
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

103 | P a g e
www.ijacsa.thesai.org

The Bitwise Operations Related to a Fast Sorting

Algorithm

Krasimir Yordzhev

Faculty of Mathematics and Natural Sciences

South-West University

Blagoevgrad, Bulgaria

Abstract—in the work we discuss the benefit of using bitwise

operations in programming. Some interesting examples in this

respect have been shown. What is described in detail is an

algorithm for sorting an integer array with the substantial use of

the bitwise operations. Besides its correctness we strictly prove

that the described algorithm works in time O(n). In the work

during the realization of each of the examined algorithms we use

the apparatus of the object-oriented programming with the

syntax and the semantics of the programming language C++

Keywords—bitwise operations; programming languages C/C++

and Java; sorting algorithm

I. INTRODUCTION

The use of bitwise operations is a powerful means during
programming with the languages C/C++ and Java. Some of the
strong sides of these programming languages are the
possibilities of low level programming. Some of the means for
this possibility are the introduced standard bitwise operations,
with the help of which it is possible to directly operate with
every bit of an arbitrary variable situated in the random access
memory of the computer. In the current article we are going to
describe some methodical aspects for work with the bitwise
operations.

As an interesting example of application of the bitwise
operations comes the realised by us algorithm for sorting an
integer array, for which we strictly prove its correctness and the
fact that this algorithm will use operations included in the
standard of the programming language C++. A main role in the
realisation of the algorithm plays the bitwise operations.

II. BITWISE OPERATIONS

The bitwise operations can be applied for integer data type
only. For the definition of the bitwise operations and some of
their elementary applications could be seen, for example, in [2],
[5] for C/C++ programming languages and in [4], [7] for Java
programming language.

We assume, as usual that bits numbering in variables starts
from right to left, and that the number of the very right one is 0.

Let x and y be integer variables or constants and let z be

integer variables of one type, for which w bits are needed. Let
x and y be initialized (if they are variables) and let the
assignment z = x & y; (bitwise AND), or z = x | y; (bitwise
inclusive OR), or z = x ^ y; (bitwise exclusive OR), or z = ~x;

(bitwise NOT) be made. For each = 0,1,2, , 1i w , the

new contents of the i -th bit in z will be as it is presented in the
Table I.

TABLE I. BITWISE OPERATIONS IN PROGRAMMING LANGUAGES C/C++

AND JAVA

i -th bit of

x y z = x & y; z = x | y; z = x ^ y; z = ~x;

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

In case that k is a nonnegative integer, then the statement

z = x<<k; (bitwise shift left) will write in the ()i k bit of z

the value of the k bit of x, where = 0,1, , 1i w k  , and

the very right k bits of x will be filled by zeroes. This

operation is equivalent to a multiplication of x by 2k
.

The statement z=x>>k (bitwise shift right) works the
similar way. But we must be careful if we use the programming
language C or C++, as in various programming environments

this operation has different interpretations: somewhere k bits
of z from the very left place are compulsory filled by 0 (logical

displacement), and elsewhere the very left k bits of z are filled
with the value from the very left (sign) bit; i.e. if the number is
negative, then the filling will be with 1 (arithmetic
displacement). Therefore it is recommended to use unsigned
type of variables (if the opposite is not necessary) while
working with bitwise operations (see also Example 3). In the
Java programming language, this problem is solved by
introducing the two different operators: z=x>>k and z=x>>>k
[4], [7].

Bitwise operations are left associative.

The priority of operations in descending order is as follows:
~ (bitwise NOT); the arithmetic operations * (multiply), /
(divide), % (remainder or modulus); the arithmetic operations +
(addition) - (subtraction); the bitwise operations << and >>; the
relational operations <, >, <=, >=, ==, !=; the bitwise
operations &,^ and |; the logical operations && and ||.

III. SOME ELEMENTARY EXAMPLES OF USING THE BITWISE

OPERATIONS

Example 1:1 To compute the value of the i-th bit (0 or 1) of
an integer variable x we can use the function:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

104 | P a g e
www.ijacsa.thesai.org

int BitValue(int x, unsigned int i) {

int b = ((x & 1<<i) == 0) ? 0 : 1;

return b;

}

 Example 2: 2 Directly from the definition of the operation
bitwise shift left (<<) follows the efficiency of the following

function computing 2n
, where n is a nonnegative integer:

unsigned int Power2(unsigned int n) {

return 1<<n;

}

Example 3:3 The integer function () = % 2nf x x

implemented using operation bitwise shift right (>>).

int Div2(int x, unsigned int n) {

int s = x<0 ? -1 : 1;

 /* s = the sign of x */

 x = x*s;

 /* We reset the sign bit of x */

 return (x>>n)*s;

}

When we work with negative numbers we must consider
that in the computer the presentation of the negative numbers is
through the so called true complement code. The following
function gives us how to code the integers in the memory of the
computer we work with. For simplicity we are going to work
with type short, but it is not a problem for the function to be
overloaded for other integer types, too.

Example 4:4 A function showing the presentation of the
numbers of type short in the memory of the computer.

void BinRepl(short n) {

int b;

int d = sizeof(short)*8 - 1;

while (d>=0) {

b= 1<<d & n ? 1 : 0;

cout<<b;

d--;

}

}

Some experiments with the function BinRepl are given in
Table II.

TABLE II. PRESENTATION OF SOME NUMBERS OF TYPE SHORT IN THE

MEMORY OF THE COMPUTER

An integer of type short Presentation in memory

0 0000000000000000

1 0000000000000001

-1 1111111111111111

2 0000000000000010

-2 1111111111111110

16 = 2
4
 0000000000010000

-16 = -2
4
 1111111111110000

26=2
4
+2

3
+2 0000000000011010

-26= -(2
4
+2

3
+2) 1111111111100110

41 = 2
5
+2

3
+1 0000000000101001

-41 = -(2
5
+2

3
+1) 1111111111010111

32767 = 2
15

 - 1 0111111111111111

-32767 = -(2
15

 – 1) 1000000000000001

32768 = 2
15

 1000000000000000

-32768 = -2
15

 1000000000000000

Compare the function presented in Example 4 to the next
function presented in Example 5.

 Example 5:5 A function that prints a given integer in
binary notation.

void DecToBin(int n) {

if (n<0) cout<<'-';

/* Prints the sign - , if n<0: */

n = abs(n);

int b;

int d = sizeof(int)*8 - 1;

while (d>0 && (n & 1<<d) == 0) d--;

/* Skips the insignificant zeroes at the beginning: */

while (d>=0) {

b= 1<<d & n ? 1 : 0;

cout<<b;

d--;

}

}

Example 6:6 The following function calculates the number

of 1 in a given integer n written in a binary notation. Here
again we ignore the sign of the number (if it is negative) and
we work with its absolute value.

int NumbOf_1(int n) {

n = abs(n);

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

105 | P a g e
www.ijacsa.thesai.org

int temp=0;

int d = sizeof(int)*8 - 1;

for (int i=0; i<d; i++)

if (n & 1<<i) temp++;

return temp;

}

IV. BITWISE SORTING

In this section we are going to suggest a fast algorithm for
sorting an arbitrary integer array. And since during its
realisation we are substantially going to use bitwise operations,
we will call it ''Bitwise sorting''. We will prove that the bitwise

sorting works in time ()O n , where n is the size of the array.

This is an excellent evaluation regarding the criterion time. For
comparison below we give some of the most famous sorting
algorithms and their evaluations by criterion time [1], [6], [8].

 Selection sort – works in time
2()O n ;

 Bubble sort– works in time
2()O n ;

 Bidirectional bubble sort (Cocktail sort) – works in

time
2()O n ;

 Insertion sort – works in time
2()O n ;

 Merge sort – works in time (log)O n n ;

 Tree sort – works in time (log)O n n ;

 Timsort – works in time (log)O n n ;

 Counting sort – works in time ()O n m , where m

is a second parameter, giving the number of the unique
keys;

 Bucket sort – works in time ()O n .

Notes:

1) Timsort has been developed for use with the

programming language Python[??].

2) For Counting sort ()O n m additional memory is

necessary.

3) For Bucket sort ()O m additional memory is

necessary, where m is another parameter, giving the number

of the unique keys, and it is also necessary to have knowledge

of the nature of the sorted data which goes beyond the

functions ''swap'' and ''compare''.

V. PROGRAMME CODE OF THE ALGORITHM

The algorithm created by us, described with the help of
programming language C++, is shown below (algorithm 1).
Due to some obvious reasons, first we create a function which
sorts an array whose elements are either only nonnegative, or
only negative. The second function divides the given array into

two disjoint subarrays respectively only with negative and only
with nonnegative elements. After sorting each one of these
subarrays, we merge them so that we obtain one finally sorted
array.

Algorithm 1:7 Bitwise sorting.

 /* The first function sorts integer elements with the same
signs: */

template <class T>

void BitwiseSort1(T A[],int n){

int t;

 /* t - size of the type T in bits */

t = sizeof(T)*8;

T A0[n], A1[n];

 /* A0 remembers the elements for which the k-th bit is 0 */

/* A1 remembers the elements for which the k-th bit is 1 */

int n0; // size of A0

int n1; // size of A1

for (int k=0; k<t-1; k++) {

 /* k - number of the bit. The numeration starts from 0.
Does not check the sign bit */

n0=0;

n1=0;

for (int i=0; i<n; i++){

 /* checks the k-th bit of the i-th element of the array: */

if (A[i] & 1<<k) {

A1[n1] = A[i];

n1++;

}

else {

A0[n0] = A[i];

 n0++;

}

}

 /* We merge the two arrays. As a result we obtain an array
whose elements if the k-th bit is equal to 0 are at the beginning,
and if it is equal to 1 at the end. */

for (int i=0; i<n0; i++)

A[i] = A0[i];

for (int i=0; i<n1; i++)

A[n0+i] = A1[i];

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

106 | P a g e
www.ijacsa.thesai.org

}

 /* The second function sorts the whole array */

template <class T>

void BitwiseSort(T A[],int n){

T Aminus[n], Aplus[n];

 /* Aminus[n] - An array with the negative values of A */

/* Aplus[n] - An array with the nonnegative values of A */

 int Nm = 0, Np = 0;

 /* Nm -- number of elements written in Aminus */

/* Np -- number of elements written in Aplus */

for (int i=0; i<n; i++)

if (A[i] < 0) {

Aminus[Nm] = A[i];

Nm++;

}

else {

Aplus[Np] = A[i];

Np++;

}

 /* Sorts the negative elements: */

 BitwiseSort1(Aminus,Nm);

 /* Sorts the nonnegative elements */

 BitwiseSort1(Aplus,Np);

 /* We merge the two arrays: */

 for (int i=0; i<Nm; i++)

A[i] = Aminus[i];

for (int i=Nm; i<n; i++)

A[i] = Aplus[i-Nm];

}

VI. EVALUATION OF THE ALGORITHM

As a main disadvantage of the algorithm described by us
comes the fact that it is applicable only to arrays of integers or
symbols (type char). This is because for it we substantially use
bitwise operations, which are applicable only over integer types
of data. But this disadvantage is compensated by its high speed.

As we will see below, algorithm 1 works in time ()O n , where

n is the number of the elements which are subjected to sorting.

Except through the multiple experiments which we have
made, with the help of the following theorem we will prove the
correctness of the algorithm created by us.

Theorem 1:8 During every execution of algorithm 1:7 with
an arbitrary input array of integers, as a result a sorted array is
obtained.

Proof. It is enough to prove that function BitwiseSort1
works so as to fulfill the conditions of the theorem.

Let
0 1 1={ , , , }nA a a a 

 be an arbitrary integer array

with length n and let
() () () ()

1 1={ , , }k k k k

o nA a a a  be the array

which is obtained after iteration with number k , where

= 0,1, , 2k t  , t =sizeof(T)*8, i.e. t is equal to the

number of the bits which every element of A occupies in the
memory of the computer.

Let x be an integer. For every natural number

= 0,1,2,k we define the functions:

() = % 2 ,k

k x x

where just like in programming languages C/C++ and Java
the operator % denotes the remainder during integer division.

Apparently 1() =s x x  if the absolute value of the integer x

can be written with no more than s digits 0 or 1 in a binary
notation. Therefore in order to prove that as a result of the work

of the algorithm the array
(2)tA 

 is sorted, it is enough to
prove that the array

(2) (2) (2) (2)

2 0 2 1 2 1={ (), (), , ()}t t t t

t t t nA a a a     

   

is sorted. Applying inductive reasoning, we will prove that

for every s , such that 0 < 1s t  , the array

() () () ()

0 1 1= { (), (), ()}s s s s

s s s nA a a a   

is sorted.

When = 0s the assertion follows from the fact that during

iteration with number 0 (= 0k),
(0)A is ordered so that first

come all elements of the array which in their binary notation
end in 0, followed by all elements of the array which in their
binary notation end in 1.

We assume that for a certain natural number s ,

0 < 2s t  the array

() () () ()

0 1 1= { (), (), ()}s s s s

s s s nA a a a   

is sorted. But then analysing the work of the algorithm in

(1)s  -th iteration, it is easy to see that the array A0, which is

obtained from
()sA taking in the same row only these

elements of
()sA having 0 in bit with number 1s  , is a sorted

array. Analogously we prove that the array A1 is sorted and in

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

107 | P a g e
www.ijacsa.thesai.org

bit with number 1s  on each of its elements stands 1. Then
the array

(1) (1) (1) (1)

1 0 1 1 1 1={ (), (), ()}s s s s

s s s nA a a a     

   
,

 which is obtained from the merger of the arrays A0 and A1
where the elements of A0 precede the elements of A1, is
sorted. And with this we have proven the theorem.

Theorem 2:9 Algorithm 1 described with the help of

programming language C++ works in time ()O n .

Proof. The assertion of the theorem follows from the fact
that in function BitwiseSort1 we have only two nested loops. In

the inner loop exactly n iterations are performed, and in every
iteration once the operation & (bitwise conjunction), once the
operation << (bitwise shift left), once the if statement, once the
assignment statement and once the increment statement are
performed. Each of the aforesaid operations is performed in

constant time. The outer loop does 2t  iterations, where t is
a constant, and in every iteration besides the inner loops there
are also two assignment operations.

In function BitwiseSort the division of the array into two

disjoing subarrays is performed apparently in time ()O n . The

newly obtained two arrays are sorted in total time ()O n . The

following merger of the two sorted arrays with total length n

is apparently also performed in time ()O n .

REFERENCES

[1] J. Darlington, A Synthesis Of Several Sorting Algorithms. Acta

Informatica, Volume 11, Number 1, December 18, 1978, 1-30.

[2] S. R. Davis, C++ For Dummies, IDG Books Worldwide, 2000.

[3] M. L. Hetlan, Python Algorithms: Mastering Basic Algorithms In The
Python Language, Apress, 2010.

[4] D. Flanagan, JAVA In A Nutshell, O’Reilly, 2002.

[5] B. W. Kernigan, D. M. Ritchie, The C Programming Language, AT T

Bell Laboratories, 1998.

[6] D. E. Knuth, The Art Of Computer Programming. Volume 3: Sorting
And Searching, Second Edition, Addison-Wesley, 1998.

[7] H. Schildt, Java 2 A Beginner's Guide, Mcgraw-Hill, 2001.

[8] R. Sedgewick, Algorithms In C++, Parts 1-4 Fundamentals, Data
Structures, Sorting, Searching, Third Edition, Addison Wesley

Longman, 1999

