
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

161 | P a g e
www.ijacsa.thesai.org

Comparative Study of the Software Metrics for the

complexity and Maintainability of Software

Development

Dr Sonal Chawla

Associate Professor

Department of Computer Applications

Panjab University Chandigarh

Gagandeep Kaur

Assistant Professor

Department of Information Technology

GGDSD College Chandigarh

Abstract---Software metrics is one of the well-known topics of

research in software engineering. Metrics are used to improve

the quality and validity of software systems. Research in this area

focus mainly on static metrics obtained by static analysis of the

software. However modern software systems without object

oriented design are incomplete. Every system has its own

complexity which should be measured to improve the quality of

the system. This paper describes the different types of metrics

along with the static code metrics and Object oriented metrics.

Then the metrics are summarized on the basis of relevance in

finding the complexity and hence help in better maintainability of

the software code, retaining the quality and making it cost
effective.

Keywords—Static metrics; OO metrics; MOOD

I. INTRODUCTION

Software Metrics are used to increase the quality of
software since decades. For the better software development,
measurement plays a very critical role for software
engineering to make it a true engineering discipline. Hardware
as well as software became complex day by day, so
manageability is a major concern. Past were the days when
only traditional metrics were used to improve the quality and
technical decisions regarding softwares.

Modern systems are impossible without OO design as
object-oriented programming plays a very critical role for
effective and efficient software development. Software
engineers developed many ways to maintain software quality
and developed softwares using object-oriented programming
to solve the common problems. Object-oriented design
contains all the properties and quality of software that is
related to any large or small project [1].

It is a degree through which a system object can hold a
particular attribute or characteristics. Object-oriented is a
classifying approach that is capable to classify the problem in
terms of object and it may provide many paybacks on
reliability, adaptability, reusability and decomposition of
problem into easily understood objects and providing some
future modifications [2].

II. OBJECTIVE

The software quality engineering metrics are used for
quality planning, process improvement, quality control,

reliability estimation and analysis of customer satisfaction
data. They are used to increase the efficiency of software
development life cycle. For example if the number of defects
are less, the effectiveness of the Development and the Testing
team is improving. To make the modern application software
reliable and maintainable large numbers of metrics are used
these days. This paper is an attempt to understand the impact
of static and OO metrics values on the complexity and
maintainability of the code. In the first section, static metrics
are discussed preceded by OO metrics because characteristics
of object oriented design like abstraction, inheritance,
modularity and polymorphism cannot be represented using
traditional metrics as they play an important role in modern
software applications.

Only object oriented metrics allow the modifications to
reduce the cost effectiveness, time consumption and improve
the quality. Additionally there is an attempt to discard the
obscure metrics and use the simple ones because easy and
simple ones are appreciated in software applications and also
they are easy and simple to collect.

Also size measures and complexity alone cannot provide
accuracy in maintaining the applications and they alone are
inappropriate for predicting the defects, so other important OO
metrics are used to for reducing the complexity and easier
maintainability of modern applications. Moreover modern
applications are incomplete without OO design.

III. STATIC CODE METRICS

Static metrics are derived from the measurement on static
analysis of the software code. It is performed without
executing any of the code. Static analysis is better to
understand the security problems within the program code and
can easily identify nearly 85% of the flaws in the
programming code.

A. Source Lines Of Code (Sloc)

Source lines of code (SLOC) is a software metric that
calculate the size of a computer program by counting the
number of lines in source code of program.Main types of
SLOC measures are: physical SLOC (LOC) and logical SLOC
(LLOC). Physical SLOC is the total count up of lines in the
program's source code together with comment lines. Logical
SLOC measures the number of executable statements.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

162 | P a g e
www.ijacsa.thesai.org

B. Comment Percentage (Cp)

The CP is defined as a ratio of the number of comment
lines to the number of non-blank LOC [3]. Software
development life cycle is normally long. In any stage of the
life cycle, comments will help developers and maintainers to
better understand the programs. Higher comment percentages
will increase understandability and maintainability [4]. It is
suggested to maintain at least 8% on comment percentage to
enhance the understandability [5].

C. Halstead Metrics

Halstead Metrics are used to measure the complexity of a
program by using operands and operators. Halstead metrics is
used to interpret the source code as a sequence of tokens that
can be operands and operators and counted as

 number of unique (distinct) operators (n1)

 number of unique (distinct) operands (n2)

 total number of operators (N1)

 total number of operands (N2).

The number of unique operators and operands (n1 and n2)
as well as the total number of operators and operands (N1 and
N2) are calculated by collecting the frequencies of each
operator and operand token of the source program.Though
Halstead Metrics are traditional metrics but they are used to
measure the modern programs like C, C++ and Java.These
metrics are used to calculate the errors,programs size,volume
and testing time.

D. Mccabe’s Cyclomatic Complexity

Cyclomatic complexity is a software metric that is used to
measure the complexity of a program and was measured by
McCabe in 1976. It directly measures the number of free paths
through the source code of program. Cyclomatic complexity is
calculated using the formula.

 Cyclomatic Complexity=E-N+P

Where E is the number of edges of the graph; N is the
number of nodes of the graph; P is the number of connected
components. These metrics are used for control quality of
software products.

IV. OBJECT ORIENTED METRICS

Dynamic metrics are derived from the measurement on
dynamic analysis of the software code. They are based on
studying the code behavior during execution. Earlier major
work was focused on static metrics but now more attention has
given to Dynamic metrics as they study the code at run time.
Object-oriented programs can use Halstead Metrics but some
essential factors like inheritance coupling remain uncovered
using these metrics.

The CK metrics suite is designed for measuring object-
oriented programs [6]. The suite includes six metrics discussed
as follows.

A. Chidamber And Kemerer (Ck) Metrics Suite

Chidamber and Kemerer (CK) are the most well known

object-oriented suite of measurements for Object-Oriented

software. They have defined six metrics for the OO design.

a) Weighted Method Per Class (Wmc)

It is defined as the sum of the complexities of individual
class. A class with more member functions than its peers is
considered to be more complex and therefore more error prone
[7]. As the children will inherit all the methods defined in a
class, the potential impact on children will be as greater
according to the number of methods in a class.

b) Depth Of Inheritance Tree (Dit)

The depth of a class in object oriented programming can be
found with the inheritance. Hierarchy is the maximum extent
from the node to the root of the tree. The higher the level of
inheritance is greater is the value of DIT.

c) Number Of Children (Noc)

 Number of immediate subclasses of a class is called its
NOC. Greater number of children of a class means more
reusability as inheritance is the form of reusability.

d) Coupling Between Object Class (Cbo)

It is defined as the count of the classes to which this class
is coupled. Coupling is defined as: Two classes are coupled
when methods declared in one class use methods or instance
variables of the other class. The more independent a class is,
the easier it is to reuse it in another application. The larger the
number of couples, the higher the sensitivity to changes in
other parts of the design, and therefore maintenance is more
difficult. The higher the inter-object class coupling, the more
rigorous the testing needs to be.

e) Response Of A Class (Rfc)

It is defined as number of methods in the set of all methods
that can be invoked in response to a message sent to an object
of a class. Greater the number of methods to be invoked,
greater is the complexity of the class.

f) Lack Of Cohesion In Methods (Lcom)

It is defined as the number of different methods within a
class that reference a given instance variable. To promote
encapsulation, cohesiveness of methods within a class is
desirable. To decrease the possibility of errors during
development process, high cohesion decreases complexity.

B. Mood (Metrics For Object Oriented Design)

 Metrics for Object Oriented Design (MOOD) are used to
measure object-oriented programs. These metrics are language
independent and can be obtained in the early phases of
software development life cycle.

a) Method Hiding Factor (Mhf)

MHF is defined as the ratio of the sum of the invisibilities
of all methods defined in all classes to the total number of
methods defined in the system under consideration. The
invisibility of a method is the percentage of the total classes
from which this method is not visible.

b) Attribute Hiding Factor (Ahf)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

163 | P a g e
www.ijacsa.thesai.org

AHF is defined as the ratio of the sum of the invisibilities
of all attributes defined in all classes to the total number of
attributes defined in the system under consideration.

c) Method Inheritance Factor (Mif)

MIF is defined as the ratio of the sum of the inherited
methods in all classes of the system under consideration to the
total number of available methods (locally defined plus
inherited) for all classes.

d) Attribute Inheritance Factor (Aif)

AIF is defined as the ratio of the sum of inherited attributes
in all classes of the system under consideration to the total
number of available attributes (locally defined plus inherited)
for all classes.

e) Polymorphism Factor (Pf)

PF is defined as the ratio of the actual number of possible
different polymorphic situation for class Ci to the maximum
number of possible distinct polymorphic situations for class
Ci.

f) Coupling Factor (Cf)

CF is defined as the ratio of the maximum possible number
of couplings in the system to the actual number of couplings
not imputable to inheritance.

V. SUMMARY OF METRICS

Software metrics are becoming the basis of the software
management and crucial to the accomplishment of software
development. Consequently their values help in determining
the complexity and hence the maintainability of the code. The
below tables summarizes the above discussed metrics for the
complexity and maintainability of code.

Here, the impact of increased or higher value of the
metrics on the Complexity and hence the Maintainability is
analyzed (Table I - Table III). It illustrates, in general, whether
a high or low value is desired for the metric for better code
quality [8] [9] [13]. We have marked the high value as „1‟ and
low value as „0‟ to represent in a graphical form (Fig. 1 - Fig.
3). It is shown(dark line) that the higher value of metrics
increase the complexity of code, while the metrics with low
value and hence lower the complexity are shown in light shade
lines.

TABLE I. STATIC METRICS

Static

Metrics

(High

Value)

Complexity Maintainability

Desired

Value of

Metrics

SLOC High High Low

CP Less Low High

HM High High Low

MCC High High Low

Fig. 1. Complexity and Maintainablity of software code with high value of
Static metrics

TABLE II. OO METRICS

OO

Metrics

(High

Value)

Complexity Maintainability

Desired

Value of

Metrics

WMC High High Low

DIT High High Low

NOC High High Low

CBO High High Low

RFC High High Low

LCOM Less Less High

Fig. 2. Complexity and Maintainablity of software code with high value of

OO metrics

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

164 | P a g e
www.ijacsa.thesai.org

TABLE III. MOOD

MOOD

Metrics

(High

Value)

Complexity Maintainability

Desired

Value of

Metrics

MHF Less Less High

AHF Less Less High

MIF High High Low

AIF High High Low

PF High High Low

CF High High Low

Fig. 3. Complexity and Maintainablity of software code with high value of
MOOD

VI. CONCLUSION

With the advancements in the software industry, measuring
the software quality is complex for the development of the
software product. Therefore the need for the development of
better software metrics has increased over time. Since the

metrics plays a significant role in determining the complexity
and thus the maintainability of the software code.
Subsequently appropriate survey and study should be done to
select the best metrics for the code. Each metric describes
important features as, how to use it, interpretation guidelines,
published thresholds whenever is possible, and assesses its
appropriateness and usefulness. This would result in guiding
and accessing the software to produce a robust, high-quality
result, which enhances the potential reuse of the software and
reduce the software maintenance cost.

REFERENCES

[1] A. Deepak, K. Pooja, T. Alpika, S. Sharma,“Software quality estimation

through object oriented design metrics”, IJCSNS International journal of
computer science and network security, april 2011,pp 100-104.

[2] A. Henderson, seller, “object oriented metrices:measure of

complexity”,Prentice Hall,1996

[3] Lorenz, M.and Kidd, J. 1994. Object-oriented software metrics: a

practical guide. Prentice-Hall, Inc.

[4] Sharble, R. C. and Cohen, S. S.1993. The Object Oriented Brewery: A
Comparison of Twoobject oriented Development Methods, ACM

SIGSOFT Software Engineering Notes, Vol. 18, No. 2., pp. 60 -73.

[5] McCabe Software. 2012. Metrics & Thresholds in McCabe IQ.
Available at:

http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf

[6] Chidamber, S. R. and Kemerer, C. F. 1994. A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering, Vol. 20,

No. 6, pp. 476–493.

[7] Watson, A. H., McCabe, T. J., and Wallace, D. R. 1996. Structured
testing: A testing methodology using the cyclomatic complexity metric.

National Institute of Standards and TechnologySpecial Publication 500-
235.

[8] Basili, V. R., Briand, L. C., and Melo, W. L., "A Validation of Object

Orient Design Metrics as Quality Indicators," IEEE Transactions on
Software Engineering, vol. 21, pp. 751-761, 1996.

[9] http://www.aivosto.com/project/help/pm-oo-ck.html

[10] http://agile.csc.ncsu.edu/SEMaterials/OOMetrics.htm

[11] http://www.cc.uah.es/drg/b/RodHarRama00.English.pdf

[12] http://www.enggjournals.com/ijcse/doc/IJCSE11-03-09-003.pdf

[13] http://www.ukessays.com/essays/information-
technology/polymorphism-in-object-oriented-design-information-

technology-essay.php

[14] http://www.aivosto.com/project/help/pm-oo-mood.html

0

0.5

1
MHF

AHF

MIF

AIF

PF

CF

Complexity &
Maintainability

Complexity &
Maintainabili
ty

http://www.cc.uah.es/drg/b/RodHarRama00.English.pdf#_blank

