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Abstract—Inspired by the great success of information 

retrieval (IR) style keyword search on the web, keyword search 

on XML has emerged recently. Existing methods cannot resolve 

challenges addressed by using keyword search in Temporal XML 

documents. We propose a way to evaluate temporal keyword 

search queries over Temporal XML documents. Moreover, we 

propose a new ranking method based on the time-aware IR 

ranking methods to rank temporal keyword search queries 

results. Extensive experiments have been conducted to show the 

effectiveness of our approach. 
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I.  INTRODUCTION 

The success of keyword search in IR has encouraged its 
emergence in XML [1-3] and databases [4, 5]. Although, 
temporal data are used commonly in historical applications 
(web logs, financial, scientific, and georeferencing 
applications), existing XML keyword search methods are not 
aware of temporal expressions in keywords. Temporal 
keyword refers to exploiting time dimension that is embedded 
inside the XML documents to provide alternative search 
methods and user experience.  

A study made by Zhang et al. [6] showed that about 13.8% 
of queries have explicit time predicate and 17.1% of queries 
implicitly contain temporal intent. An example of a query with 
explicit time provided is "U.S. Presidential election 2008". An 
implicit time query example can be "Germany FIFA World 
Cup", here the time is not declared but the user is referring to 
the World Cup event in 2006. Furthermore, database 
applications contain information for long time periods, like, 
DBLP which keeps all publications that cover the years 1954 
up till now. When searching in these documents archives, a 
temporal dimension plays an important role.  

Keyword search in XML model is used to find nodes that 
contain keywords and checks the interconnections among 
them based on their lowest common ancestors (LCA) [1]. For 
example, query Q1 "Michael, Adams" in Fig. 1 returns node; 
0.2.0.2.  

However, LCA has a lot of drawbacks since it does not 
give a meaningful answer in all cases, e.g., as in query Q1, 
node 0.2.0.2 might not be the user intention. Another 

drawback is that it does not consider ID/IDREF relationship 
between nodes, which may result in missing some relevant 
results. Recent approaches [4, 7, 8] preferred to model XML 
document as a set of interrelated objects rather than nodes. 
Each object is represented as a sub tree rooted by a 
representative node with its set of attributes. Also, ID/IDREF 
connections are considered in such approaches to increase 
relevant results. 

In this paper, we integrate temporal constraints into 
keyword search approaches for temporal XML databases (TX-
Kw). We perform semantic matching at object level rather 
than using traditional LCA techniques. There are three basic 
reasons that motivated us to use object-level in temporal 
keyword search over temporal XML documents. First, XML 
can be recognized as a set of real world objects, each of which 
has attributes and interacts with other objects through 
relationships in certain temporal intervals, for example player, 
team and coach entities in NBA DB as shown in Fig. 1 are 
considered objects in real world. Second, users aim to find a 
specific object information by typing a set of words and a 
specific time about such object. They do not aim to find if the 
information exists or not by retrieving the node that contains 
this information. Finally, temporal nature of nodes in temporal 
XML documents can be captured well in objects as long as 
their attribute values and relationships output change over 
time. Thus, object-level may be very helpful to give more 
relevant answers especially if we adapt ranking objects rather 
than ranking nodes by taking time dimension into account. In 
this case, keyword search results is either a single object 
which contains all keywords in the time specified or a set of 
interconnected objects that contain the keywords in that 
specified time. 

Our objective in this paper is to effectively retrieve a single 
temporal object (STO) or a set of related temporal objects 
(RTO) that are the closest to user intention while considering 
ID/IDRef links. A brute force approach, which considers all 
result objects before the top-k scores, requires expensive 
processing time. We build several index structures for 
keywords and temporal objects to provide better performance. 
We propose an efficient algorithm based on these structures to 
get top-k results of temporal objects. 

We summarize the contribution of this paper as follows: 
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 Modeling XML into temporal objects based on their 
ID/IDRef attributes 

 Build an efficient temporal keyword search algorithm 
for processing temporal keyword search queries over 
temporal XML documents. 

 Design adaptive temporal ranking method for XML 
keyword search 

The rest of this paper is structured as follows. Section II 
describes related work. Section III presents background and 
definition used through the paper. Section IV introduces 
semantic matching of objects to keywords. Section V 
addresses ranking functions used to rank result objects. 
Section VI presents structure indexes for enhancing 
performance. Keywords search algorithms are presented in 
section VII. We implement experiments to compare our 
algorithm to the state-of-the-art methods in Section VIII. 
Finally, Section IX provides concluding remarks and future 
works. 

II.  RELATED WORK 

In literature, keyword search has been studied well in 
XML environment [9]. We categorize these approaches into 
two categories; tree and graph models. Approaches for XML 
graph model are more related to our work. On XML tree 
model, XSearch [10] and SLCA [2] provided an efficient way 
to calculate the smallest LCA (SLCA) XML node that 
contains all keywords. However, successive works were 
proposed to improve effectiveness like VLCA [11], and 
efficiency ELCA [3, 12]. Next, Bao [13] proposed an IR-style 
approach (called XReal) which basically utilizes the statistics 

of underlying XML data to present a novel XML TF*IDF 
ranking strategy to rank the individual matches of all possible 
search intentions. On XML graph model, ObjectRank [4] is 
one of the earliest studies which designed a semantically 
meaningful ranking method using the authority transfer 
paradigm. However, ObjectRank results in only single objects 
and does not take a group or a cluster of objects as alternative 
results. On the other hand, several XML approaches were 
presented to implement graph model in XML keyword search 
result, in more effectiveness in trade of efficiency. XKeyword 
[8] provided an efficient keyword proximity queries for large 
XML graph databases. The authors adopt the concept that a 
keyword proximity query is a set of keywords and the results 
are trees of XML fragments (called Target Objects) that 
contain all the keywords. However, ranking of target objects is 
restricted to the distance between elements which leads to 
missing objects that are more related to the keywords, 
although they do not contain them. Recently, Bao [7] 
presented an object-level to retrieve effective results which are 
based on schema document. The result is either a single object 
or a set of interconnecting objects. In fact, the authors only 
considered object class but ignored object ID. Thus, they 
cannot discover duplicate objects and suffer the same 
problems as LCA-based approaches. 

All the mentioned approaches did not take benefit from the 
temporal nature of temporal XML documents in retrieving 
results of temporal keyword search queries. 

In information retrieval, several proposals addressed time-
aware ranking of pages in www environment. They are 
divided into two categories: link based [14, 15], and content-

Fig.1. NBA DB portion (with Dewey IDs) 
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based [16, 17]. In link-analysis approach, Yu [18] modified 
the PageRank [19] algorithm by accumulating the weights of 
its citations, where each citation receives a weight that 
exponentially decreases by its age. Berberich [14] also 
extended PageRank to rank documents with respect to 
freshness. The difference is that this work defines freshness as 
a linear function that will give a maximum score when the 
date of document or link occur within the user specified period 
and decrease a score linearly if it occurs outside the interval. 
Second type of ranking methods is based on an analysis of 
document content [17]. Jatowt [20] presented an approach to 
rank a document by its freshness and relevance. A document is 
ranked high if it is modified significantly and recently. Diaz 
and Jones [21] used timestamp from document metadata to 
measure the distribution of retrieved documents and create the 
temporal profile of a query. 

To the best of our knowledge, the first study of temporal 
keyword search in XML has been addressed by Manica [22]. 
They identified temporal constraints in a keyword query and 
intercepted the query processing, executed by a conventional 
XML search engine, in order to evaluate those constraints. 
However, temporal ranking results were not handled. 

III. BACKGROUND, NOTIONS AND DEFINITIONS 

In this section, we describe the concept of temporal objects 
(TOs), which we use in this paper. To define temporal objects 
in XML document, we combine the definitions of temporal 
object in [23, 24] and an object tree in [7] as follows. 

Definition 1. A temporal object Ot represents a real-world 
entity or concept, each object has an object ID, attributes and 
lifespan. We define a temporal object in an XML document as 
a subtree (object tree) annotated with lifespan. Each object is 
represented by <OID, att_list, lifespan, OList> 

where "OID" is the object identifier. "att_list" is the list of 
attributes the object has. “lifespan” is the life time of the 
object in the system. "Olist" contains a list of <OID, Time> 
pairs denoting the objects that are connected to the object with 
the timestamp for that connection.  

A set of objects with similar characteristics (attributes) are 
grouped into what is called a class. An object class (called 
class for brevity) consists of a signature that defines the object 
in reality. 

How to identify the temporal objects is orthogonal to this 
work; here, we adopt the inference rules in XSeek [26] to help 
identify the object trees from XML Schema. In the case of no 
obvious schema, any other program for extraction schema is 
used. As we can see from Fig. 1, there are five temporal object 
instances for three classes; 2 objects for Player class, 2 objects 
for Team class, and 1 object for Coach class. A dashed line 
represents the ID/IDREF edges connecting objects. Note that 
nodes Players, Teams and Coaches are connection nodes 
which connect the node Players with the player objects, (the 
same for Team and Coach). In XML model, a real object class 
is distinguished in form of a subtree due to its hierarchal 
inheritance. 

Another important concept is introduced, connections, 
which is used to define relationships between temporal 

objects. We distinguish between two types of connections; 
containment and references. Two temporal objects have a 
containment connection if there is a containment edge 
annotated by timestamp connecting them (parent-child edge) 
denoting when this connection is active. On the other hand, 
reference connection is used if there is an ID/IDREF edge 
annotated by a certain timestamp between two temporal 
objects. 

In this work, we apply a discrete notion of time and 
assuming the integers Z. The temporal expression T can refer 
to any time interval [b, e] where b M e. Year is used as a time 
granularity for simplicity. 

IV.  TEMPORAL OBJECT MATCHING SEMANTICS 

In context of XML keyword search, a temporal keyword 
query is a set of keywords attached with time (e.g., "Michael, 
Adams, 1995"). Usually, when a user issues his keyword 
search, he intends to get almost a single object that contains all 
the keywords he issued in the specific time domain or even a 
set of interrelated objects that contain all keywords and 
intersect at the time interval provided. These objects are more 
likely to have a well known relationship among them. 

A. Single Temporal Object Matching Semantics 

Definition 2. Given a temporal keyword query Qt, a temporal 

object Ot is defined as a Single Temporal Object (STO) found 
in the document if it contains all the keyword(s) as part of its 

attribute’s value or structure tag names, and its lifespan 

interval intersect with Qt time. 

 
One can conclude that STO plays LCA role in the temporal 

object oriented model. For example in Fig. 1, if we issue the 
query "Alvan, Adams, 2000-2005", STO returns the Player 
object rooted at node 0.2.1 rather than Name attribute at node 
0.2.1.2 returned by traditional LCA. 

B.  Related Temporal Objects Matching Semantics 

Keywords in Qt keywords can be found in different objects 
rather than a single one. Furthermore, the time interval in the 
selected objects has to intersect with Qt interval. For example, 
given a query Q4:"team, Curtis,[2000-2002]" in Fig. 1, here 
the user wants to know the team which is coached by Curtis in 
the interval [2000- 2002], the "team" keyword is contained in 
two objects rooted at nodes 0.1.0 and 0.1.1, and "Curtis" found 
in object Coach rooted at node 0.0.0. If we take the LCA 
based on their Dewey Id, the root node NBA 0 is returned. 
When considering the ID/IDREF into account, we can see that 
there is an ID/IDREF edge between objects team (0.1.1) and 
coach (0.0.0) during the interval [1998-2002]. Thus the result 
in this case will be both objects; team (0.1.1) and coach 0.0.0 
since they are connected by a reference edge. 

There are three types of connections that can exist between 
any two objects a and b. First, a and b can be connected via a 
lowest common object ancestor LCOA (e.g., in DBLP, one 
paper is an ancestor of multiple papers by cites relationship). 
Second, a and b can have a common object descendant COD 
(e.g., in Fig. 1, team 0.1.1 is COD for both objects player 
(0.2.1) and coach (0.0.0)). Moreover, a and b can be connected 
via an n-hop connections meaning, if there are n-1 
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intermediate distinct objects o1, ..,on−1 such that there is a 
connection between each pair of adjacent objects and no 
objects of them are connected via ancestor-descendant 
relationship. For example, in DBLP, one paper may be 
connected with another paper through a set of intermediate 
paper citations although no direct connection between them. 

Definition 3. Related temporal objects result (RTO) is a 
tree structure composed of temporal objects having the query 
keywords and intersect with query temporal interval while 
having either ancestor/descendant or ID/IDREF relationships 
connection between them. 

In order to construct RTOs, we combine the use of schema 
structure of XML document and ID/IDRef edges. Fig. 2(a) 
shows schema of DBLP and NBA data sets. We can find that 
the set of possible objects could be connected to form RTOs. 

 

 

 

 

 

 

 

 

Fig.2. RTOs for NBA and DBLP Schemas 

V. RANKING 

The challenge of capturing effective results of temporal 
keywords is the selection of temporal objects that have the 
highest ranking scores (top-k). This problem is studied very 
well in IR [6], [20]. Incorporating time dimension into ranking 
models can significantly improve result effectiveness of user 
intention 

In this section we introduce a ranking model to increase 
effectiveness for temporal queries. Note that pages in IR 
environment are mapped into objects in XML environment.  

Thus we have an object granularity rather than a page. The 
object contains values of attributes each of which may have 
temporal data (like birth-date of employees) which 
corresponds to content time in IR, and the object has a lifespan 
interval against publication time of pages.  

Lifespan interval starts when the object inserted into the 
system and its end time is determined by the time deletion of 
the object or left up to now. Object lifespan also is sensitive to 
the application semantics, such as in DBLP, publishing year of 
an article is considered as the start of the article’s object 
lifespan. 

A. Ranking Model 

Temporal objects as well as temporal queries contain two 
integral information keywords and time. Here, we design a 
ranking model which is based on a mixture model used for IR 
[25] that linearly combines keywords similarity and temporal 
similarity and then we map it into XML objects. Given a 
single temporal object Ot and a temporal query Qt, we compute 
the similarity degree ρs of Ot to Qt using the following formula: 

                                     

where the mixture parameter   indicates the importance of 
keywords similarity Sk(Qt, Ot,)compared to temporal similarity 
St(Qt,Ot). The higher the score the more relevant the object is. 
Next we define each similarity computation.  

B.  Keyword Similarity Sk 

Sk(Ot,Qt) ranks the keywords of Qt in object Ot. We 
compute this ranking by also taking timestamp of keyword 
into account. We extend the CT-rank of Jin [20] which 
addressed the ranking of keywords and its validity time in web 
pages. However, our granularity is an object not a document. 
An object also has attributes which taken into account in our 
ranking function. Let Ktime denotes the frequency of keyword 
k with its timestamp t, < k, t >, in Ot. Ktotal is the total 
number of all keywords in object Ot. NO is the total number of 
objects in the XML document. Nk is the total number of 
objects that contain keyword k.  score (k,Ot) is used to 
compute rank of k in Ot. It is defined as follows: 

             
               

 

      
      

  

  
  

Note that the score is based on TF/IDF [26] computation used 
in IR where mapping pages to objects. Since the object 
contains attributes, a keyword might occur more than once in 
the same attribute. Ktime function is calculated in Equation 3. 

               
                                 

  

tf (a, k) is the number of < k, t > pairs in the specified 
attribute. Finally, a contribution value cb is another factor to 
be considered in local score of an object, i.e. how many 
keywords there are in an object. For the whole keywords in the 
query Qt, object Ot is ranked according to query keywords as: 

                                    
     

We add the contribution factor cb to measure the whole 
keywords in Qt that are contained in Ot. We compute cb as 
total number of query keywords in object Ot divided by the 
total number of Qt. 

C.  Temporal Similarity St 

Two temporal expressions can affect the ranking of an 
object; lifespan (e.g. publication time of an article) and links 
associated with an object (in and out edges). To compute 
temporal similarity of temporal object Ot for XML document 
we adapted Berberich’ T-rank [27] approach by changing the 
granularity to be objects in an XML document. Given a single 
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temporal expression qt in query Q, D is the document to be 
ranked, Berberich [27]  equation defined in T-rank, as follows: 

         
 

   
              

As shown in “(5)”, the probability of generating the query 
temporal expression qt from document D is an average of the 
probability of generating of time P(qt|T) divided by the 
number of intervals in document |D|. The probability P(qt|T) 
of generating a time interval qt given a partition time T of a 
document can be defined in two ways; either by ignoring 
uncertainty or taking uncertainty into account. This will be 
illustrated later. 

Now we adapt the equation above into temporal XML 
objects. Each web document D is mapped into a temporal 
object Ot in XML. Rather than considering temporal 
expressions of document D, we use temporal expressions 
which are labeled on edges of an XML graph. In turn, these 
edges are divided into content and reference edges as defined 
previously in Section III. Such temporal edges affect the 
whole similarity degree of the object Ot. We compute the 
temporal similarity St of Ot given query temporal expressions 
Qt as shown below in (6). 

              
             

 

Consequently, St is computed as follow: 

   
          

 

 
   

 

     
                         




 

     
                        

 

 

Where |ect| is the total number of temporal intervals on the 
containment edges of Ot, |ert| is the total number of temporal 
intervals on the reference edges of Ot. To normalize temporal 
similarity into range [0-1], the score is divided by 2. scoret is 
used to denote the probability of generated query qt and object 
temporal T intervals which will be defined later. There are two 
ways to compute scoret(qt|ot): uncertainty-ignore and 
uncertainty-aware as defined by Berberich [27]. 

Uncertainty-ignore mean that the time similarity is one if T 
and qt are exactly the same. As shown below. 

                
          
           

  

However, temporal expressions can refer to the same time 
interval even they are not exactly equal, i.e. the relevance of a 
temporal object may change over time. For this purpose, 
uncertainty-aware may give approximate similarity. An object 
with its time partition is closer to qt will receive a higher 
probability than an object with time far from qt. On the other 
hand, when uncertainty is considered, scoret(qt, ot) is defined 
in “9” as follows: 

                
       

         
           

                      

  (9)

We use   as a very small value to overcome zero issue 
denoting no common time between the query and the object. 
The distance of a given interval t, denoted as |t|, is computed 
based on the values of begin and end interval as: |t| = t.e − 
t.b+1 where t.b and t.e represent the start and end of interval 
respectively. Intuitively, this function gives a similarity that 
decreases proportional to the difference between qt interval 
and time of object ot. An object ot with its time closer to qt will 
receive a higher similarity than an object with its time interval 
far from qt. 

In summary, Sk(k,Ot) gives the contents similarity of 
keyword with its time in object Ot and St(Ot,Qt) measures the 
active intervals of object Ot during the specified times in query 
Qt. 

D. Ranking multiple Objects 

A set of RTOs are cooperated to contain all temporal query 
keywords with specified time while no single object contains 
all the keywords. Thus we need to compute the whole ranking 
of the participating objects. Given a query "w1, ..,wm, t" where 
w represents the keywords and t represent the time predicate, 
and its corresponding set of interconnected temporal objects 
RTO (O1, ..,Om). The related objects can be calculated as 
follows: 

                           
 
  

 

Where ρs(Qt,Ot) is defined in “(1)” and m is the number of 
objects. 

E. Optimizing temporal ranking into XML environment 

The extension of time-aware ranking approach in previous 
section maps only the flat structure in web pages to XML 
objects. One advantage of XML documents is its hierarchical 
nature. In temporal XML model, one object may contain other 
objects. As a result the object rank is affected by the ranking 
of its sub objects. To capture transferring of ranks we propose 
a recursive formula ρn to compute XML similarity between a 
temporal XML object and a temporal keyword search query. 
Hierarchical structure between objects is captured in “(11)” by 
distinguishing between two cases. The first (base case) 
computes the similarity if the object is a single object O, 
otherwise (recursive case), it recursively computes the 
similarities for its nested objects, based on the similarity (ρn) 
value of each child chd of Ot. 

            
                                                 
                                        

 

 

VI. INDEX STRUCTURE 

We pre-process the temporal XML document D by 
building a separate structure for each distinct keyword w. This 
is similar to a regular inverted index.  
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We precompute single keyword rank in object and 
combine them during run time. 

A.  Motivation 

Many algorithms were proposed to evaluate XML 
keyword queries efficiently; SLCA [2] ELCA [3]. The basic 
idea is to utilize the document order of the nodes in the 
inverted lists to optimize the semantic pruning. Specifically, 
nodes in the XML tree are identified by Dewey id and an 
efficient eager stack algorithm is built. A graph model is used 
since the tree model does not effectively answer keywords 
queries. A graph model evaluates queries by finding the 
minimum connection tree MCT [28]. 

The XML document is parsed to build two structure 
indexes; keyword and object lists. The first is used to retrieve 
the objects whose attributes contain the keywords and the 
second to track the objects relationships. The indexes are 
explained in the next subsections. 

B.  Keyword List 

Since a temporal XML database is modeled as a set of 
interrelated objects with timestamps associated on their 
containment edges and references (ID/IDREF), the inverted 
list is more complex than that in the traditional one. Keyword 
index is composed of tuple < obj_id, Klist, TFk > where obj_id 
is the object identity (usually given in the data set or using 
dewey id generated automatically by the system) which 
contains the keyword. However, to efficiently join objects 
later, we map each obj_id signature with an ordered number. 
Klist is a list of attributes that contain the keyword which is 
composed of < attr_name, time > pairs by specifying the 
attribute name and the time validity interval of the keyword. 
TFk is the term frequency of the keyword k in the object which 
is computed during the construction of index as shown in the 
first part of Equation 2. For example, the term frequency of 
keyword ’Adams’ in the object rooted at node 0.2.0 is 
computed as: 1/7 = 0.14, where 7 is the total number of 
keywords in the object. It is more efficient to compute 
keyword scores during the preprocessing time. 

A B+ tree is built based on these objects ids and their time 
intervals to efficiently retrieve all the objects that contain the 
query keywords during a specific time. 

Complexity size of keyword list is O(K×p) where K is the 
total number of keywords and p is the size of a tuple. 

C.  Object List 

Object list is composed of tuple < o_id, Olist >, where 
Olist is a list of tuple < I, LObj > where I is the interval validity 
for the connection and LObj is a list of connected objects ids. 
This list is built during the XML parsing when a reference 
attribute is encountered. Although this connection is placed in 
one hop, it is possible to connect objects via other objects. At 
end of traversing the XML document, a threshold τ is given to 
determine the number of hops to compute connected objects. _ 
Value depends on the application and user intention. For 
example, for NBA database, τ value will take value 2 to detect 
any relationships between coaches and players. Additionally, 
user may (may not) wish to see all the connected objects even 
these objects are far away. 

Any required increase of τ value more than one is 
performed after finishing document traversal using breadth 
first search algorithm BFS. For example, player object at node 
0.2.1 connects with team 0.1.0 at [1995-1998] by one hop, and 
with 0.0.0 at [1998, 1998] by two hops.  

Temporal ranking of objects is computed on the run time 
during query processing stage. 

Complexity of computing the object list is O(N × N) in the 
worst case, where N is the total number of objects in  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. TX-Kw architecture 

The document. Regarding the size of our indexes, we store 
only ids of objects which reduce storage size significantly. 
Also, storage entries are built to keep track the objects 
positions in the XML document. 

VII.  TEMPORAL KEYWORD SEARCH ALGORITHM 

Fig. 3 illustrates TX-Kw architecture which consists of two 
stages: offline and online stages. In the offline stage, indexes 
are built for keyword and object lists as explained in VI. 
Query processing is performed in the online stage. When the 
user poses a temporal query, the query processor parses the 
query to extract the keywords and time intervals included. For 
each keyword, the inverted index is checked to extract objects 
that contain this keyword at the temporal interval specified. 

For each list objects, a connection is performed between 
these objects. Resulting objects are ranked according to the 
Equation 10. 

Algorithm 1 presents keyword searching and result ranking 
algorithm. qt is the time interval presented in the query. LL[m] 
contains a list of objects that contain each keyword in the 
query. Recall that each object contains the object id and TF 
score of keyword within its object. When the query is issued, 
Algorithm 1 traverses lists in LL[m] to extract all possible 
connected objects. First, we initialize the Cont_Table used to 
store the contribution percentage of an object to the query 
keywords, RSTO and RRTO used to store single and related 
temporal objects respectively, and HT used to store the 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No.6, 2013 

223 | P a g e  

www.ijacsa.thesai.org 

temporal ranking of objects. Then the Algorithm chooses the 
smallest list in LL as the starting list to join with other lists. 

Two main steps the algorithm performs: Compute_STO 
and Compute_RTO. Compute_STO is called (line 4) which is 
defined in Algorithm 2 to compute single objects that contain 
all keywords within time query and stored in RSTO with its 
ranking score. Second, Compute_RTO is called (line 5) to 
extract related objects. Algorithm 3 returns RRTO which is a 
list of connected objects which cooperate to contain all query 
keywords. Finally we get top-k results by eliminating any 
repeated objects that exist in the lists and sorting RSTO and 
RRTO in descending order. Objects are retrieved from storage 
entry file to output to the user. Function Compute_CB details 
is omitted due to its simplicity.  

Algorithm 3 shows the process to recursively join lists. 
The input is the qt as query time, and starting list Ls, c is the 
index of next list in LL[m] to be joined with Ls. The algorithm 
pushes each input object o1 into a path stack which stores the 
connected objects, o1 is joined with LL[c] using match_obj 
function, the returned list is a set of objects that are connected 
to o1. The result is used in the next iteration to join with next 
list. Finally, when we finish traverse the lists for a given 
object, path stack computes their score by calling CompRankL 
and appends its score inside RRTO. CompRankL function 
computes the total rank of each object in a list based on two 
parts; keyword and time as explained in Equation 7, note that 
the keyword score is already computed while traversing the 
connected objects. To avoid re-computing temporal similarity, 
we use a hash table HT to store all computed scores of objects.  

Algorithm  1 Temporal Kw Search (TX-Kw) 

Input: qt:Interval  time,  LL[m]: object  Lists,  ObjIdx: 
object Index 

Output: Ranked object(s) list: RSTO and 

RRT O 

1:  Initialize H T ,RSTO ,RRTO , Cont_T able 

2:  Sort LL[m] 

3:  L1 ← LL[1] 

4:  RSTO  ← C ompute_STO(L1,LL) 
5:  RRTO  ← C ompute_RTO(L1,1, qt) 

6:  Sort RSTO  in descending order 

7:  Sort RRTO  in descending order 

8: Output RSTO and RRTO 

 

Algorithm  2 C ompute_STO 

Input: Ls: smallest list, LL[m]: object lists, qt: interval 

Output: List of STO object RSTO 

1:  for each object o1 in Ls do 

2: conto    ← C ompute_CB(o1) 

3: if  conto    ==1 then  /* o1 is STO */ 
4: scoreo1   ← ST Orank  (o1) 

5: Add < o1, scoreo1 > to RSTO 

6: Delete o1 from LL[m] 

7: end if 

8:  end for 

9:  function  STO rank (o1 :object) 

 10:  score ← φ 

 11:  for each list L1 in LL do 

 12:   o2 ← find o1.id in L1 

 13:   score = score + CompRanko(o2) 

14:   end for 

15:   return score 

16:  end function 

17: function CompRanko (o1object o1) 

18:  Sk ← o1.TF * log(N/Nk) 

19:  if o1 is not in HT then 

20:      St ← Compute St using ObjIdx (Eq. 7) 

21:     add o1 to HT  

22:  else St ← HT[o1] 

23:  end if 
24:  Scoreo1 ← St  +  Sk 

25:  return Scoreo1  

26: end function 

Algorithm 3 Compute_RTO 

Input: L1: list, c: counter, LL[m]: object lists, qt: Interval 

Output: RRTO  :List of connected objects: 

1:  for each object o1 in L1 do 

2: path ← push o1 

3: L2 ← match_obj(o1, LL[c], qt) 

4: if  L2 = φ  then 

5: path pop 

6: continue 

7: end if 

8: increment c by 1 

9: if c ≤ m then 

10: Compute_RTO(L2, c) 

11: decrement c by 1 

12: path pop 

13: else 

14: for each object v in L2 do 

15: path ← push v 

16: sc ← C ompRankL (path) 
17: Add <sc, path> to RRT O 

18: path pop 

19: end for 

20: decrement c by 1 

21: path pop 

22: end if 

23:  end for 

24:  function   match_obj(object:  o, list : Lin, interval: qt) 

25: Retrieve Lo connected to o in qt from objIdx 

26: Ldes  ← merge join Lo and Lin 
27: return Ldes 

28:  end function 

29:  function   C ompRankL (L_obj) 

30: score ← φ 

31: for each object o1 in L_obj  do 

32: if  o1 is not in HT then 

33: St  ← Compute St  using ObjIdx (Eq. 7) 

34: add o1 to HT 

35: else St  ← HT[o1] 
36: end if 
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37: cb ← Compute_CB(o1) 

38: Sk   ← o1.TF * log(N/Nk ) × cb 
39: s ← Sk   + St  (Eq. 1) 

40: score ← score + s 

41: end for 

42: return score 

43: end function 
 

We use match_obj function to merge join lists to find the 
connected objects of an input object. 

Complexity of Algorithm 1 is based on the complexity of 
Algorithms 2 and 3. Algorithm 2 traverse smallest list Ls to 
discover any possible STO objects and its complexity is O(|Ls| 
× log(|LL|)). In Algorithm 3, the complexity is O(|Ls| × m log 
|Lx|) in the worst case where m is the number of keywords and 
Lx is the length of maximum list in LL. The overall complexity 
of Algorithm 1 is O((|Ls|)×(log(|LL|)+ m log |Lx|)) 

VIII. EXPERIMENTAL EVALUATION 

In this section, we present different performed experiments 
to evaluate our approach. We compared our approach to two 
state-of- art approaches: SLCA [2] as an example of XML tree 
model and ISO_IRO [7] as an example of XML graph model. 

We analyzed our results according to the three metrics that 
are used to analyze the results of any keyword search 
experiments; effectiveness, efficiency, and scalability. 

A.  Setup 

We use two real data sets: DBLP [29] and NBA [30]. 
Table I shows the statistics of such data sets. DBLP contains 
the major conferences up to year 2002. We build the temporal 
XML indexes as follows: each conference is considered as a 
separate object and cite attribute is used to track the 
relationship between objects. NBA contains all information 
about players, coaches and teams in USA basketball starting 
from 1946 until 2008. It is a set of tables in a relational 
database converted into a single XML document where 
foreign keys are converted into id/idref attributes. Temporal 
intervals queries for conventional keyword search are 
executed for each instant in the interval. Here, we list sample 
queries for both data sets and its purposes: 

User intention: List all coaches train player James Posey in 
[2005-2008] 

TX-Kw: Coach James Posey [2005-2007] 

Conventional Kw: Coach James Posey 2005, 2006, 2007 

User intention: List all articles written by Elmasri in 
interval 1990-1993 

TX-Kw: article Elmasri [1990-1993]  

Conventional Kw: article Elmasri 1990, 1991, 1992, 1993 

B. Efficiency 

We use the query processing time as the main performance 
metric. For DBLP we test 7 queries, the first three are non-
temporal queries and the rest are attached with one time 
instant. 

The result of the log-scaled run time of tested approaches 
is shown in Fig. 4(a). We can see that our approach has better 
performance for temporal queries. However, ISO_IRO is 
slightly more efficient than TX-Kw for the first non temporal 
queries (Q1-Q3). The reason is that these queries retrieve the 
whole objects in the three algorithms but TX-Kw has an 
overhead computing for temporal ranking. Whereas SLCA is 
the more efficient keyword search index in XML tree models, 
its performance degrades in the XML graph model. This is  

TABLE I.  Data sets statistics 

Data set #nodes #Kw #object Size Idx size 

DBLP  3329043 656387 328858 131MB 781MB 

NBA 313251 3742 2517 6MB 23MB 

TABLE II.  Query keyword  for efficiecny in DBLP 

Qid DBLP 
Q1 Agrawal Databases 
Q2 Ling tok wang 
Q3 VLDB Agrawal Abbadi databases 
Q4 Concurrency Control Algorithms Distributed Databases 1987 
Q5 Ling Tok Wang 1993 
Q6 XML Index 2002 
Q7 book, java, 2001 

TABLE III.  Query keyword for efficiency in NBA 

Qid NBA 

Q1 Player location Los Angeles 1990 

Q2 pts position Robinson 1990 

Q3 Coach Kareem Abdul-jabbar 1985 

Q4 Colorado Dale Schlueter 1975 

Q5 teams Robinson 1999 

 

 
This is because many keywords may be placed in one 

object which is easy for TX-Kw and ISO_IRO to distinguish 
them in the join process. On the other hand, SLCA has to 
search for each list of nodes that contain the keywords. Such 
number of nodes may be greater than the number of objects 
returned by the other algorithms. The worst case of SLCA is 
clear for temporal queries where more nodes are retrieved than 
that in TX-Kw.  

For NBA, we test five temporal queries, the result of two 
of them (Q2 and Q4) are STO objects and the the result of the 
rest (Q1, Q3, Q5) are RTO objects. The performance of TX-
Kw, as shown in Fig. 4(b), is better than ISO_IRO approach 
for RTOs queries since temporal constraints between objects 
are considered in the join process. ISO_IRO performance gets 
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slightly better than TX-Kw for STO queries. The reason is that 
TX-Kw spends time in retrieving objects to filter them 
according to time before performing the join process. On the 
other hand, SLCA keeps its worst performance as in DBLP. 

C.  Scalability 

Here, the scalability is measured in two ways: changing the 
number of keywords and increasing the size of time intervals.  

Fig.s 5(a) and 5(b) show the log-scaled run time as 
keywords increase with a constant time (one year) for DBLP 
and NBA. TX-Kw has the best performance overall other 
approaches. The performance varies according to the number 
of retrieved objects since some keywords may exist in the 
same objects and this might lead to reduction in processing 
time. However, the execution time of SLCA increases as the 
number of keywords increase. 

The second method of measuring scalability is using time 
interval variation with a constant number of keyword. The 
performance is shown in Fig.s 5(c) and 5(d).  

We can see that the performance of SLCA and ISO_IRO 
decreases with the increase of time interval size while it 
remains approximately constant for TX-Kw. This is because 
the conventional keywords search require traversing keywords 
index with each year in the interval while in temporal 
approach TX-Kw involves only one index traversal. However, 
there is a slight increase in processing time for TX-Kw 
depending on the number of retrieved objects as the validity 
interval increases. 

D. Effectiveness 

We evaluate quality of results using precision, recall which 
is heavily used in IR. Precision is the number of relevant 
objects retrieved divided by the total number of retrieved 
objects. Recall is the number of relevant objects retrieved 
divided by the number of relevant objects. 

To calculate the precision and recall we manually 
reformulated tested temporal queries on NBA to be executed 
into the XML language XQuery and used the results as a basis 
for evaluation. For DBLP, we tested queries generated by 5 
users. For each query the user wrote his attention in natural 
language and keywords query.  

The queries are executed using our approach and 
ISO_IRO, Table IV shows the average results for precisions 
and recall for both approaches. 

Recall has a high value for both data sets of TX-Kw 
against ISO_IRO approach since time intervals are not 
considered in ISO_IRO which lead to empty results in some 
cases. On the other hand, precision of TX-Kw in Table IV is 
higher since it detects all possible connections and temporal 
constraints while ISO_IRO returns more irrelevant results. 

 
Fig.5. Scalability evaluation 

TABLE IV.  Effectiveness performance 

Data set 
TX-Kw ISO_IRO 

Recall Precision Recall Precision 

NBA 0.9575 0.88 0.79 0.304 

DBLP 0.978 0.729 0.778 0.432 

TABLE V.  Ranking performance 

Data set 
TX-Kw ISO_IRO 

R-rank MAP R-rank MAP 

NBA 0.906 0.88 0.467 0.3225 

DBLP 0.820 0.774 0.695 0.581 

 
We evaluate our proposed ranking method using two 

popular IR measurements [22]: Mean Average Precision 
(MAP) and Reciprocal rank R-rank. We use MAP to measure 
the overall precisions. Precision is computed for each relevant 
object step. Then we take the average of computed precisions. 
While R-rank is the inverse of the first rank of correct object 
retrieved. 

We set the mixture parameter to 0.5 to identify weight 
temporal ranking and keywords ranking. Furthermore, we 

Use uncertainty-aware method to compute MAP and R-
rank measurements. Ranking performance is shown in Table 
V. We note that TX-Kw ranking method works very well in 
NBA where its values metrics are above 0.90 for R-rank and 
0.88 for MAP respectively. ISO_IRO ranking has less 
effectiveness in ranking temporal constraints since its values 
metrics are below 0.5 for both metrics. 
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IX. CONCLUSION 

We proposed a new approach, TX-Kw, which supports 
temporal keyword search queries over temporal XML 
documents. We model temporal XML as interconnected 
objects by considering containment and ID/IDREF edges. We 
also utilized time-aware ranking in IR by mapping it to 
temporal XML as well as providing an algorithm for temporal 
ranking that captures the hierarchical structure of XML 
document. An efficient algorithm is proposed to improve the 
performance retrieval. Finally we conducted experiments to 
evaluate and compare our approach against existing keyword 
search methods by measuring their effectiveness and 
efficiency. The experiments showed better performance of our 
approach TX-Kw against other state-of-the-art methods. As 
future work, we consider integrating both keyword and object 
indexes to enhance efficiency of our approach. 
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