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Abstract—Directed flow loops are highly undesirable because 

they are associated with wastage of energy for maintaining them 

and entail big losses to the world economy. It is shown that 

directed flow loops may appear in networks even if the 

dispatched commodity does not physically travel along a closed 

contour. Consequently, a theorem giving the necessary and 

sufficient condition of a directed flow loop on randomly oriented 

straight-line flow paths has been formulated and a close-form 

expression has been derived for the probability of a directed flow 

loop. The results show that even for a relatively small number of 

intersecting flow paths, the probability of a directed flow loop is 

very large, which means that the existence of directed flow loops 

in real networks is practically inevitable. Consequently, a 

theorem and an efficient algorithm have been proposed related to 

discovering and removing directed flow loops in a network with 
feasible flows.  

The new concept ‘almost-directed flow loop’ has also been 

introduced for the first time. It is shown that the removal of an 

almost-directed flow loop also results in a significant decrease of 

the losses. It is also shown that if no directed flow loops exist in 

the network, the removal of an almost-directed flow loop cannot 

create a directed flow loop. 

Keywords—directed flow loops; almost-directed flow loops; 

flow networks; optimization; classical algorithms; maximising the 

flow.  

I. DIRECTED LOOPS OF FLOW IN NETWORKS 

The existence of routing loops have already been reported 
in computer networks [1,2]. Due to inconsistencies in routing 
state among a set of routers, the packets physically travel 
along a closed loop and never reach their destination. 
Surprisingly, directed loops of commodity may exist even if 
none of the dispatched commodities physically travels along a 
closed loop. This point is illustrated by the examples in Fig.1 
featuring supply networks (e.g. supply of petrol from a 
number of fuel terminals to a number of filling stations), 
where the same exchangeable commodity is transported along 
straight lines which are the shortest paths from sources to 
destinations. Selecting the shortest paths for a data transfer for 
example, is also a common strategy in communication 
networks [3].  

Suppose that the throughput capacity of each source-
destination straight-line path is 10 units. Despite that none of 
the dispatched commodities physically travels along a closed 
contour, a directed loop carrying 10 units of flow effectively 
appears between the intersection points (real or imaginary) 

x1,x2 and x3 in the network from Fig.1a and between nodes 
x1,x2,x3 and x4 in the network from Fig.1b. 

Removing 10 units of flow from the segments (x1,x2), 
(x2,x3) and (x3,x4) in Fig.1a and from the segments x1,x2), 
(x2,x3), (x3,x4) and (x4,x1) in Fig.1b turns the flow 
circulating along the contours x1,x2,x3,x1 and x1,x2,x3,x4,x1 
into zero, without diminishing the amount of total flow sent 
from the source nodes to destination nodes (Fig.1c,1d). 

Figure 1 shows that directed loops of flow can even be 
found in networks where the intersecting source-destination 
paths are straight-line segments and no transported commodity 
physically travels along a closed contour. 

A closed contour formed by a sequence of n nonempty 

sections ( 3n ), in which the flows point along the direction 
of traversing the contour will be referred to as “directed flow 
loop”. 
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Fig. 1. a,b) Directed closed flow loops naturally appear in networks where 

the same type of commodity is transported between source-destination pairs; 

c,d) The directed flow loops can be removed without affecting the throughput 
flow from sources to destinations. 

The directed loops of flow are highly undesirable because: 
(i) they increase unnecessarily the cost of transportation of the 
flow in the network, (ii) they consume residual capacity from 
the edges of the network and (iii) energy is unnecessarily 
wasted for maintaining the directed flow loops. The presence 
of directed loops of flow in networks causes big financial 
losses in the affected sectors of the economy. In computer 
networks, directed loops of flow consume bandwidth capacity 
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unnecessarily, increase data traffic and ultimately lead to 
congestion and delayed data transmission. This affects 
negatively the quality of service of the network.  

In supply networks, the existence of directed loops of flow 
means high transportation costs because energy is wasted on 
circulating commodities unnecessarily. 

The probability of existence of a directed flow loop 
between the intersection points of random source-destination 
paths has not yet been considered in the literature, despite its 
importance. Finding the strongly connected components of a 
graph, which implies the existence of cyclic paths has been 
has been considered before [4]. The question of identifying 
and removing directed flow loops in flow networks however, 
has been evading the attention of researchers for a very long 
time. This is evidenced by the fact that in spite of the years of 
intensive research on static flow networks, the algorithms for 
maximising the throughput flow published since 1956 leave 
highly undesirable directed loops of flow in the “optimised” 
networks. This surprising omission has already been 
demonstrated in [5] and [6]. 

There have been a number of published algorithms for 
optimising the flows in networks. Research related to 
optimizing network flows has been reviewed in [7-16]. Most 
of this research is related to determining the edge flows which 
maximise the throughput flow transmitted from a number of 
sources to a number of destinations (sinks). 

There are two main categories of algorithms solving this 
problem. The augmentation algorithms preserve the feasibility 
of the network flow at all steps, until the maximum throughput 
flow is attained [17-20]. 

The second major category of algorithms for optimising 
the throughput flow are based on the preflow concept 
proposed in [21] and subsequently used as a basis for the 
algorithms proposed in [22] and [23]. For the preflow, the sum 
of all edge flows going into a node is allowed to exceed the 
sum of all flows going out of the node. As a consequence, the 
flow conservation law at the nodes may be violated and the 
nodes may contain excess flow. The central idea behind the 
preflow-push algorithms is converting the preflow into a 
feasible flow.  

In a recent work [6], it was shown that optimising the 
network flow by using classical augmentation and preflow-
push algorithms does not guarantee that there will be no 
directed flow loops in the optimised networks.  

This point can be illustrated immediately with Fig.2, 
featuring a flow network with three sources s1, s2 and s3, each 
with capacity 100 units of flow per unit time and three 
destinations (sinks) t1,t2 and t3, each with capacity 100 units 
of flow per unit time. Suppose, for the sake of simplicity that 
the capacities of the separate connecting edges are also 100 
units of flow per unit time. To maximise the throughput flow 
from the sources to the sinks, the classical Edmonds and Karp 
shortest-path algorithm [18] proceeds with saturating the 
shortest path (1,2,3,4) with 100 units of flow, followed by 
saturating the next shortest path (5,6,7,3,8,9,10) with 100 units 
of flow and finally, with saturating the remaining path 
(11,12,13,14,15,8,2,16,17,18) with 100 units of flow. As a 

result, a directed flow loop (2, 3, 8, 2) appears, carrying 100 
units of flow. This flow loop is not only associated with 
wastage of energy. It also congests the network and makes it 
impossible to transfer additional flow, for example, from node 
8 to node 2.  
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Fig. 2. Network, demonstrating that selecting sequentially the shortest paths 

between sources and destinations leaves a directed flow loop (2,3,8,2) in the 
optimised network. All edges have a flow capacity of 100 units. 

Finally, to the best of our knowledge, no published 
analyses exist on almost-directed flow loops which are also 
associated with losses. The almost-directed flow loops are 
introduced and defined rigorously in the next section. 

Consequently, the objectives of this paper are: 

a) To show that directed flow loops can exist in 

networks even if all none of the dispatched commodity 

physically travels along a closed contour. 

b) To estimate precisely the probability of a directed 

flow loop in a network defined by the intersections of straight-

line randomly oriented source-destination paths. 

c) To introduce the new concept almost-directed loop of 

flow in networks and formulate its basic properties. 

d) To demonstrate that for flow networks 

(transportation networks, manufacturing networks, electrical 

networks and computer networks), directed and almost-

directed flow loops are always associated with losses and 

their removal is highly beneficial.  

e) To propose an efficient algorithm for identifying and 

removing directed loops of flow in networks with complex 

topology. 

II. REMOVAL OF DIRECTED AND ALMOST-DIRECTED 

LOOPS OF FLOW FROM NETWORKS.  

Denote the actual forward flows along the edges of a 

directed loop by f1 , f2 ,..., nf . These are all positive 

quantities and let the smallest among them be 

},,...,min{ 11min nffnf   . The amount min  will 

be referred to as ‘bottleneck residual capacity’. 
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The directed flow loop can always be ‘drained’ by 

decreasing the flow along its edges by amount min . The 

result is a network which is characterised by smaller losses. A 
‘removal’ of a directed flow loop involves determining its 

bottleneck residual capacity min  and draining the loop with 

the amount min . As a result, at least one of the edges will 

become empty and the directed flow loop will be ‘broken’. 
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Fig. 3. a) A directed flow loop; b) An almost-directed flow loop; c,d) 

Removal of an almost-directed flow loop. 

Suppose that there is at least one edge in the loop 
associated with non-zero transportation cost. The removal of 
flow along a directed flow loop leads to a new feasible flow 
and does not decrease the overall throughput flow to the 
destinations. In the process of flow loop removal, all edge 
flows have been decreased and no edge flow has been 
increased. Because there is at least one edge with nonzero 
transportation cost, the cost of transportation after the removal 
of the loop decreases. Thus, removing (draining) the directed 
flow loop (2, 3, 8, 2) carrying 100 unit of flow in the network 
from Fig.2, leads to a new feasible flow associated with 
reduced losses. The removal of the directed flow loop does not 
affect the throughput flow from sources to destinations. 

In short, the removal of a directed flow loop always results 
in decreasing the losses in the network.  

An almost-directed flow loop is a sequence of n sections (

3n ) in which the flow in 1n  edges points along the 
direction of traversing of the loop and the last (the closing n-th 
section) edge is augmentable in a direction opposite to the 
direction of traversing. This means that the flow in the closing 
edge can be increased in the direction opposite to the direction 
of the flow in the rest of the edges. As a result, the closing 
edge should not be fully saturated with flow in the direction 
opposite to the direction of the flow in the rest of the edges, 
because no flow augmentation will be possible for the closing 
edge. 

Denote the actual flows in the forward edges by f1 ,

f2 ,..., fn 1  and the residual space (not occupied with 

flow) in the closing edge by nb . These are all positive 

quantities and let the smallest among them be 

},,...,min{ 11min nbfnf   . Again, the amount min  

will be referred to as ‘bottleneck residual capacity’. 

The almost-directed flow loop can always be drained by 
decreasing the flow along the edges with forward flow by 

amount min and increasing the flow with the same 

amount  along the closing edge. The draining operation 
does not violate the flow conservation at each node and the 
capacity constraints at the edges and leads to a new feasible 
flow. 

Similar to the directed flow loops, the almost-directed flow 
loops are also associated with losses and their removal is 
highly beneficial. A ‘removal’ of an almost-directed flow loop 

means determining its bottleneck residual capacity min  and 

draining the loop with the amount min . As a result, either one 

or more of the edges with forward flow will become empty or 
the closing edge of the loop will become fully saturated with 
flow. As a result, the almost-directed flow loop will be 
broken. 

If the cost of transportation per unit distance does not vary 
on the different edges, draining of an almost-closed loop 
always results in a reduction of the losses. 

This point has been illustrated in Fig.3c with the almost 
closed flow loop (6,7,2,3) carrying 10 units of flow. The first 
label on the edges denotes the edge capacity and the second 
label – the actual flow through the edge. Flow of magnitude 
10 units can be removed from the edges with forward flow 
and the flow along the closing edge (3,6) can be increased by 
10 units. The result is the network in Fig.3d which is 
characterised by smaller losses.  

Suppose that the cost of transportation per unit distance 
does not vary on different edges. The following theorem can 
then be stated. 

Theorem 1. The removal of an almost-directed flow loop 
results in decreasing the losses in the network.  

Proof. Denote the cost of transportation per unit length by 
c. Consider node 1 and node n. The edges (1,2), (2,3),...,(n-
1,n) form a polygonal path between nodes (points) 1 and n. 

Denote the length of these sections (edges) by 12l , 3,2l ,...,

nnl ,1 . Denote the length of the closing section (edge) by 1,nl . 

The length of a polygonal path between two points however, 
is greater than the length of the distance between the two 
points. Therefore,  
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holds for a polygonal path which does not degenerate into 
a straight line. Because the cost of transportation per unit 

length is the same, removing the bottleneck flow min from 

the almost-directed loop will result in a reduction of the 

transportation cost by 





1

1

1,min

n

i

iilc  along edges (1,2), 

(2,3),...,(n-1,n) and an increase of the transportation cost by 

1,min nlc  along edge (n,1). Considering inequality (1), the 

inequality 
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is then valid, which means that removing the almost-
directed loop will result in a net decrease of the cost of 
transportation and therefore in reduction of the losses.□ 

The next theorem permits the removal of directed flow 
loops and almost-directed flow loops to proceed in two stages. 
During the first stage only directed flow loops are removed 
while during the second stage, only almost-directed flow loops 
are removed. 

Theorem 2. If there are no directed flow loops in the 
network, the removal of an almost-directed flow loop cannot 

possibly create a directed flow loop.  

 
Proof. Suppose that the removal of the almost-directed 

loop (1,...,k,...,n) created a directed flow loop (Fig.4). Initially, 
by assumption, no directed flow loops exist in the network. 
Because the flow through the entire (1,k,n) section has been 
decreased by the removal of the almost-directed loop (1,k,n,1), 
a new directed flow loop can only appear if the closing edge 
(n,1) has been initially empty and after the increase of its flow 
from node 1 to node n, is now part of the new directed loop 
(n,p,1,n), (Fig.4). 

Let (1,n,p,1) be the new directed flow loop. This is 
however impossible because before the removal of the almost-
directed loop (1,k,n,1), a concatenation of sections (n,p,1) and 
(1,k,n) would have created a directed flow loop. This 
contradicts the assumption that no directed flow loops exist 
initially, therefore the theorem is true. 
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Fig. 4. In a network without directed flow loops, the removal of an almost-

directed flow loop cannot possibly create a directed flow loop. 

Finally, it can be shown that the process of removing 
almost-directed flow loops is finite for networks with integer 
capacities and must terminate. 

Indeed, if the number of edges is m and the largest edge 
capacity is C, the maximum possible flow quantity contained 
in the network is mC. At each removal of an almost-directed 
flow loop, at least 1 unit of flow is removed from more than 
one edge and the same amount of flow is added to the single 
closing edge of the almost-directed loop. Consequently, the 
net change of the flow is negative and the amount of flow 
contained in the network decreases by at least 1 unit. As a 
result, after a finite number of steps, the process of removing 
the almost-directed loops will terminate. 

III. ESTIMATING THE LIKELIHOOD OF A DIRECTED FLOW 

LOOP IN A NETWORK FORMED BY THE INTERSECTIONS OF 

RANDOMLY ORIENTED STRAIGHT-LINE SOURCE-DESTINATION 

PATHS  

The unexpectedly high probability of existence of directed 
flow loops will be demonstrated by considering the general 
case where the source-destination paths are randomly oriented 
intersecting straight lines (Figure 5a). 

 
Fig. 5. a) Randomly oriented intersecting source-destination paths; b)  All 

direction vectors of the source-destination paths can be translated to start from 

a common point O. 

All source-destination paths transport the same type of 
interchangeable commodity (e.g. petrol) and for each source-
destination path; there is a particular direction of the flow 
(Fig.5a).  

It is assumed that there are at least three source-destination 
paths; there are no parallel paths and no three paths intersect 
into a single point. These conditions are natural and common. 
Indeed, for randomly oriented straight-line paths on a plane, it 
is very unlikely to find two parallel paths or three paths 
intersecting into a single point. 

The likelihood that a directed flow loop will be present in 
the network, given that the orientation of the intersecting 
source-destination flows is random, will be termed 
‘probability of a directed flow loop for random source-
destination paths’. 

The existence of a directed flow loop anywhere between 
the points of intersection implies the existence of a triangular 
directed flow loop (Fig.6a). As a result, the existence of a 
triangular directed flow loop is a necessary condition for the 
existence of a flow loop. Conversely, the existence of a 
triangular directed flow loop is also a sufficient condition for 
the existence of a flow loop. Consequently, the probability of 
a directed flow loop for randomly oriented source-destination 
flows can be estimated by estimating the probability of a 
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directed triangular flow loop – the existence of three 
intersection points, between which the flow travels in the 
direction of traversing these points (Fig.6a). 

A unit vector can be assigned to each source-destination 
path, whose direction is the same as the direction of the flow 

along the path (Fig.5b). The angle   the unit vector subtends 
with the horizontal axis (Fig.7a) gives the orientation of the 
source-destination path and the direction of the flow along the 
path. A random orientation of a source-destination path and 
the direction of its flow means that the angle   the direction 
vector subtends with the fixed horizontal x-axis is uniformly 
distributed in the interval (0,2π). In other words, all possible 
orientations are characterised by the same probability. 
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Fig. 6. a) A directed triangular flow loop; b) direction vectors of the source-

destination paths forming the directed flow loop. 
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Fig. 7. a) Ordering the direction vectors, according to the angle they subtend 

with the horizontal axis; b) a gap of size at least p  between two random 

direction vectors; c) If no half-plane can be selected where all direction 

vectors  reside, there is always a possibility to select three direction vectors 
which do not reside in a single half-plane. 

The unit vectors assigned to the source-destination paths 
will be referred to as ‘direction vectors’. They can all be 
translated at the common origin O, as shown in Fig.5b. The 
following theorem then holds. 

Theorem 3. The necessary and sufficient condition for a 
directed flow loop in a network defined by the intersections of 

randomly oriented straight-line source-destination paths, is the 
non-existence of a half-plane where all direction vectors 
reside. 

Before proving this theorem two lemmas will be stated and 
proved. 

Lemma 1. If any three selected direction vectors reside in 
a single half-plane, then all direction vectors reside in a single 
half-plane. 

Proof. Let us select an arbitrary direction vector uk and 
introduce counterclockwise and clockwise direction with 
respect to this vector to mark the angular positions of the rest 

of the direction vectors (Fig.5b). The angles dig  mark the 

position of the unit vectors located in a clockwise direction 

from the vector uk up to an angle equal to p . The angles rig
mark the positions of the unit vectors located in a counter-
clockwise direction from the unit vector uk up to an angle 
equal to p . 

Let maxdg  be the angle corresponding to the most extreme 

direction vector udmax in a clockwise direction and maxrg  be 

the angle corresponding to the most extreme direction vector 
urmax in a counterclockwise direction. By assumption, any 
three direction vectors reside in a single half-plane, therefore 
the three direction vectors uk, udmax and urmax also reside in a 

single half-plane. Consequently, pgg  maxmax rd  and the 

three vectors  uk , udmax and urmax reside in the half-plane 
defined by the line L (oriented along the unit vector  udmax) 
and the unit vector uk (Fig.5b). Because the rest of the unit 

vectors reside either within the angle maxdg  or within the 

angle maxrg  ( maxdg  and maxrg  are the extreme angles 

corresponding to the direction vectors), all of the direction 
vectors must also reside in the half-plane defined by the line L 
and the unit vector uk. □ 

 

Lemma 2. If no half-plane can be selected where all direction 
vectors reside, there is always a possibility to select three 

direction vectors which do not reside in a single half-plane. 

 
Proof. Similar to the previous proof, an arbitrary direction 

unit vector uk is selected and counterclockwise and clockwise 
direction with respect to this vector is introduced to mark the 
angular positions of the rest of the direction vectors (Fig.7c). 

Again, maxdg  marks the most extreme direction unit vector 

udmax in clockwise direction up to an angle equal to p  and 

maxrg  marks the most extreme unit vector urmax in 

counterclockwise direction up to an angle equal to p . The 
three vectors uk , udmax and urmax do not reside in a single half-
plane (Fig.7c). 

Indeed, suppose that the three vectors uk , udmax and urmax 

reside in a single half plane. As a result, pgg  maxmax rd  

and the three vectors  uk , udmax and urmax should reside in the 
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half-plane defined by the line L (oriented along the direction 

vector  udmax) and vector uk. Because maxdg  and maxrg  are 

the extreme angles corresponding to the separate direction 
vectors, the rest of the unit vectors reside either within the 

angle maxdg  or within the angle maxrg . As a result, all of the 

direction vectors must also reside in the half-plane defined by 
the line L and the unit vector uk. This is however impossible 
because, according to our assumption, no half-plane can be 
selected where all direction vectors reside. This contradiction 
shows that the selected direction vectors uk , udmax and urmax 
do not reside in a single half plane.□ 

Now, Theorem 3 can be proved. 

Proof of Theorem 3. First note, that the existence of a 
directed flow loop implies the existence of at least one 
triangular directed flow loop (Fig.6a) because no two source-
destination paths are parallel. Suppose that the source-
destination paths with direction unit vectors u1, u2 and u3, 
(Fig.6b) define a triangular directed flow loop and the angles 

between the source-destinations paths from Fig.6a are 1b , 

2b  and 3b . Because the intersecting paths form a triangle, 

the sum of the angles 1b , 2b  and 3b  is always exactly equal 

to p2  (Fig.6b). 

pbbb 2321                                  (1) 

In addition, for each angle ib , the conditions 

pb  i0 , 3,2,1i                                 (2) 

Are always fulfilled. Suppose that there is a single half 
plane where the direction vectors of all source-destination 
paths reside. In this case, the direction vectors u1, u2 and u3 of 
the paths forming the directed triangular loop will also reside 
in the same half-plane. However, this is impossible because in 
this case, the conditions (1)-(2) will be violated. 

Now, suppose that there is no half-plane where all of the 
direction vectors u1, u2 ,..., un reside. According to Lemma2, 
in this case, we can always select three vectors u1, u2 and u3 
which do not reside in the same half-plane. For these three 
vectors, conditions (1) and (2) will be fulfilled. Because, by 
assumption, no three source-destination pairs intersect in a 
single point, the source-direction paths which correspond to 
the selected direction vectors u1, u2 and u3 will form a 
triangular directed flow loop.□ 

Theorem 3 serves as a basis for calculating the probability 
of a directed flow loop. This probability can be determined by 
determining first the probability of the complementary event 
that no directed flow loop exists. 

To calculate this probability, the random direction vectors 

are ordered in ascending order, according to the magnitude of 

the angle they subtend with the horizontal x-axis (Fig.7a). 
The probability that there will be no directed flow loop is 

equal to the probability that all random direction vectors will 
lie in a single half-plane. All random direction vectors will lie 
in a single half-plane if and only if a gap of minimum length 

p  exists between two random direction vectors (Fig.7b). 

There can be no more than a single gap of size p , 
therefore, the random events corresponding to a gap between 
the first and the second direction vector, between the second 
and the third direction vector, etc., are mutually exclusive 

events. As a result, a single gap of minimum size p  may 
be located in n distinct, mutually exclusive ways between the 
direction vectors.  

A M B

u1

2p
0

  p

 

Fig. 8. A gap of length   can be located in n distinct ways between the 
direction vectors. 

Let the circumference of the direction vectors circle be 

represented by the segment with length 2p  (Fig.8). A gap of 

length p  between direction vectors 1u  and 2u , can only 

occur if the rest of the n-1 random locations fall in the 
segment MB and none of them falls in the segment AM 
(Fig.8). Because the probability that a random direction vector 

location will ‘fall’ on the segment MB is 2/1)/( 2pp , the 

probability that n-1 random vector locations will fall in the 

segment MB is 
12/1 n

.  

Similarly, the probability of a gap between the second and 

the third direction vector is also
12/1 n

. As a result, the 

probability p of a gap of minimum size p , between two 
direction vectors is a sum of the probabilities of these 
mutually exclusive events and becomes  

1

1

1 2/2/1 



  n
n

k

n np                         (3) 

Which is also the probability that no directed flow loop 
will exist. Because there can be either a directed flow loop or 
no directed flow loop, the probability of a directed flow loop 
is: 

12/1)Pr(  nnloopflowdirected
         (4) 

The probability of existence of a directed flow loop from 
equation (4) has been plotted in Fig.9. 

As can be verified, with increasing the number of 
intersecting random source-destination paths, the probability 
of a directed flow loop increases significantly. For five 
intersecting flow paths, the probability of a directed flow loop 
is already 69%. 

Note from equation (4) that no matter how large the 
number n of intersecting source-destination paths is, the 
probability of a directed flow loop is always smaller than 1.  

This means that for any possible number and for any 
possible orientation of straight-line flow paths on a plane, it is 
always possible to choose the directions of the flows along the 
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paths in such a way, that no parasitic flow loops appear 
between the points of intersection. 

The results from equation (4) have been confirmed by a 
Monte Carlo simulation. 
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Fig. 9. Probability of a directed flow loop as a function of the number of 

intersecting source-destination paths. 

IV. DISCOVERING AND REMOVING DIRECTED AND 

ALMOST –DIRECTED LOOPS OF FLOW IN NETWORKS  

The algorithm for discovering and removing a directed 
flow loop is based on calling a depth-first-search (dfs) 
procedure from an initial node and subsequently calling the 
dfs-procedure from the descendents of this node, etc., until an 
already traversed node is discovered again. Initially, all nodes 
are marked as ‘not visited’ (coloured’ white). As the nodes are 
visited by the dfs-procedure, they are marked as “visited” 
(coloured gray, Fig.10). We must point out that the dfs-
procedure does not scan all successors of the current node. It 
scans all eligible successors only. A successor node i of the 
current node ‘r_node’ is eligible if: (i) there is an edge 
directed from node r_node to node i and the edge (r_node,i) 
carries nonzero flow. If edge (r_node, i) is empty, the 
successor i is not considered by the dfs-procedure. Suppose 
that the call of the dfs- procedure from node ‘r_node1’ does 
not discover any already traversed node (Fig.10a). In this case, 
after the return from the dfs-call, the node r_node1 is marked 
as ‘completed’ (coloured black) (the entry of the r_node1 in 
the array cmpl[] is set to ‘1’, cmpl[r_node1]=1). Under these 
conditions, the following theorem holds. 

Theorem 4. In a network with feasible flow, a directed flow 
loop is present only if during a recursive call of the depth-first 

search procedure, an already traversed node has been 

discovered again and it has not been marked as ‘completed’. 

 
Proof. Suppose that the node ‘e’, which has been visited 

again, has been marked as ‘completed’ (Fig.10a). Because the 
node has been marked as ‘completed’ (cmpl[e]=1), an earlier 
depth-first search must have started from this node and no 
directed flow loop must have been discovered starting with 
node ‘e’. Therefore, node ‘e’ discovered twice and marked as 
‘completed’, cannot possibly belong to a directed flow loop. 

Now suppose that the dfs-procedure has been called and 
during the subsequent calls of the dfs-procedure from 
subsequent descendent nodes, an already traversed node 
‘r_node’ not marked as ‘completed’ (cmpl[r_node]=0), has 
been visited again (Fig.10b). Because node ‘r_node’ has been 
visited for a second time and it has not been marked as 
‘completed’, no return from the earlier dfs-call initiated from 
this node has occurred (otherwise the node would have been 
marked as ‘completed’). As a result, the ‘r_node’ has been 
visited again, after traversing a chain of descendent nodes 
starting from node ‘r_node’ and ending at r_node (Fig.10b). 
This essentially means that a directed flow loop has been 
discovered. □ 

r_node2

r_node1

e

s r_nodes
b)a)

 
Fig. 10. Traversing the nodes of the network by recursive calls to the depth-

first-search procedure. 

Here is the algorithm in pseudo-code: 

Direct all edges of the network to match the directions of the 

edge flows. 

//As a result, the network is transformed from a network with 

undirected edges to a network with directed edges. 

 

procedure retrieve_directed_flow_loop(cur_node) 

{// retrieves and eliminates the identified directed 
     loop of flow} 

 

procedure dfs(r_node) 

{  

  marked[r_node] = 1; 

  for i= 1 to all eligible successors of r_node do 

{ 

  cur_node = current eligible successor; 

  if (marked[cur_node] = 0) then { 

                                 pred[cur_node] = r_node; 

                                 dfs(cur_node); 

                                                      } 
else { if (cmpl[cur_node] = 0) then  

              {  

                 pred[cur_node] = r_node; 

                 retrieve_directed_flow_loop(cur_node); 

                 break; 

              } 

         } 

} 

  cmpl[r_node] = 1; 

} 

 
Statements before the call of the dfs-procedure: 

for i=1 to n do {marked[i] = 0; cmpl[i] = 0; pred[i] = 0;} 

dfs(1). 
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A directed flow loop can only be discovered if both 
conditions are fulfilled: (i) a node cur_node, already marked 
as ‘visited’ has been encountered during the search and (ii) the 
call dfs(cur_node) is still active, in other words, its activation 
record is still in the stack. After the end of the dfs (cur_node) 
call, node r_node is marked as ‘completed’ by the statement 
‘cmpl[r_node] = 1’. This is why, only when both 
marked[cur_node] = 1 and cmpl[cur_node] = 0 are 
encountered during the search, a directed loop of nonzero flow 
has been discovered. The directed loop of flow is subsequently 
retrieved and eliminated by the procedure 
retrieve_directed_flow_loop(cur_node). The array pred[] 
records the predecessors of the visited nodes and helps 
retrieve the identified directed flow loop. The procedure 
retrieve_directed_flow_loop(cur_node) retrieves the 
discovered loop of flow by starting with the statement ‘k = 
cur_node’ followed by a loop, where the statement k = pred[k] 
is repeatedly executed and followed by a check whether an 
already encountered node has been encountered again and 
whether node k is a descendent of the ‘cur_node’. These 
checks are used for identifying the node which closes the 
identified directed loop carrying nonzero flow. After 
discovering the directed flow loop, the procedure determines 
the edge from the loop carrying the smallest amount of flow 
and subtracts this flow from the flows of all edges belonging 
to the loop. As a result, at least one edge in the directed loop 
becomes empty. Once an edge becomes empty, it remains 
empty until the end of the procedure for removing directed 
flow loops. This flow loop will not be discovered again during 
subsequent searches.  

The proposed algorithm has been tested on a benchmark 
network which has the shape of a lattice (Fig.11). The lattice-
type network has been selected because it is a natural network, 
often encountered in real applications. Because the lattice 
network is easily scalable, it provides an opportunity to isolate 
the impact of the size of the network on the algorithm’s 
performance. To increase the number of loops, alternating 
directions of the flows from the sources si to the destinations di 
has been selected (Fig.11). 

The same flow of 10 units per unit time has been assumed 
along each source-destination path. 

Six different sizes of lattice-type network have been 
constructed and the network loops have been removed by the 
proposed algorithm, implemented in C and run on a computer 
with a processor Intel(R) Core(TM) 2 Duo CPU T9900 @ 
3.06 GHz. 

According to the number of intersecting horizontal and 
vertical paths, the following network sizes were tested: 2x2, 
3x3, 4x4, 5x5, 6x6 and 7x7. The number of nodes 
corresponding to the 6 test-networks was: 12, 22, 32, 45, 60 
and 77, correspondingly. 

s2

s1
d1

d2

d5 d6

d3 d4

s3 s4

s5 s6

s7d7

s8d8

 
Fig. 11.  Lattice networks used for testing the proposed algorithm. 

The running time of the algorithm versus the size (the 
number of nodes) of the lattice network are shown in Fig.12. 
As can be seen, the running time of the algorithm is 
approximately proportional to the size of the lattice network. 

It needs to be pointed out that identifying all directed 
cycles in the network, before removing the bottleneck flow 
from any of them, is not a feasible approach. To show why 
this is the case, consider a complete network where any two 
nodes (i,j) are connected with directed edges (Fig.13 shows a 
complete network with 4 nodes). The number of directed 
cycles in this network is equal to the number all possible 
subsets of 2 nodes, 3 nodes,...,n nodes. Consequently, the 

number of directed cycles is 12  NN
 and determining all 

possible cycles is a task of exponential complexity, a task 
which is practically impossible even for not very large n. In 
the proposed approach, identifying a directed loop of flow 
with the dfs-procedure and subtracting the bottleneck flow 
from the edges, has a worst-case complexity O(m), where m is 
the number of edges in the network. After each flow 
subtraction, at least a single edge remains empty. Therefore, 
after at most m steps, all directed loops of flow will be 
discovered and removed. As a result, the procedure for 
removing all directed loops of flow in a network has a worst-
case running time O(m2). 

Finally, it can be shown [6] that maximising the 
throughput flow at a minimum cost, leaves no directed loops 
of flow in the network. The worst-case running time of 
maximising the throughput flow at a minimum cost however 
is significantly larger than the worst-case running time of the 
described procedure. 

Similar to the case related to directed flow loops, the 
probability of existence of almost-directed loops of flow in 
networks can be estimated and an algorithm related to 
discovering and removing almost-closed flow loops can be 
developed. The developments related to almost-directed flow 
loops will be published elsewhere.  
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Fig. 12. Performance of the proposed algorithm for a different size of the 

lattice network. 

 
Fig. 13. Complete network with four nodes 

V. CONCLUSIONS 

1) Directed loops of flow can appear in networks with 

interchangeable commodity even if no transported commodity 

physically travels along a closed contour. 

2) The necessary and sufficient condition for a directed 

flow loop in a network defined by randomly oriented straight-

line flow paths, is the non-existence of a half-plane where all 

direction vectors reside. 

3) A closed-form expression has been obtained for the 

probability of a directed flow loop for intersecting, randomly 

oriented flow paths, in a plane. Even for a relatively small 

number of intersecting flow paths, the probability of a directed 

flow loop is very large.  

4) A theorem has been stated and proved regarding the 

existence of a directed flow loop in a network with feasible 

flows. On the basis of this theorem, a simple and efficient 

recursive algorithm has been proposed for discovering and 

removing directed loops of flow in networks. The algorithm 

discovers and removes a directed flow loop in linear time in 

the size of the network. 

5) A new concept referred to as ‘almost-directed flow 

loop’ has been introduced and its basic properties formulated. 

It has been shown that the removal of an almost-directed flow 

loop results in decreasing the losses in the network. 

6) It is shown, that the process of removal of almost-

directed flow loops terminates after a finite number of steps. 

Furthermore, if no directed flow loops exist in the network, the 

removal of an almost-directed flow loop cannot create a 

directed flow loop. 

7) The shortest-path strategy for optimising the 

throughput flow between sources and destinations does not 

guarantee that there will be no undesirable directed loops of 

flow in the optimised networks.  

8) The directed and almost-directed flow loops in real 

networks are associated with wastage of energy and resources 

and increased levels of congestion. In real networks 

(transportation networks, manufacturing networks, electrical 

networks, computer networks, etc.), which include many 

intersecting flow paths, the existence of directed and almost-

directed flow loops and the associated wastage of energy for 

maintaining these loops is practically inevitable. 

Consequently, optimising real networks by removing directed 

and almost-directed flow loops has the potential to save a 

significant amount of wasted resources for the world 

economy. 
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