.

III. BACKGROUND, NOTIONS AND DEFINITIONS

In this section, we describe the concept of temporal objects
(TOs), which we use in this paper. To define temporal objects
in XML document, we combine the definitions of temporal
object in [23, 24] and an object tree in [7] as follows.

Definition 1. A temporal object Ot represents a real-world
entity or concept, each object has an object ID, attributes and
lifespan. We define a temporal object in an XML document as
a subtree (object tree) annotated with lifespan. Each object is
represented by <OID, att_list, lifespan, OList>

where "OID" is the object identifier. "att_list" is the list of
attributes the object has. “lifespan” is the life time of the
object in the system. "Olist" contains a list of <OID, Time>
pairs denoting the objects that are connected to the object with
the timestamp for that connection.

A set of objects with similar characteristics (attributes) are
grouped into what is called a class. An object class (called
class for brevity) consists of a signature that defines the object
in reality.

How to identify the temporal objects is orthogonal to this
work; here, we adopt the inference rules in XSeek [26] to help
identify the object trees from XML Schema. In the case of no
obvious schema, any other program for extraction schema is
used. As we can see from Fig. 1, there are five temporal object
instances for three classes; 2 objects for Player class, 2 objects
for Team class, and 1 object for Coach class. A dashed line
represents the ID/IDREF edges connecting objects. Note that
nodes Players, Teams and Coaches are connection nodes
which connect the node Players with the player objects, (the
same for Team and Coach). In XML model, a real object class
is distinguished in form of a subtree due to its hierarchal
inheritance.

Another important concept is introduced, connections,
which is used to define relationships between temporal

objects. We distinguish between two types of connections;
containment and references. Two temporal objects have a
containment connection if there is a containment edge
annotated by timestamp connecting them (parent-child edge)
denoting when this connection is active. On the other hand,
reference connection is used if there is an ID/IDREF edge
annotated by a certain timestamp between two temporal
objects.

In this work, we apply a discrete notion of time and
assuming the integers Z. The temporal expression T can refer
to any time interval [b, e] where b M e. Year is used as a time
granularity for simplicity.

IV. TEMPORAL OBJECT MATCHING SEMANTICS

In context of XML keyword search, a temporal keyword
query is a set of keywords attached with time (e.g., "Michael,
Adams, 1995"). Usually, when a user issues his keyword
search, he intends to get almost a single object that contains all
the keywords he issued in the specific time domain or even a
set of interrelated objects that contain all keywords and
intersect at the time interval provided. These objects are more
likely to have a well known relationship among them.

A. Single Temporal Object Matching Semantics

Definition 2. Given a temporal keyword query Qt, a temporal

object Ot is defined as a Single Temporal Object (STO) found
in the document if it contains all the keyword(s) as part of its

attribute’s value or structure tag names, and its lifespan

interval intersect with Qt time.

One can conclude that STO plays LCA role in the temporal

object oriented model. For example in Fig. 1, if we issue the
query "Alvan, Adams, 2000-2005", STO returns the Player
object rooted at node 0.2.1 rather than Name attribute at node
0.2.1.2 returned by traditional LCA.

B. Related Temporal Objects Matching Semantics

Keywords in Qt keywords can be found in different objects
rather than a single one. Furthermore, the time interval in the
selected objects has to intersect with Qt interval. For example,
given a query Q4:"team, Curtis,[2000-2002]" in Fig. 1, here
the user wants to know the team which is coached by Curtis in
the interval [2000- 2002], the "team" keyword is contained in
two objects rooted at nodes 0.1.0 and 0.1.1, and "Curtis" found
in object Coach rooted at node 0.0.0. If we take the LCA
based on their Dewey Id, the root node NBA 0 is returned.
When considering the ID/IDREF into account, we can see that
there is an ID/IDREF edge between objects team (0.1.1) and
coach (0.0.0) during the interval [1998-2002]. Thus the result
in this case will be both objects; team (0.1.1) and coach 0.0.0
since they are connected by a reference edge.

There are three types of connections that can exist between
any two objects a and b. First, a and b can be connected via a
lowest common object ancestor LCOA (e.g., in DBLP, one
paper is an ancestor of multiple papers by cites relationship).
Second, a and b can have a common object descendant COD
(e.g., in Fig. 1, team 0.1.1 is COD for both objects player
(0.2.1) and coach (0.0.0)). Moreover, a and b can be connected
via an n-hop connections meaning, if there are n-1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

220 | P a g e

www.ijacsa.thesai.org

intermediate distinct objects o1, ..,on−1 such that there is a
connection between each pair of adjacent objects and no
objects of them are connected via ancestor-descendant
relationship. For example, in DBLP, one paper may be
connected with another paper through a set of intermediate
paper citations although no direct connection between them.

Definition 3. Related temporal objects result (RTO) is a
tree structure composed of temporal objects having the query
keywords and intersect with query temporal interval while
having either ancestor/descendant or ID/IDREF relationships
connection between them.

In order to construct RTOs, we combine the use of schema
structure of XML document and ID/IDRef edges. Fig. 2(a)
shows schema of DBLP and NBA data sets. We can find that
the set of possible objects could be connected to form RTOs.

Fig.2. RTOs for NBA and DBLP Schemas

V. RANKING

The challenge of capturing effective results of temporal
keywords is the selection of temporal objects that have the
highest ranking scores (top-k). This problem is studied very
well in IR [6], [20]. Incorporating time dimension into ranking
models can significantly improve result effectiveness of user
intention

In this section we introduce a ranking model to increase
effectiveness for temporal queries. Note that pages in IR
environment are mapped into objects in XML environment.

Thus we have an object granularity rather than a page. The
object contains values of attributes each of which may have
temporal data (like birth-date of employees) which
corresponds to content time in IR, and the object has a lifespan
interval against publication time of pages.

Lifespan interval starts when the object inserted into the
system and its end time is determined by the time deletion of
the object or left up to now. Object lifespan also is sensitive to
the application semantics, such as in DBLP, publishing year of
an article is considered as the start of the article’s object
lifespan.

A. Ranking Model

Temporal objects as well as temporal queries contain two
integral information keywords and time. Here, we design a
ranking model which is based on a mixture model used for IR
[25] that linearly combines keywords similarity and temporal
similarity and then we map it into XML objects. Given a
single temporal object Ot and a temporal query Qt, we compute
the similarity degree ρs of Ot to Qt using the following formula:

  

where the mixture parameter indicates the importance of
keywords similarity Sk(Qt, Ot,)compared to temporal similarity
St(Qt,Ot). The higher the score the more relevant the object is.
Next we define each similarity computation.

B. Keyword Similarity Sk

Sk(Ot,Qt) ranks the keywords of Qt in object Ot. We
compute this ranking by also taking timestamp of keyword
into account. We extend the CT-rank of Jin [20] which
addressed the ranking of keywords and its validity time in web
pages. However, our granularity is an object not a document.
An object also has attributes which taken into account in our
ranking function. Let Ktime denotes the frequency of keyword
k with its timestamp t, < k, t >, in Ot. Ktotal is the total
number of all keywords in object Ot. NO is the total number of
objects in the XML document. Nk is the total number of
objects that contain keyword k. score (k,Ot) is used to
compute rank of k in Ot. It is defined as follows:



  

Note that the score is based on TF/IDF [26] computation used
in IR where mapping pages to objects. Since the object
contains attributes, a keyword might occur more than once in
the same attribute. Ktime function is calculated in Equation 3.

 

tf (a, k) is the number of < k, t > pairs in the specified
attribute. Finally, a contribution value cb is another factor to
be considered in local score of an object, i.e. how many
keywords there are in an object. For the whole keywords in the
query Qt, object Ot is ranked according to query keywords as:


  

We add the contribution factor cb to measure the whole
keywords in Qt that are contained in Ot. We compute cb as
total number of query keywords in object Ot divided by the
total number of Qt.

C. Temporal Similarity St

Two temporal expressions can affect the ranking of an
object; lifespan (e.g. publication time of an article) and links
associated with an object (in and out edges). To compute
temporal similarity of temporal object Ot for XML document
we adapted Berberich’ T-rank [27] approach by changing the
granularity to be objects in an XML document. Given a single

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

221 | P a g e

www.ijacsa.thesai.org

temporal expression qt in query Q, D is the document to be
ranked, Berberich [27] equation defined in T-rank, as follows:



  

As shown in “(5)”, the probability of generating the query
temporal expression qt from document D is an average of the
probability of generating of time P(qt|T) divided by the
number of intervals in document |D|. The probability P(qt|T)
of generating a time interval qt given a partition time T of a
document can be defined in two ways; either by ignoring
uncertainty or taking uncertainty into account. This will be
illustrated later.

Now we adapt the equation above into temporal XML
objects. Each web document D is mapped into a temporal
object Ot in XML. Rather than considering temporal
expressions of document D, we use temporal expressions
which are labeled on edges of an XML graph. In turn, these
edges are divided into content and reference edges as defined
previously in Section III. Such temporal edges affect the
whole similarity degree of the object Ot. We compute the
temporal similarity St of Ot given query temporal expressions
Qt as shown below in (6).



 

Consequently, St is computed as follow:







 

 

Where |ect| is the total number of temporal intervals on the
containment edges of Ot, |ert| is the total number of temporal
intervals on the reference edges of Ot. To normalize temporal
similarity into range [0-1], the score is divided by 2. scoret is
used to denote the probability of generated query qt and object
temporal T intervals which will be defined later. There are two
ways to compute scoret(qt|ot): uncertainty-ignore and
uncertainty-aware as defined by Berberich [27].

Uncertainty-ignore mean that the time similarity is one if T
and qt are exactly the same. As shown below.



  

However, temporal expressions can refer to the same time
interval even they are not exactly equal, i.e. the relevance of a
temporal object may change over time. For this purpose,
uncertainty-aware may give approximate similarity. An object
with its time partition is closer to qt will receive a higher
probability than an object with time far from qt. On the other
hand, when uncertainty is considered, scoret(qt, ot) is defined
in “9” as follows:



  (9)

We use as a very small value to overcome zero issue
denoting no common time between the query and the object.
The distance of a given interval t, denoted as |t|, is computed
based on the values of begin and end interval as: |t| = t.e −
t.b+1 where t.b and t.e represent the start and end of interval
respectively. Intuitively, this function gives a similarity that
decreases proportional to the difference between qt interval
and time of object ot. An object ot with its time closer to qt will
receive a higher similarity than an object with its time interval
far from qt.

In summary, Sk(k,Ot) gives the contents similarity of
keyword with its time in object Ot and St(Ot,Qt) measures the
active intervals of object Ot during the specified times in query
Qt.

D. Ranking multiple Objects

A set of RTOs are cooperated to contain all temporal query
keywords with specified time while no single object contains
all the keywords. Thus we need to compute the whole ranking
of the participating objects. Given a query "w1, ..,wm, t" where
w represents the keywords and t represent the time predicate,
and its corresponding set of interconnected temporal objects
RTO (O1, ..,Om). The related objects can be calculated as
follows:



 

Where ρs(Qt,Ot) is defined in “(1)” and m is the number of
objects.

E. Optimizing temporal ranking into XML environment

The extension of time-aware ranking approach in previous
section maps only the flat structure in web pages to XML
objects. One advantage of XML documents is its hierarchical
nature. In temporal XML model, one object may contain other
objects. As a result the object rank is affected by the ranking
of its sub objects. To capture transferring of ranks we propose
a recursive formula ρn to compute XML similarity between a
temporal XML object and a temporal keyword search query.
Hierarchical structure between objects is captured in “(11)” by
distinguishing between two cases. The first (base case)
computes the similarity if the object is a single object O,
otherwise (recursive case), it recursively computes the
similarities for its nested objects, based on the similarity (ρn)
value of each child chd of Ot.



 

 

VI. INDEX STRUCTURE

We pre-process the temporal XML document D by
building a separate structure for each distinct keyword w. This
is similar to a regular inverted index.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

222 | P a g e

www.ijacsa.thesai.org

We precompute single keyword rank in object and
combine them during run time.

A. Motivation

Many algorithms were proposed to evaluate XML
keyword queries efficiently; SLCA [2] ELCA [3]. The basic
idea is to utilize the document order of the nodes in the
inverted lists to optimize the semantic pruning. Specifically,
nodes in the XML tree are identified by Dewey id and an
efficient eager stack algorithm is built. A graph model is used
since the tree model does not effectively answer keywords
queries. A graph model evaluates queries by finding the
minimum connection tree MCT [28].

The XML document is parsed to build two structure
indexes; keyword and object lists. The first is used to retrieve
the objects whose attributes contain the keywords and the
second to track the objects relationships. The indexes are
explained in the next subsections.

B. Keyword List

Since a temporal XML database is modeled as a set of
interrelated objects with timestamps associated on their
containment edges and references (ID/IDREF), the inverted
list is more complex than that in the traditional one. Keyword
index is composed of tuple < obj_id, Klist, TFk > where obj_id
is the object identity (usually given in the data set or using
dewey id generated automatically by the system) which
contains the keyword. However, to efficiently join objects
later, we map each obj_id signature with an ordered number.
Klist is a list of attributes that contain the keyword which is
composed of < attr_name, time > pairs by specifying the
attribute name and the time validity interval of the keyword.
TFk is the term frequency of the keyword k in the object which
is computed during the construction of index as shown in the
first part of Equation 2. For example, the term frequency of
keyword ’Adams’ in the object rooted at node 0.2.0 is
computed as: 1/7 = 0.14, where 7 is the total number of
keywords in the object. It is more efficient to compute
keyword scores during the preprocessing time.

A B+ tree is built based on these objects ids and their time
intervals to efficiently retrieve all the objects that contain the
query keywords during a specific time.

Complexity size of keyword list is O(K×p) where K is the
total number of keywords and p is the size of a tuple.

C. Object List

Object list is composed of tuple < o_id, Olist >, where
Olist is a list of tuple < I, LObj > where I is the interval validity
for the connection and LObj is a list of connected objects ids.
This list is built during the XML parsing when a reference
attribute is encountered. Although this connection is placed in
one hop, it is possible to connect objects via other objects. At
end of traversing the XML document, a threshold τ is given to
determine the number of hops to compute connected objects. _
Value depends on the application and user intention. For
example, for NBA database, τ value will take value 2 to detect
any relationships between coaches and players. Additionally,
user may (may not) wish to see all the connected objects even
these objects are far away.

Any required increase of τ value more than one is
performed after finishing document traversal using breadth
first search algorithm BFS. For example, player object at node
0.2.1 connects with team 0.1.0 at [1995-1998] by one hop, and
with 0.0.0 at [1998, 1998] by two hops.

Temporal ranking of objects is computed on the run time
during query processing stage.

Complexity of computing the object list is O(N × N) in the
worst case, where N is the total number of objects in

Fig.3. TX-Kw architecture

The document. Regarding the size of our indexes, we store
only ids of objects which reduce storage size significantly.
Also, storage entries are built to keep track the objects
positions in the XML document.

VII. TEMPORAL KEYWORD SEARCH ALGORITHM

Fig. 3 illustrates TX-Kw architecture which consists of two
stages: offline and online stages. In the offline stage, indexes
are built for keyword and object lists as explained in VI.
Query processing is performed in the online stage. When the
user poses a temporal query, the query processor parses the
query to extract the keywords and time intervals included. For
each keyword, the inverted index is checked to extract objects
that contain this keyword at the temporal interval specified.

For each list objects, a connection is performed between
these objects. Resulting objects are ranked according to the
Equation 10.

Algorithm 1 presents keyword searching and result ranking
algorithm. qt is the time interval presented in the query. LL[m]
contains a list of objects that contain each keyword in the
query. Recall that each object contains the object id and TF
score of keyword within its object. When the query is issued,
Algorithm 1 traverses lists in LL[m] to extract all possible
connected objects. First, we initialize the Cont_Table used to
store the contribution percentage of an object to the query
keywords, RSTO and RRTO used to store single and related
temporal objects respectively, and HT used to store the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

223 | P a g e

www.ijacsa.thesai.org

temporal ranking of objects. Then the Algorithm chooses the
smallest list in LL as the starting list to join with other lists.

Two main steps the algorithm performs: Compute_STO
and Compute_RTO. Compute_STO is called (line 4) which is
defined in Algorithm 2 to compute single objects that contain
all keywords within time query and stored in RSTO with its
ranking score. Second, Compute_RTO is called (line 5) to
extract related objects. Algorithm 3 returns RRTO which is a
list of connected objects which cooperate to contain all query
keywords. Finally we get top-k results by eliminating any
repeated objects that exist in the lists and sorting RSTO and
RRTO in descending order. Objects are retrieved from storage
entry file to output to the user. Function Compute_CB details
is omitted due to its simplicity.

Algorithm 3 shows the process to recursively join lists.
The input is the qt as query time, and starting list Ls, c is the
index of next list in LL[m] to be joined with Ls. The algorithm
pushes each input object o1 into a path stack which stores the
connected objects, o1 is joined with LL[c] using match_obj
function, the returned list is a set of objects that are connected
to o1. The result is used in the next iteration to join with next
list. Finally, when we finish traverse the lists for a given
object, path stack computes their score by calling CompRankL
and appends its score inside RRTO. CompRankL function
computes the total rank of each object in a list based on two
parts; keyword and time as explained in Equation 7, note that
the keyword score is already computed while traversing the
connected objects. To avoid re-computing temporal similarity,
we use a hash table HT to store all computed scores of objects.

Algorithm 1 Temporal Kw Search (TX-Kw)

Input: qt:Interval time, LL[m]: object Lists, ObjIdx:
object Index

Output: Ranked object(s) list: RSTO and

RRT O

1: Initialize H T ,RSTO ,RRTO , Cont_T able

2: Sort LL[m]

3: L1 ← LL[1]

4: RSTO ← C ompute_STO(L1,LL)
5: RRTO ← C ompute_RTO(L1,1, qt)

6: Sort RSTO in descending order

7: Sort RRTO in descending order

8: Output RSTO and RRTO

Algorithm 2 C ompute_STO

Input: Ls: smallest list, LL[m]: object lists, qt: interval

Output: List of STO object RSTO

1: for each object o1 in Ls do

2: conto ← C ompute_CB(o1)

3: if conto ==1 then /* o1 is STO */
4: scoreo1 ← ST Orank (o1)

5: Add < o1, scoreo1 > to RSTO

6: Delete o1 from LL[m]

7: end if

8: end for

9: function STO rank (o1 :object)

 10: score ← φ

 11: for each list L1 in LL do

 12: o2 ← find o1.id in L1

 13: score = score + CompRanko(o2)

14: end for

15: return score

16: end function

17: function CompRanko (o1object o1)

18: Sk ← o1.TF * log(N/Nk)

19: if o1 is not in HT then

20: St ← Compute St using ObjIdx (Eq. 7)

21: add o1 to HT

22: else St ← HT[o1]

23: end if
24: Scoreo1 ← St + Sk

25: return Scoreo1

26: end function

Algorithm 3 Compute_RTO

Input: L1: list, c: counter, LL[m]: object lists, qt: Interval

Output: RRTO :List of connected objects:

1: for each object o1 in L1 do

2: path ← push o1

3: L2 ← match_obj(o1, LL[c], qt)

4: if L2 = φ then

5: path pop

6: continue

7: end if

8: increment c by 1

9: if c ≤ m then

10: Compute_RTO(L2, c)

11: decrement c by 1

12: path pop

13: else

14: for each object v in L2 do

15: path ← push v

16: sc ← C ompRankL (path)
17: Add <sc, path> to RRT O

18: path pop

19: end for

20: decrement c by 1

21: path pop

22: end if

23: end for

24: function match_obj(object: o, list : Lin, interval: qt)

25: Retrieve Lo connected to o in qt from objIdx

26: Ldes ← merge join Lo and Lin
27: return Ldes

28: end function

29: function C ompRankL (L_obj)

30: score ← φ

31: for each object o1 in L_obj do

32: if o1 is not in HT then

33: St ← Compute St using ObjIdx (Eq. 7)

34: add o1 to HT

35: else St ← HT[o1]
36: end if

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

224 | P a g e

www.ijacsa.thesai.org

37: cb ← Compute_CB(o1)

38: Sk ← o1.TF * log(N/Nk) × cb
39: s ← Sk + St (Eq. 1)

40: score ← score + s

41: end for

42: return score

43: end function

We use match_obj function to merge join lists to find the
connected objects of an input object.

Complexity of Algorithm 1 is based on the complexity of
Algorithms 2 and 3. Algorithm 2 traverse smallest list Ls to
discover any possible STO objects and its complexity is O(|Ls|
× log(|LL|)). In Algorithm 3, the complexity is O(|Ls| × m log
|Lx|) in the worst case where m is the number of keywords and
Lx is the length of maximum list in LL. The overall complexity
of Algorithm 1 is O((|Ls|)×(log(|LL|)+ m log |Lx|))

VIII. EXPERIMENTAL EVALUATION

In this section, we present different performed experiments
to evaluate our approach. We compared our approach to two
state-of- art approaches: SLCA [2] as an example of XML tree
model and ISO_IRO [7] as an example of XML graph model.

We analyzed our results according to the three metrics that
are used to analyze the results of any keyword search
experiments; effectiveness, efficiency, and scalability.

A. Setup

We use two real data sets: DBLP [29] and NBA [30].
Table I shows the statistics of such data sets. DBLP contains
the major conferences up to year 2002. We build the temporal
XML indexes as follows: each conference is considered as a
separate object and cite attribute is used to track the
relationship between objects. NBA contains all information
about players, coaches and teams in USA basketball starting
from 1946 until 2008. It is a set of tables in a relational
database converted into a single XML document where
foreign keys are converted into id/idref attributes. Temporal
intervals queries for conventional keyword search are
executed for each instant in the interval. Here, we list sample
queries for both data sets and its purposes:

User intention: List all coaches train player James Posey in
[2005-2008]

TX-Kw: Coach James Posey [2005-2007]

Conventional Kw: Coach James Posey 2005, 2006, 2007

User intention: List all articles written by Elmasri in
interval 1990-1993

TX-Kw: article Elmasri [1990-1993]

Conventional Kw: article Elmasri 1990, 1991, 1992, 1993

B. Efficiency

We use the query processing time as the main performance
metric. For DBLP we test 7 queries, the first three are non-
temporal queries and the rest are attached with one time
instant.

The result of the log-scaled run time of tested approaches
is shown in Fig. 4(a). We can see that our approach has better
performance for temporal queries. However, ISO_IRO is
slightly more efficient than TX-Kw for the first non temporal
queries (Q1-Q3). The reason is that these queries retrieve the
whole objects in the three algorithms but TX-Kw has an
overhead computing for temporal ranking. Whereas SLCA is
the more efficient keyword search index in XML tree models,
its performance degrades in the XML graph model. This is

TABLE I. Data sets statistics

Data set #nodes #Kw #object Size Idx size

DBLP 3329043 656387 328858 131MB 781MB

NBA 313251 3742 2517 6MB 23MB

TABLE II. Query keyword for efficiecny in DBLP

Qid DBLP
Q1 Agrawal Databases
Q2 Ling tok wang
Q3 VLDB Agrawal Abbadi databases
Q4 Concurrency Control Algorithms Distributed Databases 1987
Q5 Ling Tok Wang 1993
Q6 XML Index 2002
Q7 book, java, 2001

TABLE III. Query keyword for efficiency in NBA

Qid NBA

Q1 Player location Los Angeles 1990

Q2 pts position Robinson 1990

Q3 Coach Kareem Abdul-jabbar 1985

Q4 Colorado Dale Schlueter 1975

Q5 teams Robinson 1999

This is because many keywords may be placed in one

object which is easy for TX-Kw and ISO_IRO to distinguish
them in the join process. On the other hand, SLCA has to
search for each list of nodes that contain the keywords. Such
number of nodes may be greater than the number of objects
returned by the other algorithms. The worst case of SLCA is
clear for temporal queries where more nodes are retrieved than
that in TX-Kw.

For NBA, we test five temporal queries, the result of two
of them (Q2 and Q4) are STO objects and the the result of the
rest (Q1, Q3, Q5) are RTO objects. The performance of TX-
Kw, as shown in Fig. 4(b), is better than ISO_IRO approach
for RTOs queries since temporal constraints between objects
are considered in the join process. ISO_IRO performance gets

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

225 | P a g e

www.ijacsa.thesai.org

slightly better than TX-Kw for STO queries. The reason is that
TX-Kw spends time in retrieving objects to filter them
according to time before performing the join process. On the
other hand, SLCA keeps its worst performance as in DBLP.

C. Scalability

Here, the scalability is measured in two ways: changing the
number of keywords and increasing the size of time intervals.

Fig.s 5(a) and 5(b) show the log-scaled run time as
keywords increase with a constant time (one year) for DBLP
and NBA. TX-Kw has the best performance overall other
approaches. The performance varies according to the number
of retrieved objects since some keywords may exist in the
same objects and this might lead to reduction in processing
time. However, the execution time of SLCA increases as the
number of keywords increase.

The second method of measuring scalability is using time
interval variation with a constant number of keyword. The
performance is shown in Fig.s 5(c) and 5(d).

We can see that the performance of SLCA and ISO_IRO
decreases with the increase of time interval size while it
remains approximately constant for TX-Kw. This is because
the conventional keywords search require traversing keywords
index with each year in the interval while in temporal
approach TX-Kw involves only one index traversal. However,
there is a slight increase in processing time for TX-Kw
depending on the number of retrieved objects as the validity
interval increases.

D. Effectiveness

We evaluate quality of results using precision, recall which
is heavily used in IR. Precision is the number of relevant
objects retrieved divided by the total number of retrieved
objects. Recall is the number of relevant objects retrieved
divided by the number of relevant objects.

To calculate the precision and recall we manually
reformulated tested temporal queries on NBA to be executed
into the XML language XQuery and used the results as a basis
for evaluation. For DBLP, we tested queries generated by 5
users. For each query the user wrote his attention in natural
language and keywords query.

The queries are executed using our approach and
ISO_IRO, Table IV shows the average results for precisions
and recall for both approaches.

Recall has a high value for both data sets of TX-Kw
against ISO_IRO approach since time intervals are not
considered in ISO_IRO which lead to empty results in some
cases. On the other hand, precision of TX-Kw in Table IV is
higher since it detects all possible connections and temporal
constraints while ISO_IRO returns more irrelevant results.

Fig.5. Scalability evaluation

TABLE IV. Effectiveness performance

Data set
TX-Kw ISO_IRO

Recall Precision Recall Precision

NBA 0.9575 0.88 0.79 0.304

DBLP 0.978 0.729 0.778 0.432

TABLE V. Ranking performance

Data set
TX-Kw ISO_IRO

R-rank MAP R-rank MAP

NBA 0.906 0.88 0.467 0.3225

DBLP 0.820 0.774 0.695 0.581

We evaluate our proposed ranking method using two

popular IR measurements [22]: Mean Average Precision
(MAP) and Reciprocal rank R-rank. We use MAP to measure
the overall precisions. Precision is computed for each relevant
object step. Then we take the average of computed precisions.
While R-rank is the inverse of the first rank of correct object
retrieved.

We set the mixture parameter to 0.5 to identify weight
temporal ranking and keywords ranking. Furthermore, we

Use uncertainty-aware method to compute MAP and R-
rank measurements. Ranking performance is shown in Table
V. We note that TX-Kw ranking method works very well in
NBA where its values metrics are above 0.90 for R-rank and
0.88 for MAP respectively. ISO_IRO ranking has less
effectiveness in ranking temporal constraints since its values
metrics are below 0.5 for both metrics.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

226 | P a g e

www.ijacsa.thesai.org

IX. CONCLUSION

We proposed a new approach, TX-Kw, which supports
temporal keyword search queries over temporal XML
documents. We model temporal XML as interconnected
objects by considering containment and ID/IDREF edges. We
also utilized time-aware ranking in IR by mapping it to
temporal XML as well as providing an algorithm for temporal
ranking that captures the hierarchical structure of XML
document. An efficient algorithm is proposed to improve the
performance retrieval. Finally we conducted experiments to
evaluate and compare our approach against existing keyword
search methods by measuring their effectiveness and
efficiency. The experiments showed better performance of our
approach TX-Kw against other state-of-the-art methods. As
future work, we consider integrating both keyword and object
indexes to enhance efficiency of our approach.

REFERENCES

[1] Guo, L., et al., XRANK: ranked keyword search over XML documents,

in Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. 2003, ACM: San Diego, California. p. 16-27.

[2] Xu, Y. and Y. Papakonstantinou, Efficient keyword search for smallest

LCAs in XML databases, in Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. 2005, ACM:

Baltimore, Maryland. p. 527-538.

[3] Xu, Y. and Y. Papakonstantinou, Efficient LCA based keyword search
in XML data, in Proceedings of the 11th international conference on

Extending database technology: Advances in database technology. 2008,
ACM: Nantes, France. p. 535-546.

[4] Balmin, A., V. Hristidis, and Y. Papakonstantinou, Objectrank:

authority-based keyword search in databases, in Proceedings of the
Thirtieth international conference on Very large data bases - Volume 30.

2004, VLDB Endowment: Toronto, Canada. p. 564-575.

[5] Ilyas, I.F., G. Beskales, and M.A. Soliman, A survey of top-k query

processing techniques in relational database systems. ACM Comput.
Surv., 2008. 40(4): p. 1-58.

[6] Zhang, R., et al. Learning Recurrent Event Queries for Web Search. in

Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2010, 9-11 October 2010, MIT Stata

Center, Massachusetts, USA, A meeting of SIGDAT, a Special
Interest Group of the ACL. 2010: ACL.

[7] Bao, Z., et al., An effective object-level XML keyword search, in

Proceedings of the 15th international conference on Database Systems
for Advanced Applications - Volume Part I. 2010, Springer-Verlag:

Tsukuba, Japan. p. 93-109.

[8] Hristidis, V., Y. Papakonstantinou, and A. Balmin. Keyword Proximity
Search on XML Graphs. in Proceedings of the 19th International

Conference on Data Engineering. 2003.

[9] Tian, Z., J. Lu, and D. Li, A survey on XML keyword search, in
Proceedings of the 13th Asia-Pacific web conference on Web

technologies and applications. 2011, Springer-Verlag: Beijing, China. p.
460-471.

[10] Cohen, S., et al., XSEarch: a semantic search engine for XML, in

Proceedings of the 29th international conference on Very large data
bases - Volume 29. 2003, VLDB Endowment: Berlin, Germany. p. 45-

56.

[11] Li, G., et al., Effective keyword search for valuable lcas over xml

documents, in Proceedings of the sixteenth ACM conference on

Conference on information and knowledge management. 2007, ACM:

Lisbon, Portugal. p. 31-40.

[12] Lin, R.-R., Y.-H. Chang, and K.-M. Chao, Improving the performance of

identifying contributors for XML keyword search. SIGMOD Rec., 2011.
40(1): p. 5-10.

[13] Bao, Z., et al., Effective XML Keyword Search with Relevance Oriented

Ranking, in Proceedings of the 2009 IEEE International Conference on
Data Engineering. 2009, IEEE Computer Society. p. 517-528.

[14] Klaus, B., V. Michalis, and W. Gerhard. T-rank: Time-aware authority

ranking. in Algorithms and Models for the Web-graph : Third
International Workshop, WAW 2004. 2004. Berlin, ALLEMAGNE.

[15] Dai, N. and B.D. Davison, Freshness matters: in flowers, food, and web

authority, in Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information retrieval. 2010,

ACM: Geneva, Switzerland. p. 114-121.

[16] Li, X. and W.B. Croft, Time-based language models, in Proceedings of
the twelfth international conference on Information and knowledge

management. 2003, ACM: New Orleans, LA, USA. p. 469-475.

[17] Shaparenko, B., et al. Identifying Temporal Patterns and Key Players in
Document Collections. in IEEE ICDM Workshop on Temporal Data

Mining: Algorithms, Theory and Applications (TDM-05). 2005:
Springer.

[18] Yu, P.S., X. Li, and B. Liu, On the temporal dimension of search, in
Proceedings of the 13th international World Wide Web conference on

Alternate track papers \& posters. 2004, ACM: New York, NY,
USA. p. 448-449.

[19] Brin, S. and L. Page, The anatomy of a large-scale hypertextual Web

search engine, in Proceedings of the seventh international conference on
World Wide Web 7. 1998, Elsevier Science Publishers B. V.: Brisbane,

Australia. p. 107-117.

[20] 20. Jatowt, A., Y. Kawai, and K. Tanaka. Temporal Ranking of Search
Engine Results. in WISE 2005. 2005. Berlin Heidelberg: Springer-

Verlag.

[21] Diaz, F. and R. Jones, Using temporal profiles of queries for precision
prediction, in Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval. 2004,
ACM: Sheffield, United Kingdom. p. 18-24.

[22] Manica, E., C.F. Dorneles, and R. Galante, Supporting Temporal

Queries on XML Keyword Search Engines. Journal of Information and
Data Management, 2010. 1(3): p. 471–486.

[23] Bertino, E., E. Ferrari, and G. Guerrini, A Formal Temporal Object-

Oriented Data Model., in EDBT, P.M.G.B. Apers, Mokrane & Gardarin,
Georges, Editor. 1996, Springer. p. 342-356.

[24] Bertino, E., et al., Extending the ODMG Object Model with Time, in
Proceedings of the 12th European Conference on Object-Oriented

Programming. 1998, Springer-Verlag. p. 41-66.

[25] Kanhabua, N., Time-aware Approaches to Information Retrieval, in
Department of Computer and Information Science. 2012, Norwegian

University of Science and Technology. p. 187.

[26] Salton, G., Automatic text processing: the transformation, analysis, and
retrieval of information by computer. 1989: Addison-Wesley Longman

Publishing Co., Inc. 530.

[27] Berberich, K., et al., A language modeling approach for temporal
information needs, in Proceedings of the 32nd European conference on

Advances in Information Retrieval. 2010, Springer-Verlag: Milton
Keynes, UK. p. 13-25.

[28] Hristidis, V., et al., Keyword Proximity Search in XML Trees. IEEE

Trans. on Knowl. and Data Eng., 2006. 18(4): p. 525-539.

[29] http://www.cs.washington.edu/, Xml Data Repository. 2002.

[30] http://www.basketballreference.com/, Basketball database 2.1. 2008.

