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Abstract—This paper considers a limit cycle control problem  paper. The outline of this paper is as follows. We first consider
of a multi-modal and 2-dimensional piecewise affine control a limit cycle synthesis problem and derive its new solution in
system. Limit cycle control means a controller design method to  Section Il. Some theoretical properties are also shown. Then,
generate a limit cycle for given piecewise affine control systems. i Section I, a formulation of limit cycle control problem
First, we deal with a limit cycle synthesis problem and derive a g presented, and necessary and sufficient conditions for the
new solution of the problem. In addition, theoretical analysis on problem WhiCh are calledhatching conditionsare derived

the rotational direction and the period of a limit cycle is shown. Einall ical simulation is sh ) der t fi
Next, the limit cycle control problem for piecewise affine control Inally, @ numerical simuiation IS shown in order to confirm

system is formulated. Then, we obtain matching conditions such the effectiveness of the new method in Section IV.
that the piecewise affine control system with the state feedback

law corresponds to the reference system which generates a desired II. LIMIT CYCLE SYNTHESIS OF PIECEWISE
limit cycle. Finally, in order to indicate the effectiveness of the ' AFFINE SYSTEMS

new method, a numerical simulation is illustrated.
A. Formulation of Limit Cycle Synthesis

I INTRODUCTION In this section, we consider a synthesis problem of piece-

Limit cycles are known to be quite important concept inwi.se affine systems which generate desired limit cycles. First,
various research fields [1]. We can find limit cycles in realthiS subsection give the formulation of the problem. Con-
world, for example, stable walking or gaits of humanoid robotsSider the 2-d¢nen5|(2)nal Euclidian spade:, its coordinate:
in robotic engineering, oscillator circuits in electronic engi-¢ = [21 22]° € R7, and the origin ofR™: 0. Let us set
neering, catalytic hypercycles in chemistry, circadian rhythmsV (N > 3) points P; # O (i = 1,--- ,N) in R” and denote
in biology, boom-bust cycles in economics and so on. Rethe vector fromO to P; by p; = [p; p;|". We also denote
searches on limit cycles have been eagerly done from botfhe angle between the half lin@F; and thexz,-axis by 6.
mathematical and engineering perspectives so far [2], [3]Now, without loss of generality, we assume that fkiepoints
[4], [5], [6], [7], [8], [9], [11], [12], [13], [14]. Especially, Fi (i=1,--- ,]y) are Ipcated in the counterclockwise rotation
some conditions for nonlinear systems that generate periodféom thez;-axis, that is,0 < 6, <6, <--- <6y holds.
solutions and some applications were shown in [2], and in [7],  Next we define the semi-infinite regiom; which is
a synthesis method of hybrid systems whose solution trajecs,,qwiched by the half line®P; and OP,,; and the line

tories converge to desired trajectories was proposed. In the%%gmenth joining P, and P,.., where Py, = P.. Set a
studies, it is guaranteed that solution trajectories of the systeng?lygon thLat i 2 uni:)n of Ej_ e N)+as .
K3 - ) )

converges to a desired closed curve, and the existence
limit cycles was confirmed by numerical simulations, However, N
the mathematical guarantee of the existence of limit cycles C:= U C;. ()
was not shown. On the other hand, the authors proposed a i=1

synthesis method of multi-modal addimensional piecewise _.

affine systems that generate desired limit cycles in [10],F|g._é shows an example of a Polygonal Closed Curve for
[15] and showed a mathematical proof of the existence and — ™
the uniqueness of a limit cycle for the proposed system. In  We then consider the affine system definediin
addition, some theoretical analysis on the rotational direction

and the period of a limit cycle is derived. In this study, we T =a; + A, v€D; 2)
assume that the whole of a system can be designed. A metho
to generate a desired limit cycle for a given piecewise affind”
control system with tuning some parameters of the system i
more useful for a wide variety of situations. However, such 32'“
control method have not been proposed so far. -

erer = [x; x5 )" € R? is the state variable, and
e R?, A, = R**? are the affine term and the coefficient
atrix, respectively. Consequently, we treat fiemodal and
dimensional piecewise affine system that consistsNof
regionsD; (i = 1,--- ,N) and N affine systems (2). In this

Hence, we consider a limit cycle control problem of multi- paper, we consider the following synthesis problem on limit
modal and2-dimensional piecewise affine systems in thiscycles called “the limit cycle synthesis problem.”
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wherea skew-symmetric matrix/;, a positive definite matrix

'Ti Uy, andu, such thatu, (V') > 0, V' # 0 holds. Then, for the
system (5) with (6),
S N\ D B/ 2 lim V(z(t)) =0 @)
~ — t—00 -
2 e / holds O
\ / Cl Pl - .
S / - Applying Theoreml, we can derive an affine term and
Dy a S N - - / a coefficient matrix4; of the affine system (2) such th&t
/e() p 1 converges td along a solution trajectory of (2). As a specific
\ 7 \ Ch form of (5) and (6), we use
a o M S &= fi+ g,
/7 ‘ T
/ P4 “P5 fl::|: 0 (4(1)1:|6‘/Z ’
7/ D, \ Ds —W; Ox (8)
s \ o0 ]avT
gi *= —‘/1(33) 0 )\z O )
Fig. 1 : Example of Polygonal Closed CurveV(= 5) wherew; and \; > 0 aredesign parameters. Substituting (4)

into (8) and comparing it with (2), we can obtaij and A;

Problem 1 : For the N-modal and 2-dimensional piecewise of (2) as
affine system (2), desiga;, A; (i = 1,---,N) such that a
given polygonal closed curnv@ (1) is a unique and stable limit ) ) - 5 1 L L
cycle pf the system. O [ =i (] = Piy1)(Pipit1 — Pipiyr) — wilpy — Piy) }
Ai(pi — p%ﬂ)(p}p?ﬂ - p?pzlﬂ) —wi(p} — p?+1) ’

A solution of Problem 1 has been derived in the author's 4, —
previous studies [10], [15]. However, in this paper we will [

P =

2
derive another solution which can be utilized to consider the

~Xi(p? — p7i) Ai(p} — ) (pf = i) ] .
limit cycle control problem shown in Section Il

i(pzz _pz2+1)(pzl _pzl+1) —)\i(p} _pzl+1) ©)

B. Proposed System and Existence/Uniqueness of Limit Cycfeompared to the piecewise affine system shown in [10], [15],
. . . . (28) contains a new parametgrand this additional parameter
Next, we shall derive a solution for Problem 1 in this y1aus an important role in the limit cycle control problem in
subsection. We also consider the existence and the uniquenesgcrion 111, It is noted that that the system (2) with (28) satisfies
of a limit cycle for the obtained system. We focus on a behaviog )y the convergence property (7), that s, its solution trajectory
of a solution trajectory of (2) iD;. It is easily confirmed that  ,nverges ta; in D,. Hence, we will discuss the existence of
the equation of’; is represented by a unique and stable limit cycle of the system (2) with (28). To
prove this, we first indicate three lemmas, and then we show

2 2 1 1
2 02 Voo — (pt — b e
(P = pia)or = (07 = pipa )22 (3)  the main theorem by using them. Now, we give the definition

1,2 2,1 _
+PiPig1 — PiPiy1 = 0. on the clockwise and counterclockwise rotations of limit cycle
Using (3), we now defina limit cycle functionV; as solution trajectories of the system (2) with (28) [10], [15].
Vi(z) = (p; — pii)z1 — (P} — Piy1)®2 Definition 1 [10], [15] : For limit cycle solution trajectories

+plpt, —pPpl . (4) of_ the N-modal and2—dimen_siona| piecewise affine_ system (2)

il il with (28), one that rotates in the clockwise directionR is
If V; converges td) along a solution trajectory of (2), then calleda limit cycle solution trajectory in the clockwise rotation
the solution trajectory of (2) also convergesd@. Hence,a; On the contrary, one that rotates in the counterclockwise
and A; should be determined so thet converges td along a  direction in R? is calleda limit cycle solution trajectory in
solution trajectory of (2). Now, an important result on designthe counterclockwise rotatiosee Fig. 2). O
of nonlinear systems is shown as follows [2].

Let us define a subset iD; as

Theorem 1 [2] : Consider the 2-dimensional nonlinear _
system: Mi(e;) :=={x € Di|e; <Vi(x) <ef }, (10)

&= f(z)+g(2), (5)  wheres;, ¢/ € R satisfiess; < ¢} and we set; = (¢, ).

i 0% P01

wherez € R? and f, g € R* — R? are vector fields defined We also define a sum of these subsets as

in R%. In addition, consider a radial and unbounded function N
define onR?: V : R* — R such thatV’(0) = 0 and V (z) # M(e) = | Mi(es), (11)
0, Vz # 0 hold. We now definef andg as i=1
ov'’T ov'’T where we use the notations: = (e, - ,ey), €7 =
f=Up@) g 9= —u(VUg@) 5= 6 (ef ... f), e = (e7,¢7), and the parameters™ and e*
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are determineduch that

N
M=) =J{zeDi|Viz) =}
e (12)
M*(Eeh) = {weDiVi) =<}
=1
form closed polygons. 1M ~(¢~) and M *(¢*) are closed
polygons, that is)M (¢) is a bounded and closed set, thers

said to beadmissible(see Fig. 3). We can derive the following
proposition onM (¢).

[a] Crockwise Rotation [b] Countercrockwise Rotation

Fig. 2 : Clockwise and Counterclockwise Rotations of Limit
Cycle Solution Trajectories
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Fig. 3: Example of M~ (¢7), M™(¢*) and M (e)

Lemma 1 : For the N-modal and2-dimensional piecewise
affine system (2) with (28)M () is a positively invariant,
bounded and closed set for any admissihle

(Proof) Calculating the time differential of/2V;> along a

Vol. 4, No. 9, 2013

solution trajectory of the system (2) with (28), we have

5@(%)—‘4‘4—‘/}8758—‘/2%”14-92)
_V,% 0 Wi 8ViT
T 9z | ~wi 0 | 9z
Vi A0 ov; '
Yo | 0 A | Ox
ov; av; T
=Nyt )
ivi Oxr Oz <0

Hence, it turns out that the velocity vector field of the system
(2) with (28) points to the direction of the inner side of the
bounded and closed sét/ at any points on the boundary
M~ (e")UM™ (™) of M. ConsequentlyM (¢) is a positively
invariant, bounded and closed set. O

Next, we consider equilibrium points of the system (2)
with (28). The following lemma on equilibrium points can be
obtained.

Lemma 2 : Assumew; # 0 (i = 1,---,N). Then, the
N-modal and2-dimensional piecewise affine system (2) with
(28) does not have any equilibrium points M (e) for any
admissiblez.

(Proof) The unit vector which is on a parallel withi; in

D; and points to the counterclockwise rotation is given by
(pi — pix1)/l|lpi — pi+1l|- By considering the inner product of
this unit vector and the velocity vector field of the system (2)
with (28), we have the magnitude of the velocity component
to the direction ofp; — p;11 for a solution trajectory; of the
system (2) with (28) inD; as

||pi —pi+1||

Now, we denote a point i; by x = a;p;+8ipit1, i, B; > 0.
Hence, we can calculate (13) as

. Pi —Pit1
[Pi — pit1]]

= —wiy/(p} = P )2 + (B — P22

Note that\; does not appear in (14). From (14), we can see
that the parameters; and 3; vanish, and hence; is constant

at any pointx € D;. Sincewv; does not vanish at any point
x € D;, the system (2) with (28) does not have any equilibrium
points in M (e). O

vi = {a; + Ai(aip; + Bipiy1) }
(14)

Now, a definition on the concept “traversal” for the system
(2) with (28) is given as follows [11].

Definition 2 : Let X' be a line segment in the positively
invariant, bounded and closed skf(<). If the value of an
inner product of the unit normal vector t8: ex and the
velocity vector of theN-modal and2-dimensional piecewise
affine system (2) with (28) is not equal to 0 and its sign does
not change at any point itv, then X' is said to betraversal
with respect to the system (2) with (28). O

In additionto Lemma 2, under the condition af > 0(i =
1,---,N), a solution trajectory vector of the system (2) with

)

(28) always has a velocity component in the counterclockwise
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rotation. Onthe other hand, under the conditionwaf < 0(i = C. Theoretical Analysis
1,---,N), a solution trajectory vector of (2) with (28) always

has a velocity component in the clockwise rotation. From this, Finqlly, t'his subsectipn gives_, theoretical analysis' on rota-
fact, we can derive the following lemma. tional directions and periods of limit cycle solution trajectories

of the system (2) with (28). First, we consider the relationship
between rotational directions of limit cycles and the parameters

Lemma 3 : For the N-modal and2-dimensional piecewise (28). The following proposition can be derived.

affine system (2) with (28), assume that> 0(i =1,--- , N)

orw; <0 (i =1,---,N) holds. Then, there exists a traversal prqngsition 1: For the N-modal anc2-dimensional piecewise

line segment’, at any point inz € M(¢), and it is satisfied  affine system (2) with (28), its limit cycle solution trajectory

thatz € 2 andY infinitely intersects with solution trajectories ,qves in the counterclockwise rotation fa, > 0 (i =

of the system (2) with (28). 1,---,N), and conversely it moves in the clockwise rotation
forw; <0 (i=1,---,N).

(Proof) We assume that; > 0 (i = 1,--- ,N) or w; <

0 (i =1,---,N) holds. Then, a solution trajectory of the (Proof) The proof of this proposition is trivial from the
system (2) with (28) always circles to the counterclockwisediscussion in the previous section. O
rotation or to the clockwise rotation. Now, for a point M,

we consider a half line whose origin @ and that passes From Propositionl, it is confirmed that the rotational

through 2, and define a subsef C M as the intersection directions of limit cycles do not depend ok;. Next, we

of the half line andM. Since the velocity vector field of the analyze periods of limit cycles of the system (2) with (28). It
system (2) with (28) always has the velocity component of thecan be expected that after a solution trajectory of the system (2)
counterclockwise rotation or the clockwise rotation, the innemwith (28) converges td@, it behaves as a periodic trajectory.
product of a normal vector of and the vector field of the By calculating the velocity component of the vector of the
system (2) with (28) at any point i is not equal to) and  System along”, we can derive the next proposition.

its sign does not change, that i5, is traversal. Moreover, in . o _ _

eachM; (i =1,---,N), since the velocity vector field of the Proposition 2: When a limit cycle solution trajectory of the
system (2) with (28) always has the velocity component of theV-modal and2-dimensional piecewise affine system (2) with
clockwise rotation or the counterclockwise rotation, a solutior(28) is sufficiently close t@, the period with which it rotates
trajectory of the system (2) with (28)(t) that intersected> ~ aroundC' is given by

intersectsY’ in a finite time again. Consequently, it turns out

the solution trajectory intersects infinitely. O T~ zN: 1 (15)
=1 |wl|
We have to note that the result in Lemma 3 does not depend
on\; (i=1,---,N). Using Lemmas 1-3, we can derive the
main theorem on the existence of the limit cycle of the systenfProof) Thevelocity component of a solution trajectory of
(2) with (28). (2) with (28) in D; to the direction ofp; — p;.1 is given by

(13). The length ofC;: L; can be calculated as
Theorem 2 : For the N-modal and2-dimensional piecewise

affine system (2) with (28), assume thgt> 0(i = 1,--- , N) L; = \/(p} —pi)? + (pF —pig)% (16)
orw; <0 (¢=1,---,N) holds. Then, the unique and stable

limit cycle of the system (2) with (28) is equivalent €o. Therefore, we can obtain the perid@das

(Proof) By the result on the hybrid Poincare-Bendixson the- T~ ZN: L _ XN: 1 (17)
orem derived in [3], [11], it turns out that sufficient conditions — |v;| = fwi]

for the existence of stable limit cycles of the system (2) with =t =l

(28) in M(e) are the following three: (i) (¢) is a positively  This completeghe proof of this proposition. O
invariant, bounded and closed set, (ii) there do not exist any

equilibrium points at the boundary and in the interioridfe) From Propositior2, we can also see that the period of a

(iii) there exists a traversal line segmentC M (e) such that limit cycle solution trajectory of the system (2), (28) is not
z € ¥ and X infinitely intersects with solution trajectories of independent of\;. So, we can freely choose the value of
the system (2) with (28). Since we have confirmed these three
conditions in Lemma 1, 2, and 3, we can see that there exists
a stable limit cycle inM () for the system (2) with (28) for . LIMIT CYCLE CONTROL FOR PIECEWISE

S X AFFINE SYSTEMS
any admissible. Moreover, sincél/(¢) converges t@' as the
values ofe goes to0, it can be confirmed that’ is a unique A, Formulation of Limit Cycle Control

and stable limit cycle. Hence, the proof is completed. [ ) i ) )
In this section, we consider a controller design problem on

In this paper, we consider an additional parametgin the generation_of Iim.it cycles fqr giv_en piecewise affine contr_ol
system (2), (28). However, from the results obtained in thissystems. First, this sub-section gives the problem formulation.
subsection, we can see that the existence and the uniquendsgnsider the next piecewise affine control system defined in
of a limit cycle of the system (2), (28) are independeniaf  Di:

This fact is quite important in the next section. T =a; + Az +bu, veDy, (18)
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where u € R is the control input andb; € R? is the  system:
coefficient vector for the control input. We next consider the

state feedback law: T =a; + Az + bi(k;x + 1;)
u:k‘ia:—l—li, .IED,L', (19) B |:a11+bzllz :|+|:A111+b11/€11 A212—|—b3k22 N ( )
2 27. 21 27.1 22 21.2 .
wherek; € R? andl; € R. We assume that;, p; 1, a;, A; are a; + bils AT Ok AT Ok

given parameters. Now, we formulate a problem on generatin@:omparing the components of the reference system (2), (28)

a desired limit cycle for the piecewise affine control syste ) : :
(2) and the state feedback law (19) as follows. "t%rt]gﬁig#oss?;l;g?&i ystem (27), we can obtain the m?]tchlng

Problem 2 : For the N-modal and 2-dimensional piecewise The matchinaconditions (21)—(26) consists of 6 algebraic
affine control system (18) with the state feedback law (19)equations and %punknown \5ari)ab(lé$? B2 Kl K21 w_g)\_.
designb;, ki, li,wi, Ai (i = 1,---,N) such that a given pence by solving them under the conditian > 0, we can
polygonal closed curve’ (1) is a unique and stable limit cycle opain thése unknown variables, that is, a solution of Problem

of the closed-loop system. O 2

Throughout thispaper, we call Problem 2 limit cycle
control problem for piecewise affine control system IV. SIMULATIONS

This section presents a numerical example in order to
B. Matching Conditions for Limit Cycle Control Problem confirm the effectiveness of the results derived in the previous
) o ) . sections. We now give data of a polygon wifti = 4 as
The purpose of this subsection is to derive a solutionp, — (1,0), P,=(0,1), Py =(-1,0), P, = (0, —1).0
method of Problem 2 for the piecewise affine control systemrhe polygon is shown in Fig. 4.
(18) with the state feedback law (19). To fulfill this, we shall
utilize the limit cycle synthesis method obtained in Section To
2. The results in Section Il show that the unique and stable A
limit cycle of the system (2), (28) coincides wiflA Hence, by
tuning design parametets, k;, l;,w;, \; (i=1,---,N), we
conform the closed-loop system (18), (19) to the system (2), D,
(28). We here call the system (2), (28)e reference system
Use the following notations for the system (2), (28):

1 Al g12 p
ai—[Z%}vAi_[Aél A%Q}’ 0) ° P
O

1
mzmﬂ,m:m;@y
7

P, Dy

» T1

Conditions such that the closed-loop system (18), (19) is
consistent with the reference system (2), (28) can be obtained Ds P
by the following theorem. ! Dy

Theorem 3: The N-modal and 2-dimensional piecewise affine
control system (18) with the state feedback control law (19) is Fig. 4 : Polygonal Closed Curve of Example
equivalent to the reference system (2), (28) if and onlthé

matching conditions The coefficients of the piecewise affine system are given

aj +bjli = —=Xi(p} — P 1) (Pipie — Pipiyy) %Y
—wi(p} —piy) (1) o= 3] 4,20 w
ai + bl = \i(p; *P%+1)(P%P12+1 *P?P}H) L 2 1 L3
—w; (P} —p1) (22) as = 1} , A = { Lo ] )
At + bk = =0} — pi)? (23) : - T I N (28)
AP+ 0k = Xi(p} — p7)(pi — piga) (24) ag = _11 , As = _12 } :
AP 07k = N} — pi) (pi — piga) (25) F e 0
AP+ 07k = =Ni(p] — pip1)? (26) I ] » A= [ 0 -8 ] '

hold.
By solving the matching conditions for Problem 2 (21)—
(Proof)  Substituting (19) into (18), we get the closed-loop(26) in terms of the problem formulation, we can calculate
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design parameters follows: 157 .
1l gL |
by = 2:|,k‘1:[1 72]a 05" J
l1:17 w1:3, )\1:1, x Of 1
[ -1 05" |
w=| 3] =l 21, °l 7
lo=2 =1, My=2 150 i
o wi o (29) 1-50 5 10 15 20 25 30
b3 = 2 :| ) k3 = [ 1 -2 ]a t
ls = 2-, ws =2, A3 =3, Fig. 6 : Time Series ofr;
by = ” ky=[4 4],
15

l4:—_4, w4:1, )\4:4. 1

Note that); > 0 (i = 1,2,3,4) holds in (29). It can 0.5
be confirmed that from Proposition 1, a limit cycle solution
trajectory moves in the counterclockwise rotation singe> *
0 (i = 1,2,3,4) holds. In addition, from Proposition 2 we can ~ -05

estimate the period of a limit cycle solution trajectory as -1
4 1.5 ¢ 1
1 17 ‘ s s s s
TrY =_. (30) 0 5 10 15 20 25 30
im1 |wil 6 t

Fig. 7 : Time Series ofrs

We set the initial state as, = [1, 1]T for the numerical
simulation. The simulation results are illustrated in Figs. 5-7.
Fig. 5 shows the solution trajectory on thero-plane. In Figs. V. CONCLUSION
6 and 7, the time series of, andx, are shown, respectively. In this paper, we have considered a limit cycle control prob-
From these simulation results, we can see that the SO|UtIOFém for a multi-modal and 2-dimensional piecewise control
trajectory that starts from, behaves as a limit cycle for the affine system. We have derive the matching conditions such
desired polygonal closed cur¢& and hence Theorem 1 holds. that the piecewise control affine system with the state feedback
As we expected above, the solution trajectory moves in theaw corresponds with the reference system which generates a
counterclockwise rotation, and this result is coincident withynique and stable limit cycle. It has been confirmed by solving
Proposition 1. Moreover, the estimated peribd~ 17/6 is  the matching conditions we can obtain the values of design
mostly agree about the simulation result from Figs. 6 and 7.parameters. A numerical simulations show the availability and
the application potentiality of the proposed method.

T T T T T T T

L S A . Our future work includes applications of the proposed

control method to real systems and extensions to multi-
dimensional piecewise affine systems.

REFERENCES

0.5 v
[1] J. Buchli, L. Righetti and A. ljspeert, “Engineering Entrainment and

Adaptation in Limit Cycle Systems,Biological Cyberneticsvol.95,
pp.645-664, 2006

[2] D. N. Green, “Synthesis of Systems with Periodic Solutions Satisfying
V(z) = 0,” IEEE Trans. Circuits and Systemeol.31, no.4, pp.317—
326, 1984

[3] S. N. Simic, K. H. Johansson, J. Lygeros and S. Sastry, “Hybrid
Limit Cycles and Hybrid Poincare-Bendixsori' Proc. of IFAC World
Congress Barcelona, Spain, pp.86—89, 2002

L R S A S S [4] A. Girard, “Computation and Stability Analysis of Limit Cycles in
: : : : : : : Piecewise Linear Hybrid Systemsyi Proc. of 1st IFAC Conference
: : : : : : : on Analysis and Design of Hybrid Systen®aint-Malo, France, pp.
SIUB b 181-186, 2002

. : . : : ; : [5] M. Adachi and T. Ushio, “Synthesis of Hybrid Systems with Limit
1.5 1 0.5 0 0.5 1 1.5 Cycles Satisfying Piecewise Smooth Constant EquatidB$CE Trans.
X Fundamentalsvol.E87-A, No.4, pp.837-842, 2004
. . . [6] F. Gobmez-Estern, J. Aracil, F. Gordillo and A. Barreiro, “Generation of
Fig. 5 : Solution Trajectory onc;zo-Plane Autonomous Oscillations via Output Feedbadk,Proc. of IEEE CDC
2005 Seville, Spain, pp.7708-7713, 2005

205|Page
www.ijacsa.thesai.org



(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Ohno, T. Ushio and M. Adachi, “Synthesis of Nonautonomous
Systems with Specified Limit Cycles[EICE Trans. Fundamentals
vol.E89-A, No.10, pp.2833-2836, 2006

F. Gomez-Estern, A. Barreiro, J. Aracil and F. Gordillo, “Robust
Generation of Almost-periodic Oscillations in a Class of Nonlinear
systems,’Int. J. Robust Nonlinear Contrplol.16, no.18, pp.863—-890,
2006

D. Flieller, P. Riedinger, and J. Louis, “Computation and Stability of
Limit Cycles in Hybrid Systems Nonlinear Analysis\Vol. 64, pp. 352—
367, 2006

T. Kai and R. Masuda, “Limit Cycle Synthesis of Multi-Modal and 2-
Dimensional Piecewise Affine Systemsfathematical and Computer
Modelling, Vol. 55, pp. 505-516, 2012

M. Suenaga and T. Hayakawa, “Existence Condition of Periodic Orbits
for Piecewise Affine Planar Systemsii Proc. of SICE 8th Annual
Conference on Control Systeni§yoto, Japan, 2008

T. Kai and R. Masuda, “Controller Design for 2-Dimensional Nonlin-
ear Control Systems Generating Limit Cycles and Its Application to
Spacerobots,in Proc. of NOLTA 2008Budapest, Hungary, pp.496—
499, 2008

T. Kai and M. Katsuta, “Limit Cycle Control for 2-Dimensional
Discrete-time Nonlinear Control Systems and Its Application to Chaos
Systems,"in Proc. of NOLTA 2009Sapporo, Japan, pp.86—89, 2009

A. Schild, Xu Chu Ding, M. Egerstedt, J. Lunze, “Design of optimal
switching surfaces for switched autonomous systems?roc. of IEEE
Conference on Decision and Control & Chinese Control Conference
2009 Shanghai, China, pp. 5293-5298, 2009

T. Kai and R. Masuda, “A Limit Cycle Synthesis Method of Multi-
Modal and 2-Dimensional Piecewise Affine Systenis,Proc. of 50th
IEEE Conference on Decision and Control and European Control
ConferenceOrlando, USA, pp. 4759-4764, 2011

www.ijacsa.thesai.org

Vol. 4, No. 9, 2013

206 |Page



