
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

7 | P a g e
www.ijacsa.thesai.org

Partition based Graph Compression

Meera Dhabu, Dr. P. S. Deshpande, Siyaram Vishwakarma

Department of Computer Science & Engineering,

Visvesvaraya National Institute of Technology,

Nagpur – 440010 (India)

Abstract—Graphs are used in diverse set of disciplines

ranging from computer networks to biological networks, social

networks, World Wide Web etc. With the advancement in the

technology and the discovery of new knowledge, size of graphs is

increasing exponentially. A graph containing millions of nodes

and billions of edges can be of size in TBs. At the same time, the

size of graphs presents a big obstacle to understand the essential

information they contain. Also with the current size of main

memory it seems impossible to load the whole graph into main

memory. Hence the need of graph compression techniques arises.

In this paper, we present graph compression technique which

partition graphs into subgraphs and then each partition can be

compressed individually. For partitioning, proposed approach

identifies weak links present in the graph and partition graph at

those weak links. During query processing, the partitions which

are required need to be decompressed, eliminating

decompression of whole graph.

Keywords— graph compression; su graph; partitioning

I. INTRODUCTION

Today, numerous large-scale systems and applications need
to analyze and store massive amounts of data that involve
interactions between various entities – this data is best
represented as a graph; for instance, the link structure of the
World Wide Web, group of friends in social networks, data
exchange between IP addresses, market basket data, etc., can
all be represented as massive graph structures. As witnessed in
the core tasks of these applications graph patterns could help
build powerful, yet intuitive models for better managing and
understanding complex structure. Some of these application
domains are [19]:

 World Wide Web. The Web has a natural graph
structure with a node for each page and a directed edge
for each hyperlink. This link structure of the Web has
been exploited very successfully by search engines like
Google [18] to improve search quality. Other
contemporary research works mine the Web graph to
find dense bipartite cliques, and through them Web
communities [16] and link spam [05]. Recent estimates
from search engines put the size of the Web graph at
around 3 billion nodes and more than 50 billion arcs
[14]. (Note that these are clearly lower bounds since the
Web graph has been growing rapidly over the years as
more of the Web gets discovered and indexed.) Thus,
the Web graph can easily occupy many terabytes of
storage.

 Social Networking. Popular social networking websites
like Facebook, MySpace and LinkedIn cater to millions

of users at a time, and maintain information about each
user (nodes) and their friend-lists (edges). Mining the
social network graph can provide valuable information
on social relationships between users, the music,
movies, etc. that they like, and user communities with
common interests.

 IP Network Monitoring. IP routers export records
containing source and destination IP addresses, number
of bytes transmitted, duration, etc. for each IP
communication flow. Recently, Iliofotou et. al. [12]
proposed the idea of extracting Traffic Dispersion
Graphs (TDGs) from network traces, where each node
corresponds to an IP address and there is an edge
between any two IP addresses who sent traffic to each
other. Such graphs can be used to detect interesting or
unusual communication patterns, security
vulnerabilities, hosts that are infected by a virus or a
worm, and malicious attacks against machines.

 Market Basket Data. Market basket data contains
information about products bought by millions of
customers. This is essentially a bipartite graph with an
edge between a customer and every product that he or
she purchases. Mining this graph to find groups of
customers with similar buying patterns can help with
customer segmentation and targeted advertising.

Several approaches have been proposed for the analysis and
discovery of concepts in graphs in the context where graphs are
used to model datasets. Modeling objects using graphs allows
us to represent arbitrary relations among entities and capture
the structural information. The utilization of richer and more
elaborate data representations for improved discovery leads to
larger graphs. The graphs are often so large that they cannot fit
into the dynamic memory of conventional computer systems.
Even if the data fits into dynamic memory, the amount of
memory left for use during execution of the discovery
algorithm may be insufficient, resulting in an increased number
of page swaps and ultimately performance degradation. One of
the main challenges for knowledge discovery and data mining
systems is to scale up their data interpretation abilities to
discover interesting patterns in large datasets. This paper
addresses the scalability of graph-based discovery to
monolithic datasets, which are prevalent in many real-world
domains where vast amounts of data must be examined to find
meaningful structures.

In [23], many challenges are faced by graph mining
algorithms due to the huge size of graph. One issue is that a
huge graph may severely restrict the application of existing

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

8 | P a g e
www.ijacsa.thesai.org

pattern mining technologies. Additionally, directly visualizing
such a large graph is beyond our capability. In computer
science, it is more important to understand the information
embodied in abstract structures that are of our particular
interests. For instance, how can we quantify the amount of
information in the structure of graphs such as the Internet,
social networks, and biological networks? How can we
understand and utilize the “structure” of nonconventional data
structures such as biological data, topographical maps, medical
data, and volumetric data? Imagine a compressed graph,
conserving the characteristics of the original graph. We can
easily visualize it. The goal of compressing a graph is to make
the high-level structure of the graph easily understood.
Therefore, informative graph compression techniques are
required and have wide application domains. Many graph
compression techniques have been developed for compressing
a web graph [7, 14, 25, 10, 4, 9]. In this paper we proposed
partition based compression approach which helps in storing
the compressed subgraphs on the systems that are located
geographically apart. Thus it reduces the network traffic in
distributed computing [6] since data will be available on local
system itself. The aim of the proposed technique is to represent
the data in compressed form while retaining the ability to
answer the same queries as their uncompressed counterpart.
We aim at representing graphs in highly compressed form, so
as to manage huge instances in main memory.

The remainder of this paper is organized as follows.
Section II reviews the background information as well as
related work on graph compression. Section III presents the
details of proposed partition based approach. Section IV
presents the results of performance evaluation. Section V
summarizes and concludes our paper.

II. BACKGROUND

The biggest challenge in graph compression is ever
increasing demand of high compression ratio, which reduces
memory requirement of a graph. A graph containing billions of
nodes and trillions of edges cannot be stored in memory
without compression and if we store it on disk then operations
which need to be performed on this graph would require many
disk I/O and disk seek operations which reduces algorithm
performance drastically. Hence a graph needs to be divided to
ensure that each partition is small enough to fit in main
memory and thus reduces I/O operations significantly.

A. Problem definition

Given an undirected graph 𝐺 = 𝑉, 𝐸 , where 𝑉 is set of
vertices and 𝐸 is set of edges in the graph 𝐺 . We need to
represent graph such that the compression ratio and bits per
edge are maximum and minimum respectively. Compression
ratio and bits per edge are given by the following formulae:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜

=
𝑖𝑛𝑝𝑢𝑡 𝑔𝑟𝑎𝑝𝑕 𝑠𝑖𝑧𝑒 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑟𝑎𝑝𝑕 𝑠𝑖𝑧𝑒

𝑖𝑛𝑝𝑢𝑡 𝑔𝑟𝑎𝑝𝑕 𝑠𝑖𝑧𝑒

∗ 100

𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑒𝑑𝑔𝑒 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑔𝑟𝑎𝑝𝑕

𝑡𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑔𝑟𝑎𝑝𝑕

B. Related work

In recent years many compression algorithms have been
proposed. In [14] Gap encoding makes use of locality [8]
property of web graph. Locality suggests that each list of
successors should be represented as list of gaps. More
precisely, if 𝑆 𝑥 = 𝑠1 , 𝑠2 , … , 𝑠𝑘 , then it can be represented
as 𝑠1 − 𝑥, 𝑠2 − 𝑠1 − 1, 𝑠3 − 𝑠2 − 1, … , 𝑠𝑘 − 𝑠𝑘−1 −
 1 . However; reference compression [14] technique exploits
similarity property of web graphs. In this method, adjacency
list 𝑆 𝑥 , is represented as a “modified” version of some list
𝑆 𝑦 , called the reference list. The difference 𝑥 − 𝑦 is called
the reference number. This results into reference compression,
in which a sequence of bits, one bit for each successor in the
reference list, tells whether the corresponding successor of 𝑦 is
also a successor of 𝑥 . Nodes which are not covered by
reference list are called extra nodes.

In differential compression, the differences with 𝑆 𝑦 are
represented as a sequence of copy blocks. Copy list can be
represented as an alternating sequence of 1 and 0-blocks, and
specify the length of each block. This sequence of integers is
preceded by a block count telling the number of blocks that
will follow [14]. Consecutivity among extra nodes is frequent,
hence to exploit this consecutivity, subsequences are isolated
corresponding to integer intervals and number of integers in
these intervals is called length [14].

In [8], an un-weighted graph 𝐺 = 𝑉𝐺 , 𝐸𝐺 can be
represented as 𝑅 = 𝑆, 𝐶 where 𝑆 = 𝑉𝑠 , 𝐸𝑠 is graph
summary and 𝐶 is set of edge corrections. Every node 𝑣 in 𝑉𝐺
belongs to a super node 𝑉 in 𝑉𝑠 which represents a set of nodes

in G. A super edge 𝐸 = 𝑉𝑖 , 𝑉𝑗 in 𝐸𝑠 represents the set of all

edges connecting all pairs of nodes in 𝑉𝑖 and 𝑉𝑗 i.e. it simply

collapse one bi-partite graph into two super nodes 𝑉𝑖 and 𝑉𝑗 and

replaces all the edges by super edge between the super nodes.

The edge correction 𝐶 has parts +𝑒 (edge to be added) and –𝑒
(edge to be removed) which is considered during recreation of
original graph.

In [7], Re-pair recursively finds pair of repeated symbols
across all the lists and replace them by a new “non-terminal”
symbol which has to be expanded later when extracting the
lists. In [3], a directed bipartite clique 𝐺 = (𝑉,𝐸) can be
transformed into a directed star. A directed bi-partite clique
(𝑆, 𝑇) is a pair of two disjoint set 𝑆 and 𝑇 such that 𝑢 ∈ 𝑆 and
𝑣 ∈ 𝑇 and there is a directed link from 𝑢 to 𝑣 in𝐺. For a bi-
clique 𝑆, 𝑇 a new compressed graph 𝐺 ′ = 𝑉′ , 𝐸′ is formed
by adding a new vertex 𝑥 to the graph, removing all the edges
in 𝑆, 𝑇 and adding a new edge 𝑢𝑥 ∈ 𝐸′ for each u ∈ 𝑆 and
new edge 𝑥𝑣 ∈ 𝐸′ for each 𝑣 ∈ 𝑇.

In [13], an undirected graph 𝐺 = 𝑉,𝐸 , where 𝑉 is a set of
nodes and 𝐸 is set of edges, is represented using adjacency list
method and thus 𝑚 + 𝑛 space is required, where 𝑛 =
 𝑉 and 𝑚 = 𝐸 . But for simple undirected graphs 𝐺, it should
be noted that the complement graph 𝐺𝑐 of 𝐺 is sufficient for
representing 𝐺. For a very dense graph 𝐺, the size of the edge
set of the complement graph may be much less than 𝑚 .
Therefore, the original graph is store in a data structure

if 𝑚 ≤
𝑛(𝑛−1)

4
, and the complement graph if 𝑚 >

𝑛(𝑛−1)

4
. this

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

9 | P a g e
www.ijacsa.thesai.org

method requires 𝑛 + min⁡(𝑚,𝑚𝑐) space, where 𝑚𝑐 =

𝑛(𝑛−1)

2
− 𝑚.

TABLE I. NOTATIONS

Notation Description

𝑤 Maximun no. of edges in bridge

𝑛𝑒𝑏𝑖 Set of neighbors of node i

𝑆1 , 𝑆2
Sets S1 store neighbor of node i and set S2

stores rest nodes

𝑑𝑒𝑔𝑖 Degree of node i

𝐺 = 𝑉, 𝐸
A graph 𝐺 where 𝑉 is set of nodes and 𝐸 is set

of edges

III. PROPOSED PARTITION BASED APPROACH

Compression allows more efficient storage and transfer of
graph data, and may improve the performance of various
algorithms by allowing computation to be performed in faster
levels of computer memory hierarchies. Good compression
requires using the structural properties of the graph, and hence
first important step is to understand this structure. For example,
in Web graphs, there appear to be natural clusters of related
pages with similar connections.

In this paper we restrict our discussion to undirected graph
but can be easily extended for directed graph. We use an
undirected graph for modeling complicated structures which
contains dense clusters and these dense clusters are connected
with weak links called bridges. Proposed partition based
compression algorithm exploits graph property locality.

Link locality has been independently observed and reported
by several authors. For instance, Suel and Yuan [16] observe
that on average, around three-quarters or 75% of the links from
a page are to other page on the name domain/host. Given this
observation, we attempt to partition graph into dense clusters
and then these dense clusters are further compressed using
reference compression technique.

We employ breadth first search algorithm starting from a
randomly chosen node, say 𝑥 ∈ 𝑉 which returns a connected
component 𝐶 . Now take a node say 𝑖 from 𝐶 and make two
sets 𝑆1 𝑎𝑛𝑑 𝑆2. Set 𝑆1 contains all neighbors of node and set 𝑆2
contains all the nodes in 𝐶 except the nodes in 𝑆1 . A node 𝑥 in
𝑆1 with degree 𝑑 is a bridge node of width w if the following
conditions are satisfied:

1) 𝑑𝑥 − 𝑤 neighbors of node x are in set 𝑆1 and exactly w

neighbors are in set 𝑆2.

2) 𝑛𝑒𝑏𝑦 − 1 neighbors of node y are in 𝑆2 , where

𝑦 ∈ 𝑛𝑒𝑏𝑥 and 𝑦 ∈ 𝑆2 .
If both the conditions are not satisfied then node may be

shifted to set 𝑆2 or if more than half neighbors of node 𝑥 are in
set 𝑆2 . We repeat this process for all the nodes in set
 𝑆1 and 𝑆2 until we find a bridge between the two sets or no
change in set 𝑆1 and 𝑆2. In this way we find bridge between set
 𝑆1 and 𝑆2which results into two subgraphs. Repeat the same
procedure by choosing another random node from 𝐶 until we
get sufficiently small subgraphs. These subgraphs are

compressed sequentially using reference compression
technique [14].

Each subgraphs thus obtained after partitioning is
compressed by applying reference compression algorithm. In
this method, instead of representing adjacency list 𝑆 𝑥 for
node x directly, it is represented as a “modified” version of
some next list 𝑆(𝑦), called the reference list. The difference
𝑦 − 𝑥 is called the reference number. Thus the reference
compression results in a sequence of bits, one for each
successor in the reference list, which tells whether the
corresponding successor of node y is also a successor of node x.
The representation of 𝑆 𝑥 with respect to 𝑆(𝑦) is made of two
parts: a sequence of |𝑆(𝑦)| bits, called the copy list, and the list
of integers 𝑆 𝑥 /𝑆(𝑦), called the list of extra nodes. Copy list
specifies which of the links contained in the reference list
should be copied: it will contain 1 at the ith position; iff the ith
entry of 𝑆 𝑦 also appears in 𝑆 𝑥 [14].

For each node i in a subgraph s, we find reference node j
(node which has maximum number of common successors with
node i). we consider reference_width for finding reference
node. reference_width can be fixed or can be equal to size of
subgraph.

For reference node, we calculate reference_number,
copylist and extra nodes. copylist is further compressed as a
sequence of copyblock which contains the information about
the number of 1’s and 0’s appearing in copylist alternatively.
Further extranodes are compressed since there is consecutively
among extranodes. Once all the nodes are covered in subgraph
we take next subgraph for compression.

A. Algorithm

In this section pseudo-code for partitionven.ing the large
graph is given. Function check_condition_1 and
check_condition_2 will return “1” if condition 1 and 2
mentioned in section III is true for node k.

Arrange all nodes of G in decreasing order of degree.

Procedure PartitionGraph(G, w)
begin
while (w > 0)
{
 for each node 𝑖 ∈ 𝑉
 {
 𝑆1 = 𝑖 ∪ 𝑛𝑒𝑏𝑖;
 𝑆2 = 𝑉 − 𝑆1;
 while (no change in S1 and S2 or bridge is not found)
 {
 for each node 𝑘 ∈ 𝑆1
 {
 flag_1 = check_condition_1(S1, S2, k)
 if (flag_1 == true)
 {
 flag_2 = check_condition_2(S1, S2, k)
 if (flag_2 == true)
 {

a. Node k is a bridge node of width w.
b. Remove all w edges between k and S2.
}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

10 | P a g e
www.ijacsa.thesai.org

else if (more than
|𝑛𝑒𝑏 𝑘 |

2
 nodes are in S2)

{

 𝑆1 = 𝑆1 – 𝑘;
 𝑆2 = 𝑆2 ∪ 𝑘;
}

 for each node 𝑘 ∈ 𝑆2
 {
 flag_1 = check_condition_1(S2, S1, k)
 if (flag_1 == true)
 {
 flag_2 = check_condition_2(S2, S1, k)
 if(flag_2 == true)
 {

a. Node k is a bridge node of width w.
b. Remove all w edges between k and S1.

 }

 else if (more than
|𝑛𝑒𝑏 𝑘 |

2
 nodes are in S1)

 {

 𝑆2 = 𝑆2 − 𝑘;
 𝑆1 = 𝑆1 ∪ 𝑘;
 }
 }

 }
 w--;
}end while;
end-begin.

IV. PERFORMANCE EVALUATION

In this section, we present experimental results. We have
performed experiments on 2.10 GHz Intel core i3 processors
with 4GB main memory, running on 32-bits Windows 7
platform. Proposed algorithm is implemented in Java. We
performed experiment on synthetic datasets generated using
graph generator. Details of the graph dataset used for
experiments are given in Table II.

A. Graph Partitioning

A graph having 9985 nodes and 123416 edges is partitioned
into 354 subgraphs, size of each subgraph varies from 26 to 30
nodes both inclusive with bridge width equal to 3. Whereas
number of bridges is 510, among these 358 bridges are of
width one, 98 bridges are of width two and 54 bridges are of
width three. On the other hand, a graph of 1979 nodes and
24340 edges is partitioned into 71 subgraphs, size of each
subgraphs again vary from 26 to 30 both inclusive where
bridge width is three. Number of bridges is 98 among these 66
bridges are of width one, 20 bridges are of width two, 10
bridges are of width three.

TABLE II. DETAILS OF GRAPH DATASET

Id No. of nodes No. of edges

G1 1979 24340

G2 4993 61392

G3 9985 123416

B. Effect of different parameters on compression ratio

In Fig. 1, y-axis represents compression ratio and x-axis
represents reference width w [9]. Different reference widths are
3, 5, 7 and a subgraph. Reference width equal to the subgraph
means all the nodes in the subgraph will be considered in
search of reference node [10]. Fig.1. shows compression ratio
without copy blocks for different graph size. Compression
ration increases slowly with the increase in reference width.
Fig. 2 shows compression ratio with copy blocks for different
graph size. Fig. 3 shows compression ratio with copy blocks
and extra nodes for different graph size. From Fig. 2 and 3 can
observe that the compression ratio increases rapidly with the
increase in reference width. When reference width is equal to
subgraph compression ratio is maximum. For all reference
width, compression ratio of the graph with 9985 nodes and
123416 edges is higher among all graphs. Hence ratio increases
with increase in number of nodes and edges i.e. we get better
compression ratio for dense graphs.

Boldi and Vigna [14] have given the best algorithm ever
which takes 2 to 3 bits per edge for a graph of size 18.5 million
nodes and 300 million edges. S. Raghavan [21] has shown that
super node and super edge representation takes 5.07 bits per
edge for average over 25 million, 50 million, 100 million
nodes. Broder [1] showed that a graph of 200M nodes and 1.5G
edges requires 37.87 bits per edge.

Fig. 1. Compression ratio (without copy block) v/s reference width w.

Fig. 2. Compression ratio (with copy block) v/s reference width w.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

11 | P a g e
www.ijacsa.thesai.org

Fig. 3. Compression ratio (with copy block and extra nodes) v/s reference
width w.

Fig. 4. Comparison of Boldi and Vigna, Sriram Raghvan, and A. Broder with
Partition based reference compression approach.

V. CONCLUSION & FUTURE WORK

In this paper we proposed an effective solution in the form
of a partitioning approach, to one of the main challenges for
graph-based knowledge discovery and data mining systems,
which is to scale up their data interpretation abilities to
discover interesting patterns in large graph datasets. We
observed that for partition based reference compression
approach, compression ratio increases with increase in
reference width and it is maximum when reference width is
equal to size of subgraph. Moreover it helps in distributed
computing by reducing network traffic and storage burden on
single system.

Possible future enhancement to the proposed approach is
reducing partitioning time which increases sharply with the
increase in graph size. Since we run BFS algorithm for each
node in the graph which gives connected component but we
can ignore the nodes which are in the partition and cannot be
partitioned further.

Our algorithm is sequential i.e. first graph partitioning is
done and then reference compression algorithm is applied. This
causes re-loading of each partition for the compression. It can
be improved by compressing the partition when it cannot be
partitioned further.

REFERENCES

[1] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. Wiener, “Graph structure in the web”, Journal

of Computer Networks, pp. (1-6), 2000.

[2] A. Inokuchi,T. Washio and H. Motoda, “An apriori-based algorithm for
mining frequeunt substructures from graph data”, In PKDD'00, pp. 13-

23, 2000.

[3] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, "Gigascope:
A stream database for network applications" In SIGMOD, pp. 647-651,

2003.

[4] D. Blandford, G. Blelloch, I. Kash, “Compact representation of
separable graphs” In Proc. of the 14

th
 SODA, pp. 679-688, 2003.

[5] D. Gibson, R. Kumar, and A. Tomkins,"Discovering large dense

subgraphs in massive graphs" In VLDB, pages 721- 732, 2005.

[6] F. Zhou, “Graph Compression”, Department of Computer Science and
Helsinki Institute for Information Technology HIIT, pp. 1-12.

[7] F. Claude and G. Navarro,“Fast and compact web graph
representations”, In Proceedings of 14

th
 International Symposium on

String Processing and Information Retrieval, Santiago, Chile, pp. 105-
116, October 29-31, 2007.

[8] H. Khalili, A. Yahyavi and F. Oroumchian, “Web graph pre

compression for similarity based algorithms”, Proceedings of the 3
rd

International Conference on Modeling, Simulation and Applied

Optimization Sarjah, U.A.E., pp. 20-22, January 2009.

[9] J. Guillaume, M. Latapy, L. Viennot, “Efficient and simple encodings
for the web graph”, In Meng, X., Su, J., Wang, Y. (eds.) WAIM 2002

LNCS, vol. 2419, pp. 328–337, Springer Heidelberg.

[10] K. Bharat, A. Broder, M. Henzinger, P. Kumar, S.
Venkatasubramanian,“The connectivity server: fast access to linkage

information on the web”, In Proc. of the 7
th

 WWW, pp. 469-477, 1998.

[11] K. Randall, R.Stata, R. Wickremesinghe and J. Wiener, “The link
database: fast access to graphs of the web”, Research Report 175,

Compaq Systems Research Center, Palo Alto, CA, 2001.

[12] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and
G. Varghese, "Network monitoring using traffic dispersion graphs

(tdgs)" In IMC, pp. 315–320, 2007.

[13] N. Larsson and A. Moffat, “Off-line dictionary-based compression”,

Proceedings of the IEEE, Vol. 88, No. 11, November 2000.

[14] P. Boldi and S. Vigna, “The WebGraph framework I: compression
techniques”, In Proceedings of the 13

th
 international conference on

World Wide Web, ACM, pp. 595-602, USA, 2004.

[15] R. Kumar, J. Novak, and A. Tomkins, "Structure and evolution of online
social networks" In KDD, 2006.

[16] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, "Trawling the

web for emerging cyber-communies" In WWW, pp. 1481-1493, 1999.

[17] R. Rathi, D. J. Cook and L. B. Holder A Serial Partitioning Approach to
Scaling Graph-Based Knowledge Discovery. American Association for

Artificial Intelligence, pp. 188-193. 2002.

[18] S. Brin and L. Page, "The anatomy of a large search hypertextual web
engine" In WWW, pp. 107–117, 1998.

[19] S. Navlakha, R. Rastogi and N. Shrivastava, Graph Summarization with
Bounded Error. SIGMOD’08, June 9–12, 2008, Vancouver, BC,

Canada.

[20] S. Perugini, M. Gon Calves, and E. Fox, "Recommender systems
research: A connection-centric survey". J. Intell. Inf. Syst., 23(2):107–

143, 2004.

[21] S. Raghvan and H. Garcia-Molina,“Representing web graphs”, In Proc.
of the IEEE International Conference on Data Engineering, 2003.

[22] T. Suel and J. Yuan, “Compressing the graph structure of the web”, In

Proc. of the IEEE Data Compression Conference, pp. 213-222,2001.

[23] X. Yan and J. Han,“gSpan:Graph Based Substructure Pattern Mining”,
Technical Report UIUCDCS-R-2002-2296, Department of Computer

Science, University of Illinois at Urbana-Champaign, 2002.

[24] Y. Asano, Y. Miyawaki and T. Nishizeki, “Efficient compression of web
graphs”, In Proc. 14

th
 Conference on Computing and Combinatorics

(COCOON) , LNCS 5092, pp. 1-11, 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

12 | P a g e
www.ijacsa.thesai.org

[25] Y. Asano, T. Ito, H. Imai, M. Toyoda, M. Kitsuregawa, "Compact

encoding of the web graph exploiting various power laws: statistical
reason behind link database". In: Dong, G., Tang, C.-j., Wang,W.(eds.)

WAIM 2003 LNCS, vol. 2762, pp. 37–46, Springer Heidelberg.

AUTHORS PROFILE

P. S. Deshpande received M.Tech in Computer Science from IIT, Bombay
(India) and received Ph.D. from Nagpur University (India). He is currently
working as a Associate Professor in the Department of Computer Science &
Engineering at Visvesvaraya National Institute of Technology, Nagpur (India).

His research interests include Data Bases, Data Mining, and Pattern
Recognition.

Meera Dhabu is working as a Assistant Professor in the Department of
Computer Science & Engineering at Visvesvaraya National Institute of
Technology, Nagpur (India) and persuing her Ph. D. in Computer Science. Her
areas of interests are graph mining and soft-computing.

Siyaram Vishvakarma received M. Tech. in Computer Science from
Department of Computer Science & Engineering, Visvesvaraya National
Institute of technology, Nagpur (India). His area of interests are graph mining
and pattern recognition.

